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Abstract. In this paper we explore how to characterise graphs using
the Gauss-Bonnet theorem. Using the Gaussian curvatures estimated
from first-order cycles we compute a global estimate of the Euler in-
dex using the Gauss-Bonnet theorem. We commence by embedding the
nodes of a graph in a manifold using the heat-kernel mapping. From this
mapping we are able to compute the geodesic and Euclidean distance be-
tween nodes, and these can be used to estimate the sectional curvatures
of edges. Assuming that edges reside on hyper-spheres, we use Gauss’s
theorem to estimate the Gaussian curvature from the interior angles of
geodesic triangles formed by first-order cycles in the graph. From the
Gaussian curvatures we make a global estimate of the Euler index of the
manifold using the Gauss-Bonnet theorem. Experiments show how the
Gaussian curvatures and the Euler characteristics can be used to cluster
Delaunay triangulations extracted from real world images.

Keywords: Manifold embedding, Heat kernel, Hausdorff distance, Gaus-
sian curvature, Graph matching.

1 Introduction

The task of characterising the structure of graphs for the purposes of matching,
clustering or indexing is a challenging one for which no definitive solution exists.
If the characterisation is attempted without recourse to edge weight or node
attribute information, then the regularity of many graph structures means that
local characteristics are ambiguous, and only global structural information can
be used. Examples of the available global characteristics include Cheeger num-
bers, perimeters, diameters and edge densities. This problem can be particularly
severe for k-nearest neighbor graphs, Delaunay triangulations and strongly reg-
ular graphs.

Of course, one solution to this problem is to use graph-spectral information.
Although the spectrum of a graph (i.e. the set of eigenvalues of the Laplacian
matrix) is a global permutation invariant characterisation, the set of eigenvec-
tors are not permutation invariant and can only be used to characterise graphs
on a node-by-node basis. Unfortunately, eigenvectors are notoriously unstable,

N. da Vitora Lobo et al. (Eds.): SSPR&SPR 2008, LNCS 5342, pp. 207–216, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



208 H. ElGhawalby and E.R. Hancock

and small perturbations in graph structure can lead to significant variations
in eigenvector directions. Moreover, the estimation of eigenvectors is subject to
directional ambiguity.

Another solution to the problem is to make use of spectral geometry [5,2,9].
This allows the nodes of graph to be embedded on a manifold, and the graph
to be characterised using the local differential structure of the manifold. Hence,
local graph structure can be characterised using invariant quantities such as
curvature or torsion [8]. This is the approach adopted by Bai and Hancock [12]
who use the heat kernel to construct, embed and characterise the edges of a
graph using sectional curvature. This curvature is computed using the difference
between the geodesic (edge length) and Euclidean internode distance under the
embedding. Of course, the sectional curvature is one of many possible differential
invariants that can be computed.

The aim in this paper is therefore to look in greater depth at the diversity of
quantities that are furnished by the differential geometry of the manifold. We
turn our attention to geodesic triangles. These are formed when a first-order
cycle in a graph is embedded. By making a locally hyper-spherical approxima-
tion to the geometry of the manifold and the turning angles of the geodesics,
we are able to estimate the Gaussian curvature of the triangle. Furthermore, the
Gauss-Bonnet theorem allows us to estimate a local Euler characteristic from
abutting geodesic triangles. We demonstrate how the estimated curvature infor-
mation can be used for matching and clustering graphs, extracted from real world
image data.

2 Manifold Embeddings

We commence by establishing a matrix representation for graph−structure. Let
the graph under study be denoted by G = (V, E) where V is the set of nodes
and E ⊆ V × V is the set of edges. The elements of the adjacency matrix A of
the graph G are:

A(u, v) =
{

1 if(u, v) ∈ E
0 otherwise

(1)

To construct the Laplacian matrix of graph G we first establish a diagonal
degree matrix D with elements

D(u, u) =
∑
v∈V

A(u, v) = du (2)

The Laplacian matrix L = D − A, is the degree matrix minus the adjacency
matrix. Elementwise, we have

L(u, v) =

⎧⎨
⎩

du ifu = v
−1 if(u, v) ∈ E
0 otherwise

(3)

The normalized Laplacian is given by L̂ = D−1/2LD−1/2 and has spectral
decomposition L̂ = ΦΛΦT =

∑|V |
i=1 λiφiφ

T
i where |V | is the number of nodes,
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Λ = diag(λ1, λ2, ..., λ|V |), (0 < λ1 < λ2 < ... < λ|V |) is the diagonal matrix
with the ordered eigenvalues as elements and Φ = (φ1|φ2|...|φ|V |) is the matrix
with the corresponding ordered eigenvectors as columns. We follow Bai and
Hancock [12] and make use of the heat kernel embedding. The heat kernel plays
an important role in spectral graph theory. It encapsulates the way in which
information flows through the edges of graph over time under the heat equation,
and is the solution of the partial differential equation

∂ht

∂t
= −L̂ht (4)

where ht is the heat kernel and t is the time. The solution is found by exponen-
tiating the Laplacian eigenspectrum as follows

ht = exp[−L̂t] = Φ exp[−tΛ]ΦT (5)

For the heat kernel, the matrix of embedding coordinates Y (i.e. the matrix
whose columns are the vectors of node coordinates) is found by performing the
Young-Householder [13] decomposition ht = Y T Y as a result the matrix of node
embedding coordinates is

Y = (y1|y2|...|y|V |) = exp[−1
2
tΛ]ΦT (6)

where yu is the coordinate vector for the node u. In the vector space, the Eu-
clidean distance between the nodes u and v of the graph is

d2
e(u, v) = (yu − yv)T (yu − yv) =

|V |∑
i=1

exp[−λit](φi(u) − φi(v))2 (7)

When a pair of nodes are connected by an edge, then dG(u, v) = 1. We assume
that the geodesic between the pair of nodes can be approximated by a segment
of circle whose arc-length is the geodesic distance and whose chord-length is the
Euclidean distance. If the radius of the circle is rs(u, v) and the tangent vector
to the circle arc undergoes a change in direction of 2θ(u, v), then we have

dg(u, v) = 2rs(u, v)θ(u, v) (8)

and
de(u, v) = 2rs(u, v) sin θ(u, v) (9)

3 The Gauss-Bonnet Theorem

The Gauss-Bonnet Theorem links the topology and geometry of a surface in an
elegant and compact manner. Spivak [10] and Stillwell [11] give accounts of the
early history of its development and application.

For a smooth compact oriented Riemannian 2-manifold M , let �g be a trian-
gle on M whose sides are geodesics, i.e. paths of shortest length on the manifold.
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Further, let α1, α2 and α3 denote the interior angles of the triangle. According to
Gauss’s theorem, if the Gaussian curvature K (i.e. the product of the maximum
and minimum curvatures at a point on the manifold) is integrated over �g, then

∫
�g

KdM =
3∑

i=1

αi − π (10)

where dM is the Riemannian volume element.

3.1 Geometric Preliminaries

To estimate the Gaussian curvature from the above, we must determine the
interior angles αi of the geodesic triangle. To this end we assume that T is a
triangulation of a smooth manifold M , �g be a geodesic triangle on M with
angles {αi}3

i=1 and geodesic edge lengths {dgi}3
i=1. Further suppose that �e be

the corresponding Euclidean triangle with edge lengths {dei}3
i=1 and interior

angles {ϕi}3
i=1. We assume that the geodesic index i is a great arc on a sphere

with radius ri, i = 1, 2, 3. By averaging over the constituent geodesic edges,
we treat the geodesic triangles as residing on a hyper−sphere with radius r =
1
3

∑3
i=1 ri. To compute the interior angle of the geodesic triangle, we make use

of two formulae. First, from the geometry of the sphere

sin(
α

2
) =

r√
4r2 − d2

e

(11)

Second, when using the double integral to compute the area of a triangle on a
sphere

α

2
=

πr2

6r2 − d2
e

(12)

Substituting from (11) and (12) in the Taylor expansion for sin(α/2), we have

sin(α/2) � (α/2) − 1
3!

(α/2)3 (13)

sin(α/2)
(α/2)

� 1 − α2

24
(14)

So we can deduce that

α2 � 24(1 − 6r2 − d2
e

πr
√

4r2 − d2
e

) (15)

3.2 The Euler Characteristic

We can now use the Gauss Bonnet Theorem to estimate a global topological
characteristic for the manifold. We commence by triangulating M so that each
face is a geodesic triangle.
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Summing (11) over all the triangular faces gives that the integral of K over
all M is 2π times the Euler characteristic of M , i.e.

∫
M

KdM = 2πχ(M) (16)

4 Hausdorff Distance

Once sets of Gaussian curvatures for the geodesic triangles of a graph are to hand,
we require a means of comparing different graphs so that we can compute graph
similarity. Here to avoid the need to compute explicit node correspondences using
the Hausdorff distance between curvature sets. The Hausdorff distance has been
used for a number of matching and recognition problems. It provides a means
of computing the distance between sets of unordered observations when the
correspondences between the individual items are unknown. In its most general
setting, the Hausdorff distance is defined between compact sets in a metric space.
Given two such sets, we consider for each point in one set the closest point in
the second set. Hausdorff distance is the maximum over all these values. More
formally, the classical Hausdorff distance (HD) [6] between two finite point sets
A and B is given by

H(A, B) = max(h(A, B), h(B, A)) (17)

where the directed Hausdorff distance from A to B is defined to be

h(A, B) = max
a∈A

min
b∈B

‖a − b‖ (18)

and ‖.‖ is some underlying norm on the points of A and B (e.g., the L2 or
Euclidean norm). Regardless of the norm, the Hausdorff metric captures the
notion of the worst match between two objects. The computed value represents
the largest distance between a point in one set and a point in the other one.
Several variations of the Hausdorff distance have been proposed as alternatives
to the maximum of the minimum approach in the classical one. These include
Hausdorff fraction, Hausdorff quantile [6] and Spatially Coherent Matching [1].
A robust modified Hausdorff distance (MHD) based on the average distance
value instead of the maximum value was proposed by Dubuisson and Jain [3],
in this sense they defined the directed distance of the MHD as

h(A, B) =
1

NA

∑
a∈A

min
b∈B

‖a − b‖ (19)

For this paper we will consider the classical and the modified Hausdorff dis-
tances. Using these ingredients we can describe how Hausdorff distances can
be extended to graph-based representations. To commence let us consider two
graphs G1 = (V1, E1, T1, k1) and G2 = (V2, E2, T1, k2), where V1,V2 are the sets
of nodes, E1, E2 the sets of edges, T1,T2 are the sets of triangles, and k1,k2 the
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sets of Gaussian curvatures for geodesic triangles defined in the previous section.
We can now write the distances between two graphs as follows:

1) The classic Hausdorff distance (HD) is

hHD(G1, G2) = max
i∈V1

min
j∈V2

‖k2(j) − k1(i)‖ (20)

2) The modified Hausdorff distance (MHD) is

hMHD(G1, G2) =
1

|V1|
∑
i∈V1

min
j∈V2

‖k2(j) − k1(i)‖) (21)

5 Experiments

In our experiments we use the standard CMU, MOVI and chalet house sequences
as our data set [7]. These data sets contain different views of model houses from
equally spaced viewing directions. From the house images, corner features are
extracted, and Delaunay graphs representing the arrangement of feature points
are constructed. Our data consists of ten graphs for each of the three houses.
Each node in a Delaunay graph belongs to a first order cycle, and as a result the
graph is a triangulation.

To commence, we obtain the manifold embedding for each of the thirty graphs
following the steps mentioned in Section 2. We compute the Euclidean distances
between the nodes in each graph based on the heat kernel with the values of
t = 10.0, 1.0, 0.1 and 0.01. Using the Delaunay graphs to triangulate the man-
ifold, for each geodesic triangle we compute the interior angles deduced using
the procedure outlined in Section 3.1. For each triangle we then compute the
Gaussian curvature as described in Section 3. We use the Gaussian curvatures
of the geodesic triangles as features for the purposes of gauging the similarity
of graphs. Using the set of Gaussian curvatures for pairs of graphs, we compute
a matrix of Hausdorff distances the thirty different graphs. Here we explore the
use of both the classical Hausdorff distance and the modified Hausdorff distance.
Finally, we apply multidimensional scaling (MDS) to the distance matrices to
embed the individual graphs into a 2D space. Here each graph is represented by
a single point. Figure 1 shows the results obtained using the classical Hausdorff
distance. The subfigures are ordered from left to right, using t = 10.0, 1.0, 0.1
and 0.01 in the heat kernel. Figure 2 shows the corresponding results obtained
when the modified Hausdorff distance is used.

Of course, there are alternatives to the heat-kernel embedding, and the pro-
cedure for computing Gaussian curvatures can be applied to these too. When
the Euclidean distances are computed directly from the Laplacian embedding
instead (i.e. Y =

√
ΛΦT ), then the results shown in Figure 3 are obtained. Here

the left-hand subfigure is obtained when using the HD and the right-hand one
when using MHD.
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Fig. 1. MDS embedding obtained using HD for the houses data
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Fig. 2. MDS embedding obtained using MHD for the houses data

To investigate the data in more detail Table 1 shows the rand index for the
data as a function of t. This index is computed as follows: We compute the
mean for each cluster, we then compute the distance from each point to each
mean. If the distance from the correct mean is smaller than those to remaining
means,then the classification is correct, if not then classification is incorrect. The
rand index is R= (� incorrect )/ ( � incorrect + � correct ).

Table 1. A rand index vs. t

lap t=10 t=1.0 t=0.1 t=0.01
HD 0.2667 0.2333 0.3000 0.5333 0.5333

MHD 0.1333 0.1667 0.0333 0.1333 0.4000

In previous work [4], we used the sectional curvature associated with the
edges of a graph under the heat kernel embedding as a feature for the purposes
of gauging the similarity of graphs, and hence clustering them. Table 2 shows
the rand index for the results obtained as a function of t.

A comparison shows that the curvature attributes associated with the edges
give a slightly better clusters than those obtained using the attributes derived
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Fig. 3. MDS embedding obtained using curvatures computed from the Laplacian eigen-
map and distances computed using HD (left) and MHD (right) for houses data
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Table 2. A rand index vs. t. induced when the sectional curvature of the edges was
used.

lap t=10 t=1.0 t=0.1 t=0.01
HD 0.0.2333 0.1000 0.1667 0.4333 0.0333

MHD 0.1000 0.1333 0.2333 0.1333 0.0333

Table 3. A rand index vs. t. induced when the sectional curvature of the edges was
used.

lap t=10 t=1.0 t=0.1 t=0.01
0.0.3333 0.4667 0.2333 0.3000 0.4000

from the triangles. To take this study one step further we have constructed
normalised histograms of the Gaussian curvature associated with the geodesic
triangles on each graph. The histograms can be treated as vectors, and can be
used as input to principal components analysis. Using the leading two princi-
pal component projections we repeat the Rand index computation, The error
deduced is shown in Table 3, which ranges between 0.23 and 0.47. Next, we
consider the Euler characteristic whose computation was detailed in Section 3.2.
In Table 4 we list the mean and variance for each group of graphs (for each
house).

Table 4. The mean and variance for the Euler characteristic of the manifold embedding
of each graph

lap t=10 t=1.0 t=0.1 t=0.01
1st Mean 0.0217 -0.1725 2.2361 1.2835 5.1177

house Variance 0.0099 0.0001 0.1830 4.8437 1.7395
2nd Mean 0.0850 -0.7514 4.0221 49.1613 8.3172

house Variance 0.1344 0.0003 0.1077 12.4022 10.2801
3rd Mean 0.0545 -0.3970 3.5168 16.1415 6.1704

house Variance 2.4059 0.0120 0.8116 150.9340 17.5878

Finally, we investigate how the Gaussian curvatures of the geodesic triangles
are distributed over the Delaunay graph. Figures 4, 5 and 6 show distribution
for sample embeddings computed from the heat kernel at (t=0.1).

From the sequence it is clear that the Gaussian curvature distribution over
the different views of each house is stable, moreover it moves smoothly from
positive (elliptical) to negative (hyperbolic) regions. This suggests that the ar-
rangement of triangles and their Gaussian curvatures could be used as the basic
of a matching algorithm.
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The first House Graph no.4  using heat kernel t=0.1
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The first House Graph no.6  using heat kernel t=0.1
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The first House Graph no.7  using heat kernel t=0.1
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The first House Graph no.8  using heat kernel t=0.1
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The first House Graph no.9  using heat kernel t=0.1
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Fig. 4. The distribution of the Gaussian curvatures of the geodesic triangles for the
ten graphs of the 1st house
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The second House Graph no.2  using heat kernel t=0.1
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The second House Graph no.3  using heat kernel t=0.1
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The second House Graph no.4  using heat kernel t=0.1
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The second House Graph no.5  using heat kernel t=0.1
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The second House Graph no.6  using heat kernel t=0.1
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The second House Graph no.7  using heat kernel t=0.1
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The second House Graph no.8  using heat kernel t=0.1
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The second House Graph no.9  using heat kernel t=0.1
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Fig. 5. The distribution of the Gaussian curvatures of the geodesic triangles for the
ten graphs of the 2nd house
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The third House Graph no.2  using heat kernel t=0.1
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The third House Graph no.3  using heat kernel t=0.1
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The third House Graph no.4  using heat kernel t=0.1
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The third House Graph no.5  using heat kernel t=0.1

 

 

−3

−2

−1

0

1

2

3

50 100 150 200 250 300 350
50

100

150

200

250

300

350

400

450
The third House Graph no.6  using heat kernel t=0.1
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Fig. 6. The distribution of the Gaussian curvatures of the geodesic triangles for the
ten graphs of the 3rd house

6 Conclusion and Future Work

We have shown how to compute the Gaussian curvatures of geodesic triangles
and the Euler characteristic for graphs embedded on a manifold using the heat
kernel. Experiments show that these two quantities provide effective features for
graph clustering, but perform marginally worse than the sectional curvatures of
the edges. However, they do lead to a deeper representation of the differential
structure of embedded graphs. As future work we have a number of different
lines of research in mind. First we aim to explore whether our characterisation
can lead to the construction of Grassmanian manifolds for graphs. Second, we
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aim to explore whether the arrangement of geodesic triangles and their Gaussian
curvature can be used for attributed graph matching.

References

1. Boykov, Y., Huttenlocher, D.: A new bayesian framework for object recognition. In:
Proceeding of IEEE Computer Society Conference on CVPR, vol. 2, pp. 517–523
(1999)

2. Brooks, R.: Geometry, Spectral theory, Groups, and Dynamics. Amer. Mathemat-
ical Society (2005)

3. Dubuisson, M., Jain, A.: A modified hausdorff distance for object matching, pp.
566–568 (1994)

4. ElGhawalby, H., Hancock, E.R.: Measuring graph similarity using spectral geom-
etry. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp.
517–526. Springer, Heidelberg (2008)

5. Gilikey, P.B.: Invariance Theory, The heat equation, and the Atiyah-Singer index
Theorem. Publish or Parish Inc., USA (1984)

6. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the
hausdorff distance. IEEE. Trans. Pattern Anal. Mach. Intell. 15, 850–863 (1993)

7. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern
Recogintion 36, 2213–2230 (2003)

8. Rosenberg, S.: The Laplacian on a Riemanian manifold. Cambridge University
Press, Cambridge (2002)

9. Saucan, E., Appleboim, E.: Curvature based clustering for DNA microarray data
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