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Abstract. This paper explores whether facial expressions can be recog-
nised by using the distribution of surface normal directions in the ex-
tended Gaussian image (EGI). We work with range images and extract
surface normals using a mesh fitting technique. Our representation of
the surface normals is based on the co-efficients of spherical harmonics
extracted from the EGI. We explore whether the co-efficients can be used
to construct shape-spaces that capture variations in facial expression us-
ing a number of manifold learning techniques. Based on a comparison of
various alternatives, the best results are given by the diffusion map.

1 Introduction

Recently, it has been shown that statistical models based on the distribution of
surface normals can offer a powerful means of representing an recognising facial
shape. The reasons for this are two-fold. First, the needle map (or Gauss map)
offers a representation that is rich in terms of differential geometry, and hence
can potentially be used to capture subtle variations in facial shape. Secondly,
surface reflectance is determined by the relative orientation of the surface and
the light source. Hence, given a description of skin reflectance then a surface
normal model can be fitted to image brightness data to recover 3D shape from
a 2D facial image.

There are a number of approaches to capturing the statistics of surface normal
direction. For instance, Smith and Hancock [I] project the surface normals into a
tangent space to construct a statistical model using principal geodesic analysis.
This work has recently been extended to gender recognition [2], but has proved
too cumbersome for expression recognition. Bronstein, Bronstein and Kimmel [3]
develop a spherical embedding, that allows faces to represented in a manner that
is invariant to expression. Parameterising the distribution of surface normals,
Kazhdan et al. [4] use the fact that the spherical harmonics of a given frequency
form a subspace which is a rotationally invariant and which can be applied to
the extended gaussian image (EGI). to create a rotationally invariant shape
descriptor.

The aim in this paper is to take this work one step further and to explore
whether spherical harmonics can be used for expression recognition. Specifically,
we aim to explore whether the co-efficients can be used to construct shape spaces
that allow different individuals and their expressions to be distinguished. To this
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end, we explore different ways of embedding the spherical harmonic co-efficients
into a low dimensional pattern space. The most effective of these is the diffusion
map [5], but we also provide comparison with kernel principal components anal-
ysis [6], local linear embedding [7], heat kernel embeddings and [8], commute
time embeddings [9/5].

2 Representing Variations in Surface Normal Direction

In this section we describe our method. We commence from the extended Gaus-
sian image which we parameterise using spherical harmonics. Using the
co-efficients of the spherical harmonics, we construct shape-spaces using the
diffusion map.

Extended Gaussian Image: The Extended Gaussian Image(EGI) [I0] is a
shape descriptor that represents the distribution of surface normals as data on
a Gaussian Sphere. The Gaussian image is the mapping of surface normal data
onto a unit sphere. The EGI is then an extension of this idea where an additional
weight is assigned to each point on the sphere equal to the area of the surface
that has the given normal. Computationally the EGI is formed by constructing
a histogram from the surface normal data. This is achieved by representing the
normal data as (6, ¢) pairs and then constructing a histogram.

Spherical Harmonics: Spherical Harmonics [I1] arise as part of the general
solution for the heat equation in spherical coordinates and are expressed in terms
of Legendre polynomials. The Legendre polynomials are a set of special functions
that are obtained when solving the heat equation. Specifically, they emerge as a
result of solving associated Legendre equation:
2 2

(1—52)(28(29—2562?—6—<u—1rf82)@=0 (1)
Since this is a second-order differential equation, the power series is of the form
O(s) = 07 g ans™. where s = cosf. The solution ©(s) is a polynomial of degree
I, referred to as the Legendre Polynomial of degree k, denoted by P;(s). The
Legendre Polynomials solve the Legendre equation (Equ[I) for the case m = 0.
To solve for m # 0 we can use the associated Legendre functions:

P"(cosf) = sin™ GPI( cos ) m=1,2,...,1 (2)

With these ingredients the spherical harmonics are defined as

m 204+10-m)! . )
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A Basis for the 2-Sphere: A complex valued function f(6,¢) can be decom-
posed as a set of coefficients a; ,, using the series expansion
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This is an infinite sum over the set of all spherical harmonics. A band limited
function is a function that can be approximated by the finite set of terms

b l

=0 m=—1

Using the band limited representation we can calculate the coefficients a;,, by
multiplying both sides by the complex conjugate Y;**(6, ¢) and integrating over
the solid angle {2 to give:

G = /Q F0,0)(V)* (6, 0)ds2

Over the unit 2-sphere this becomes:
™ 2w
an= [ dp [ 50000 (6.0)sin(6)dp
0 0

Spherical Embedding: Recent work on expression-invariant face recognition
using spherical harmonic embeddings [3] has been based on the application of the
work of Kazhdan et al. [4]. Kazhdan et al. use the fact that the spherical harmon-
ics of a given frequency [, form a subspace V; = Span(Yfl7 Yf”l, e 7Yll’l7 Y}
which is a representation for the rotation group. It is this property which ensures
the description is rotationally invariant. By taking each set of basis functions,
summed over a given frequency, the L2-norm for the coefficients is invariant to
rotation [4]. This parameterisation can be applied to the extended gaussian im-
age (EGI) to create a rotationally invariant shape descriptor. There is however
a degree of information loss which means that in general for two values with the
same energy for a given frequency (I > 2), there are multiple representations
that do not have a rotation defined between them. Kazhdan et al use this repre-
sentation for expression invariant recognition, and so the information that is lost
by the transform may be salient. Moreover, of the transform that is used to con-
struct shape-spaces via manifold embedding, then the modes of shape variation
may not be reliably captured.

Diffusion Map: Diffusion maps are coordinates constructed from the eigen-
functions of Markov matrices. Coifman and Lafon recognised that the majority
of the existing manifold learning techniques are simply special cases of diffusion
processes[p]. They provide examples of how diffusions relate to the Laplace-
Beltrami operator on manifolds which Levy [12] shows as a good basis for func-
tions of geometry and topology of objects. Coifman et al. also shows how the
diffusion map is robust to noise, a useful feature for a pattern recognition algo-
rithm, since noise is an inherent problem.

Suppose that the jth range-image can be paramterised using the vector of
spherical harmonic co-efficients A;. From the T range images available to use
we compute the T' x T similarity weight matrix W with elements W (i, j) =
exp[—a(A4; — A;)T(A; — A;)]. The associated Laplacian matrix is L = D — W,
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where D is the T'x T diagonal degree matrix with elements D(i,4) = Z]T:1 W (i, j).
The diffusion map commences from the random walk on a graph which has tran-
sition probability matrix P = D~'W. Although P is not symmetric, it does have
a right eigenvector matrix @, which satisfies the equation

P® = AP (3)

Since P=D"'W =D"YD-L)=1-D"'L, L& = (I — A)D®. The embedding
co-ordinate matrix for the diffusion map is X = A*WT, where t is real. For
the embedding, the diffusion distance between a pair of nodes is d?(u,v) =
SV (di(u) — ¢i(v)*.

The diffusion map algorithm has two input parameters; o, which is used as
the variance value when constructing the Markov chains from a Gaussian dis-
tribution and ¢ which is the number of steps of the diffusion process. The larger
the value of o, the more weight is given to distant points. When t is set to 0
then the diffusion map is equivalent to the Graph Laplacian, when set to é it is
equivalent to the Fokker-Plank propagator and when set to 1 the diffusion map
is equivalent to the Laplace-Beltrami operator.

3 Experiments

Range Data Collection: We have collected expression data using a Cyberware
3030 whole-head scanner. The Cyberware 3030 scanner is mounted on a PS
motion platform and rotates around the subject whilst shining a low intensity
laser to create the digitized points. The scan process takes about 30 seconds per
scan, during which time the subject is required to remain stationary. For some
expressions this is difficult to achieve and so multiple attempts were required
for these scans. The scans begin at the back of the head so the effect of any
slight movements of the subject during the scan are minimized as we are not
interested in the area at the rear of the head where the join occurs. Movement
of the subject can be seen visually in the output by stretching of features or
distortion of the face. Another obstacle to overcome was the area under the chin
often had holes in the scan due to the chin occluding the area from the laser
during the scan. This was not a problem with all subjects but for those where
this occurred the subject was asked to tilt their head back so that the laser was
not obstructed by the chin.

To simplify the identification process the collected range data was edited to
remove hair, ears and neck. Subjects were chosen without glasses or facial hair.
Ten subjects were collected in five different facial poses: anger, neutral, smile,
sad and surprise, however one subject’s data was not usable due to their hair
covering too much of the face and thus not producing usable meshes after the
editing process. The nine subjects that were used are shown in their edited
forms in figure [[l Each row in the figure corresponds to a facial expression;
anger, neutral, smile sad and surprise; and each column, an individual subject.

The EGI can then be used as the input for the spherical decomposition de-
scribed above. The resulting shape descriptors reconstructed from their spherical
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Fig. 1. Collected facial expressions

Fig. 2. Shape Descriptors from histogram data

decompositions can be seen in Figure Bl As the spherical harmonic frequency is
increased, higher frequency data can be represented as can be visually observed.
It is important to verify that this representation, represents the original data so
we will begin by looking at the accuracy of the produced shape descriptor.

Shape Descriptor Accuracy: The average error rates for the reconstruction
of the shape descriptor from its spherical decomposition can be seen in Figure 4l
The error value is calculated as the squared difference between the reconstructed
shape descriptor and the actual shape descriptor, normalised by the number of
samples. The shape descriptor was sampled with 10000 bins, with both 6 and
¢ quantised into 100 bins each. The data was averaged over the 45 scans that
were collected. The error shows an approximately logarithmic reduction in error
as the frequency is increased.

Spherical Harmonic Decomposition: The surface normals for the mesh are
converted from Cartesian format to spherical angles in the ranges 0 < 6§ < 27 and
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Fig. 3. Spherical Harmonic shape descriptors
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Fig. 4. Error in shape descriptor

0 < ¢ < 7. An Extended Gaussian Image is calculated from these angles which is
then used as the descriptor to decompose into spherical harmonics. Calculation
of the Spherical Basis functions Y,, : 1 < n,—I < m <[ involves evaluating the
function at each of the sample points (8, ¢) taken to be the centre point of each of
the histogram bins calculated as part of the creation of the shape descriptor. The
coefficients calculated from the decomposition are then arranged into a vector
to create a vector representation of the spherical harmonic decomposition.

Embeddings: The embeddings were constructed using spherical harmonics de-
composed with a bandwidth of 60. Above this the computational time becomes
prohibitive within Matlab. The dimensionality of the embeddings can be deter-
mined by examining the magnitudes of the eigenvalues produced. By computing
the cumulative percentage represented by the eigenvalues, a value for the dimen-
sionality of the data can be determined. In the case of PCA (figure Bl we can
see that 90% of the variation is accounted for in the first 5 eigenvalues. However,
we observe a poor level of clustering for this embedding.

The degree of clustering can be visualised using the pairwise distance matrix
with elements DD(i,j) = (A; — A;)T(A; — A;). In the ideal case, there should
be a block structure along the diagonal when the vectors of the same class
are grouped close to each other. The clustering for the spherical harmonics is
shown in figure[6l The vectors are grouped by expression to determine if there is
any visible block structure. There is no diagonal block structure present in this
matrix which suggests a lack of clustering for the raw spherical harmonics.

We have explored the effect of varying the parameters of the diffusion map
on the resulting embedded distance matrix. The value of o controls effect of
distance. Calculating the distance matrix for values of ¢ from 1 to 15 and varying
t between 0 and 1 for each sigma value produces an array of varying distance
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Fig.5. Data embedded using PCA (top). Cumulative percentage of eigenvalues
(bottom).
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Fig. 6. Pairwise distance matrix for spherical harmonic coefficient vectors, ordered by
expression

matrices of differing quality. Most are similar in structure to ﬁgure although
the result from figure [l with ¢ set to 0.8 and o to 10 gives a better block diagonal
structure.

Figure [§ shows the embedded points after applying the diffusion map, each
colour represents a different facial expression. There is some clustering of points,
as expected from the distance matrix, but there is more than one cluster for each
class.

We have also applied Kernel PCA (using a polynomial kernel), heat kernel
embedding, commute time embedding and LLE to the expression data. Figure
shows the distance matrices for the embedded points. These all give poorer
results than the diffusion map. Although within the blocks the distances increase
with each subject, and so would not be useful for recognition, but the diffusion
map algorithm has parameters which can be adjusted to produce different re-
sults. It is interesting to note that in the KPCA distance matrix (Figure
there is a regular pattern of banding of larger distances, these bands all belong
to one subject, if the matrix was grouped by subject this would be more appar-
ent. This suggests that this subject has some particular features that are not
present in the other subjects. This additional structure may reveal itself with
a larger sample size, as more subjects are likely to exhibit the characteristic,
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Fig. 8. Embedded data using diffusion map

(d) LLE (e) Diffusion Map

Fig. 9. Pairwise distance matrices for various embedding methods

enabling the algorithm to construct a better manifold embedding due to the
extra information.

Classifier: A k-nearest neighbour algorithm is used to classify a given sample
point. For each point to be tested, the embedding is applied and then the nearest
k neighbours are found. A k-nearest neighbour classifier is suitable for this task
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Fig. 10. Classifier accuracy as k varies

because there is a small training set and so storage for the classifier is reasonable.
To test the performance of the classifier on the diffusion map embedding, each
point was removed from the dataset and then the k-nearest neighbour algorithm
applied. The percentage of correct classifications is then recorded. The results can
be seen in figure[I0 for values of k ranging from 1 to 10. The best performance is
for 3 nearest neighbours which by observing the clustering in figure [§ is sensible
since the clusters are generally at least 3 elements. The sample size is not large
enough to do more sophisticated error analyses of the classifier.

4 Conclusions and Further Work

In this paper we have explored using the set of spherical harmonics coefficients of
a model’s normal map as a shape descriptor to be used in manifold learning tech-
niques, specifically attempting to identify differences in facial expressions. We
have shown that application of the diffusion map to the spherical harmonic de-
composition of the surface normals of the model provides some block structure
which can be utilised in classifying facial expressions. For a given expression
there may be multiple clusters, although determining the differences between
these clusters is an open question. A larger database for training the algorithm
to create a classifier would enable a more accurate classifier. This paper only
considers a static 3D representation as source data. As facial expressions are
temporal in nature, more success may be achieved by looking at the time deriva-
tives of the statistics of the normal maps.
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