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Abstract. Template matching is widely used in machine vision, digital
photogrammetry, and multimedia data mining to search for a target ob-
ject by similarity between its prototype image (template) and a sensed
image of a natural scene containing the target. In the real-world envi-
ronment, similarity scores are frequently affected by contrast / offset
deviations between the template and target signals. Most of the popular
least-squares scores presume only simple smooth deviations that can be
approximated with a low-order polynomial. This paper proposes an al-
ternative and more general quadratic programming based matching score
that extends the conventional least-squares framework onto both smooth
and non-smooth signal deviations.

1 Introduction

Template matching is a crucial part of autonomous computer vision systems that
detect, classify or retrieve natural objects under varying imaging conditions and
operating environments. Inherent inflexibility of many matching algorithms is
often exacerbated by poor expressiveness of their underlying models of noise
(here 'noise’ is an umbrella term embracing all sources that cause differences
between corresponding target and template signals). Common models of image
noise relate pixel-wise signal differences to interdependent spatially invariant or
variant contrast factors and offsets and independent additive random differences
with a known and typically central-symmetric probability distribution.

Most of the state-of-the-art matching methods support only smooth (i. e.
mildly non-linear) contrast and offset deviations originating from varying il-
lumination conditions [912]. Although such models are more or less appropri-
ate for matching images of planar surfaces, they are inadequate as far as most
three-dimensional objects are concerned. 3D geometry of those objects can cre-
ate shadows following highly non-smooth contrast functions. To appreciate the
sheer complexity of noise modelling, let us consider a rather simplistic case when
additive noise for each individual pixel is a linear function of signals in the two
adjacent neighbours. An exact (lossless) model of this complex noise function
would require approximately 3N parameters where N is the total number of
pixels. Comparing this model to the one in [9] where only five parameters are
used clearly shows that the low-order polynomial model may not be satisfactory.
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The model proposed in this paper deals with a much larger search space
of noise parameters than any currently existing template matching algorithm.
Specifically, it involves approximately 6/N parameters that appear in a con-
strained least-squares matching problem with up to six constraints per pixel-wise
signal to be solved with quadratic programming (QP). The resulting matching
algorithm can successfully handle inhomogeneous contrast deviations over the
target image that are introduced by a variety of noise sources including shadow-
ing of complex non-planar objects.

The rest of the paper is structured as follows. Section 2] describes previous
work done in this area and shows how our proposal fits into the existing body
of knowledge. Section [l presents the quadratic programming based matching
algorithm. Experimental results and conclusions are covered in Sections [ and [El

2 Previous Work

In order to better understand main strengths and limitations of known con-
tributions and novelty of the proposed approach, let us introduce a somewhat
arbitrary dichotomy of contrast / offset deviations between the target and tem-
plate images: smooth (or homogeneous) versus non-smooth (non-homogeneous).
The former may be encountered due to inhomogeneities of an image sensor or
because of illumination variations over planar objects. Three possible smooth
functions are shown in Fig. [[l The existing matching methods [8I9] can handle
this type of the deviations. The latter (non-homogeneous) signal deviations fre-
quently arise when dealing with non-planar real-world objects because even a
slight difference in the lighting angle can produce highly non-smooth contrast
patterns like those shown in Fig.

As a delineation criterion for these two broad categories of noise, a polynomial
function of some low order p such that p < NN is adopted as the upper bound
for the complexity which can be categorised as homogeneous. The choice is due
to the fact that most of the known template matching methods have p < 2 as
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(a) Pattern 1 (b) Pattern 2 (c) Pattern 3 (d) Template

Fig.1. Low-order polynomials as idealised contrast factors: three out of a host of
possible 2D polynomial patterns of the 2nd degree ([aHId), the template (Id), and
the target image (Id) obtained by using the scaled pattern (Ial) for the template (Id).
The pattern (Id) was computed from ([Id)) by applying the transformation f(z,y) =
(0.035¢ — 0.000212)t,,,,, + 28.
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Fig. 2. Inhomogeneous contrast deviations: even a slight change in the light source
orientation results in complex non-smooth contrast patterns. The contrast pattern
[2d) for the target (2H) with respect to the template (Zal) can hardly be approximated
by a low-order polynomial. The same holds for more extreme illumination angles as

shown in 2d) and (2d).

the upper bound and therefore would not be able to handle non-homogeneous
contrast / offset deviations of higher order.

The interest in computationally efficient template matching has been around
for quite some time. First attempts were done with various correlation-based
methods [I] assuming the constant contrast and offset (p = 0). More recently, in
response to the failure of traditional correlation techniques to handle the task [4],
methods based on robust statistics and low-order polynomial models of contrast
and offset such as proposed by Lai [§] made a step forward and branched out
into a family of related algorithms [3IT5/T4]. In these algorithms, the traditional
squared-error kernel is replaced by a statistical M-estimator being more robust
in the presence of large signal differences and contrast and offset deviations are
modelled with a low-order polynomial of pixel - and y-coordinates.

Let g : R — Q denote a greyscale digital image g on a finite arithmetic lattice
R=[(z,y):2=0,...,m—1;y=0,...,n—1] where @ ={0,1,...,Q — 1} is a
finite set of grey levels. Let ¢t : R — Q be a template t to be matched to g.

Both the contrast factor «, , and offset 3, , for a pixel-wise signal g, , in the
target image are assumed to be polynomial functions of its co-ordinates (x,y) on
the supporting pixel lattice so that the target signal depends on the respective
signal t; , in the template image as follows:

Gz = Qo ylay + Boy (1)
=(ap+aiz+ay+.. )tzy+ Bo+ iz + Gy +...)

The matching algorithms use the basic Newton-Raphson descent method for
iterative suboptimal minimisation of the Lorentzian or similar function chosen
as the error kernel. Although the number of parameters could be expanded to a
higher number (more than customary used five [§] ), clearly there is a limit to
what can be done under this formulation mainly due to high computational cost
of its kernel and the kernel’s influence function.

Other attempts to increase the number of parameters and thus improve the
richness of the parameter space were done too. One approach is to avoid deal-
ing with the entire N-dimensional space of images and resort to some selective
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heuristics-based sampling of the pixel space [14]. Unfortunately, this method
relies on manually crafting a heuristic requiring human expert intervention. Ad-
ditionally, much of pixel space is completely ignored thus resulting in a rather
limited applications of the approach.

Another alternative is to pre-process input data with edge detection and con-
touring [I5]. Again as with earlier approaches, this direction managed to account
for a very special low-order polynomial model of contrast / offset deviations but
it fails when non-smooth variations such as shadows are introduced. Clearly, for
all methods based on robust statistics additional computational costs associated
with the robust estimators (error kernels) force these methods to tackle only
a tiny subset of parameters preventing them from coping with more complex
functions. As the result, adequate modeling of non-homogeneous noise becomes
computationally intractable.

Alternative methods which do not use robust statistics have been also pro-
posed. Unfortunately, they suffer from similar inability to handle rich parametric
spaces and thus fail to capture non-homogeneous signal deviations. Examples in-
clude template matching handled in the frequency domain [6], modifications to
correlation-based statistics [I3J16], conquer-and-divide approaches to pixel space
by breaking down the entire pixel space into smaller subspaces and subjecting
them to localised matching [I7], or even methods of matching stereo images
where richer problem spaces are considered [2]. More recent alternative global or
subglobal methods [I1JT2] rely on a number of restrictive assumptions and thus
cannot handle more general non-homogeneous deviations. At present, to the best
of our knowledge, no matching score for loosely constrained non-homogeneous
contrast and offset deviations has been propose.

3 Owur Approach

Our approach is to capitalise on the computational convenience of the least-
squares error function and formulate the matching problem as a global quadratic
programming one (QP) with a simple set of linear constraints being sufficiently
descriptive to handle arbitrary non-homogeneous contrast and offset deviations
of target images. The re-formulation of the QP task in terms of the Karush-Kunh-
Tucker (KKT) conditions leads to an elegant and relatively fast implementation
of the proposed new matching score using the Hildreth-D’Esopo algorithm [7J5].

The resulting non-parametric noise model combining spatially variant contrast
and offset deviations with a central-symmetric independent noise and the derived
on its basis matching score are far more general than its existing rivals and thus
can successfully overcome the above limitations of the latter.

Let admissible contrast and offset deviations over the target image g with re-
spect to the template t result in changes of the adjacent signals being constrained
to a certain multiplicative range E = [eémin, €max] Such that 0 < emin < €max

! This paper deals only with photometric deviations, but the gradient-based search
for geometric transformations of a template can be readily added much as in the
other algorithms, e.g. in [SITII12].
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and with ep;, < 1 and epax > 1. Then contrast and offset of a transformed
template can both decrease and increase. If h : R — Q is an image h obtained
by the admissible changes of the template t, then the local constraints on h are
as follows:

Amax;w,wfl;y

Amax;w;y,yfl (2)
0-1

for all the adjacent pairs ((x,y); (x —1,9)) and ((z,y); (x,y — 1)) in R where

Amin;aj,ajfl;y hw;y — hw*l;y
hw;y - hw;yfl

hm;y

Amin;ﬂ:;y’yfl
0

INIAIA
INIACIA

Aniniz,z—13y = min{e (tay = to-1y)}; Amaxiz.o—1y= maxf{e (toy — to-1,4)}
ecE eckE

Amin;x;y,y—lz min{e (t_%y — txvy_l)}; Amax;m;y,y—lz maX{e (tm,y - tr,y—l)}
ecE eckE

Assuming the central-symmetric random noise, the least-squares matching
score minimises the Cartesian distance between the target image g and the
template t under the constrained signal deviations of Eq. (2)):

d(g,t|E) = min Z (hay — gr;y)Q (3)

heH(t;E) (e R

where H(t; ) denotes a set of all images h with the admissible signal deviations
of Eq. (@) from the template t. To solve this QP problem, it is converted to a dual
problem that is solved efficiently with the Hildreth-d’Esopo QP algorithm [7/5]
that is guaranteed to converge to a solution that is arbitrary close to the desired
optimal solution. Since our constraint matrix is very sparse, this iterative imple-
mentation is efficient and converges quickly in spite of the large dimensionality
6NV of the search space. There could be different stopping criteria, e.g. processing
time (the number of iterations), convergence to the goal score (a threshold for
its changes at successive iterations), or a magnitude of residual violations of the
constraints. Since we found that suboptimal solutions can be adequate for image
matching purposes as described in the next section, the latter criterion is not
generally required.

Geometrically speaking, the algorithm starts the search for the solution h
from the target image g, i.e. hl’) = g so that the matching score is zero at the
very beginning and the initial location of hl” is most likely to be outside the
feasible area specified by Eq. (). Nevertheless the algorithm then quickly moves
closer to the feasible area as the constraints are being negotiated. First several
hundred iterations produce considerable improvement in meeting the constraints
in the matched image (the score grows the fastest during the first iterations) and
then the steps along the search space gradually level off.

4 Experimental Results

We have implemented the proposed QP-based matching algorithm and per-
formed experiments with images having various non-homogeneous contrast /
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offset deviations introduced by transforming templates to targets as follows (see
Fig. Blillustrating these experiments):

1. Uniform contrast / offset: A potentially lossy transformation for the high-
and low-value signals because the transformed signals are truncated to fit
the range [0..255]. This simple linear relationship corresponds to a frequently
occurring situations such as variations due to software or hardware brightness
and gain adjustments.

2. Quadratic contrast: Most likely it is even more lossy than the uniform one
and may arise e.g. due to different angles of illumination of planar objects.
See Fig. [[ for an example.

3. Occlusions: This scenario assumes that the original image signals are either
partially or completely suppressed in a large area due to e.g. occlusions (a
“step-function” contrast).

4. Natural non-homogeneous deviations: Shadowing of 3D object due to
varying illumination angles is one of its examples. In practice it is one of
the most relevant to computer vision types of noise because the exact image
capturing conditions are almost never reproducible. See Fig. 2l

5. Swapped uniform contrast / offset: Finally, a transformation from less
rich to more expressive images is modelled by swapping the target and tem-
plate images; in our experiments, Case [Il has been used to swap the target
and the template).

The main challenge to template matching of non-planar objects is posed by the
natural non-homogeneity (Case ) caused by shadows and varying illumination
under different angles. It has never been addressed in the literature before. One
of most suitable datasets for testing whether a matching algorithm can cope
with this problem is the well-known MIT facial database [10], which we have
used for the experiments below.

The dataset contains 360 images of 10 persons captured with the dominant
light rotating such that its vertical orientation changes from 0° (direct) to 75°
(top), and its horizontal orientation — from 0° (direct) to 90° (right). The addi-
tional ambient light source was used for making all facial features visible regard-
less of the dominant light position. All images are invariant to facial expression,
geometry and backgrounds so that the experiments can be conducted in con-
trolled conditions. The resulting complex shadows were the ultimate test for
the proposed QP based approach (see Fig. 2d for an example of the deviations
involved).

In order to benchmark the proposed algorithm, it was compared to the state-
of-the-art alternative, namely, the gradient-descent based minimisation of the
M-estimator of mismatches presented in [§] and capable to handle the contrast
/ offset deviations represented by simple polynomial models. We implemented a
faster version [9] of this algorithm using the Newton-Raphson method.

Five tests were designed, corresponding to the above five scenarios of trans-
forming templates to their target images. In our QP based matching the mul-
tiplicative range constants were set to E = [0.25,4] and the stopping rule was
7.500 iterations independently of whether other criteria were or not satisfied.
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(a) Template (b) Uniform  (c) Quadratic (d) Occlusion (e) Natural

Fig. 3. Test cases used in our experiments: the template (a) and the target images for
the above scenarios. In Case [fl the target (a) and template images and (b) are simply
swapped. In the case of natural non-homogeneous deviations (e) due to illumination,
the target may visually appear the same as (a), but in fact it does have mild shadowing
variations e.g. under the subject’s left cheek bone.

For the benchmark counterpart, we use a 10-parameter polynomial model, i.e.
2"d_order polynomials without cross products for spatially variant contrast and
offset. The stopping criterion was based on 20 iterations without improvement
of the matching score.

For the uniform (or global) contrast / offset model, the target f = at,,, + 0
was obtained from its template with o = 1.3, and 8 = —40 (see Fig. BH), and
the values f(z,y) outside the range [0...255] were truncated to their respective
bounds. The contrast factor in Fig. Bd is a 2"9-degree polynomial along the
horizontal axis only f(z,y) = (0.0352—0.0002122)t, , +28 (the value truncation
was done after that transformation). For the step function, the lower half of
the target image was set to f;, = 0 as in Fig. Targets with natural non-
homogeneous deviations were chosen by randomly selecting another image of the
same individual but with different lighting orientation (see Fig. B€). Finally, for
Case Bl the template and target images used in Case [Tl were swapped. Results of
experiments in comparison to the benchmark algorithm are shown in Fig. @ and
Table [l

The QP-based matching algorithm displays clear superiority for the uniform
contrast / offset, the natural shadows, and the swapped uniform case. It also is

Table 1. Scaled matching scores (total squared differences d(g,t) x 10™° between the
targets and the transformed templates) for the five test scenarios (mean, std, min,
and max denote the mean score value, the standard deviation, and the minimum and
maximum values of the matching scores in our experiments)

Test Benchmark Our algorithm

scenario Mean Std Min Max Mean Std Min Max
1. Uniform contrast / offset 23 3.7 15 29 1.7 0.4 0.4 7.1
2. Quadratic contrast 6.1 7.6 0.8 28 64 1.6 49 85
3. Occlusion 210 59 110 350 87 4.5 46 134
4. Natural deviation 62 39 39 150 4.4 0.6 0.2 11

5. Swapped uniform case 74 27 37 150 6.6 0.8 1.5 17
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(b) Quadratic contrast

(¢) Occlusions

(e) Swapped uniform contrast / offset

Fig. 4. Experimental results for the five test scenarios: the benchmark [8I9] vs. our
QP-based matching: templates and targets are in columns 1 and 2, respectively; the
matched image and its residual absolute difference from the target (scaled up for vi-
sualising purposes) for the benchmark is columns 3 and 4, respectively, and the like
results for our matching are shown in columns 5 and 6. Note that the less the residual
(i.e., the darker the residual), the closer (better) pixel-wise matching.

better in the case of occlusions, but is worse in the case of quadratic contrast
function. The weaker performance of the benchmark algorithm [8/9] for the uni-
form contrast / offset and excellent performance for the quadratic contrast are
worthy to note. The benchmark method presumes a second degree polynomial
model so it is not surprising that it behaves nicely with the quadratic function.
It is better than the more general QP based approach because of this perfect
fit between the model and the function to be modeled. However, when handling
simpler surfaces such as given in Case [I] the polynomial algorithm is just too
numerically unstable due to its assumed higher (quadratic) polynomial factors.
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In fact the best match in this case is achieved after just the first iteration, and
then it begins to deteriorate.

The superior performance of our method has been demonstrated in all cases
except the quadratic case when our approach behaves worse than the bench-
mark. It was quite expected because the benchmark polynomial model allows
for different signs of local signal changes in adjacent pixels that correspond to
one another in the transformed and original templates whereas in our model
these signs have to remain the same. The other notable case relates to occlu-
sions. Just as with the quadratic function, there were reasons to suspect that
the benchmark could outperform our model since a single step function can be
approximated by a 2"d-order polynomial. Nonetheless, our model gave better
results in this case too. Statistical results for the 30 target—template pairs for
each scenario are given in Table[I] and confirm the intuitive results visible on the
output images.

5 Conclusions

This work focuses on template matching under spatially variant (inhomogeneous)
contrast and offset deviations and presents the new theoretical framework and
implementation of a general non-parametric QP-based algorithm. In a number of
cases it shows superior results comparing to the current state-of-the-art polyno-
mial approach. The latter benchmark algorithm had outperformed the proposed
QP-matching only when the noise could be accurately approximated with the
quadratic function assumed in the former method.

In the practical sense, the most important improvement of the QP approach is
its ability to handle natural non-homogeneous variations resulting from changing
lighting source orientation. This requirement is crucial when image recognition
of non-planar objects is involved since it is almost impossible to reproduce the
exact lighting conditions under which the template image was taken. Shadows
are quite non-homogeneous constructs, and they can hardly have accurate low-
order polynomial approximations.

The proposed noise model is more general and has greater expressive power.
Its adaptability to signal deviations lies in the boundaries of the multiplicative
range which were used to define the constraints. The greater the range, the more
variations the model can successfully capture. This is true since the magnitude
of the constraints represents the size of the admissible deviations the algorithm
is aiming at. The selection of the multiplicative range should be done carefully
which is a goal for future work. In this paper the authors set up a conservative
range which nevertheless resulted in impressive improvement over the benchmark
in four out of five test cases.

Finally, the authors are currently working on extending the current approach
to include a mechanism for handling geometric transformations and masks for
outliers. This will improve flexibility and power of template matching in a range
of tasks where up to now matching has not been successful.
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