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Abstract. Music genre meta-data is of paramount importance for the
organization of music repositories. People use genre in a natural way
when entering a music store or looking into music collections. Automatic
genre classification has become a popular topic in music information re-
trieval research. This work brings to symbolic music recognition some
technologies, like the stochastic language models, already successfully
applied to text categorization. In this work we model chord progressions
and melodies as n-grams and strings and then apply perplexity and naive
Bayes classifiers, respectively, in order to assess how often those struc-
tures are found in the target genres. Also a combination of the different
techniques as an ensemble of classifiers is proposed. Some genres and
sub-genres among popular, jazz, and academic music have been consid-
ered. The results show that the ensemble is a good trade-off approach
able to perform well without the risk of choosing the wrong classifier.

1 Introduction

Organization of large music repositories is a tedious and time-intensive task
for which music genre is an important meta-data. Automatic genre and style
classification have become popular topics in Music Information Retrieval (MIR)
research because musical genres are categorical labels created by humans to
characterize pieces of music and this nature provides genre with a high semantic
and cultural information to the items in the collection.

Traditionally, the research on music genre classification has been divided into
the audio [I] and symbolic [2] music analysis and retrieval domains. This work
focuses on the symbolic approach, where music is found as digital scores. Lan-
guage modeling is a common practice in natural language tasks, such as speech
recognition [3], and also in text categorization [4]. Our goal is to bring stochas-
tic language models, already applied successfully in text categorization, to music
genre classification. Some of those technologies, at least those working at a lexical
level, can be transferred to music with some adaptation work.

In a former work [5], we studied how melodies could be coded and classified.
Here, we are going to test whether chords can be represented by a model that
learns probabilities from the progressions used in each genre.
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Little attention has been paid in the genre recognition literature to how har-
mony can help in this task. For example, in [6] the authors use pitch histograms
as feature vectors (either computed from audio signals or directly derived from
MIDI data). In contrast to that low-level harmony features, the representation
chosen in this paper is to model higher level harmonic structures, like chord
progressions, as n-grams and strings in order to compute how often those struc-
tures are found in the target genres. There are a small number of papers in the
literature that poses this problem.

To test these models, we have built a classification framework with different
genres in order to see whether such a model built from a genre is able to correctly
identify new chord sequences belonging to it.

2 Experimental Data

Music works from different genres covering a wide range of music areas have
been utilized: popular, jazz, and academic music. Popular music data have been
separated into three sub-genres: pop, blues, and celtic (mainly Irish jigs and reels).
For jazz, three styles have been established: a pre-bop class grouping swing, early,
and Broadway tunes, bop standards, and bossanovas as a representative of latin
jazz. Finally, academic music has been categorized according to historic periods:
baroque, classicism, and romanticism. All these categories have been defined with
the help and advice of music experts that have also collaborated in the task of
assigning meta-data tags to the files and rejecting outliers in order to have a
reliable ground-truth for the experiments.

The number of files eventually used for each genre is displayed in Table [
The total amount of pieces was 856, providing around 60 hours of music data.

Table 1. Number of files per genre and subgenre in the different training sets

Academic 235 Jazz 338 Popular 283

Baroque 56 Pre-bop 178 Blues 84
Classical 50 Bop 94 Pop 100
Romanticism 129 Bossanova 66 Celtic 99

The Academic and Jazz corpora have been obtained from sample files for the
software ‘Band in a Box{l. The Popular music files were downloaded from the
Internet?. These data can be obtained upon request to the authors. In order to
focus on the chord progressions instead of the chords themselves, all the songs
have been transposed to C Major / A minor and the chords are encoded as
their degrees for the tonality the score is in. For example, the sequence Cm —
Bb — Eb in Fig. MHeft is coded as VIm — V — I, as it corresponds for the Eb
major key.

! nttp://www.pgmusic.com (PC Music)
2 http://www.alisdair.com/gearsoftware/biablinks.html
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Fig. 1. Example of chord encoding (left) and melodic words (right)

The other source of information is the melody, which is represented as a
sequence of intervals and duration ratios between consecutive notes (silences are
not considered, being like an extension of the former note), that are mapped into
sequences of alphanumeric characters (named 2-words, since they are extracted
from pairs of notes). See Fig. [[lright for an example.

3 Classification Methods

For the experiments in section [ two statistical classification methods have been
used: a naive Bayes classifier and n-grams. Both of them have been widely used
in text classification tasks and, more recently, in music genre classification by
melody [5lf7].

Both techniques allow the construction of a statistical model for each genre
from a set of documents. While n-grams make use of context information to
compute the probabilities for each word, naive Bayes computes the probability
of each word on its own.

3.1 Naive Bayes Classifier

The naive Bayes classifier, as described in [8], has been used. It assumes that all
words in a document are independent of each other, and also independent of the
order in which they are generated. This assumption is false in our problem and
also in the case of text classification, but naive Bayes can obtain near optimal
classification errors in spite of that [9].

We have a set of classes C = {c1,c2,...,¢|}. A music piece is represented as

a vector x € {0, l}lvl, where each component x; represents whether the word w;
appears in the document or not, and |V| is the size of the vocabulary. A document
x is assigned to the class ¢; € C with maximum a posteriori probability, in order
to minimize the probability of error:

P(e;)P(xle;)

P(cjlx) = P(x)

(1)

3 We are using “document” in a metaphoric way for “music piece”, while a “word”
can be either a chord or a short melody fragment.
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where P(c;) is the a priori probability of class ¢j, P(x|c;) is the probability of
x being generated by class ¢;, and P(x) = Zlcl P(cj)P(x|cj).

The class-conditional probability of a document P(x\c]) is given by the prob-
ability distribution of words w; in class ¢;, which can be learned from a labelled

training set of melodies, X = {X],XQ, . ,X|X|}7 using a supervised learning
method.
Each class follows a multivariate Bernoulli distribution:
VI
P(x[c;) H zeP(welcj) + (1 — ) (1 = P(wlcy)) (2)

where P(wy|c;) are the class-conditional probabilities of each word in the voca-

bulary, and these are the parameters to be learned from the training set.
Bayes-optimal estimates for probabilities P(w;|c;) can be easily calculated by

counting the number of occurrences of each word in the corresponding class:

1+ My,

P(’UJt‘Cj) = 2+ M,
J

®3)
where My; is the number of documents in class c; containing word wy, and M;
is the total number of documents in class ¢;. Also, a Laplacean prior has been
introduced in the equation above to avoid zero probabilities. Prior probabilities
for classes P(c;) can be estimated from the training sample using a maximum

likelihood estimate:
M;

Classification of new documents is performed then using Equation[Il which is
expanded using Equations 2] and @l

P(cj) =

Feature selection. A common practice in text classification is to reduce the
dimensionality of those vectors, through a feature selection process. This is done
by selecting the words which contribute most to discriminate the class of a
document, using a ranked list of words extracted from the training set. A widely
used measure to rank these words is the average mutual information (AMI) [10],
which gives a measure of how much information about a class is provided by
each single word. Informally speaking, we can consider that a word is informative
when it is very frequent in one class and less in the others.

AMI is calculated between 1: the class of a document and 2: the absence or
presence of a word in the document. We define C' as a random variable over all
classes, and F; as a random variable over the absence or presence of word wy
in a document, F; taking on values in f; € {0,1}, where f; = 0 indicates the
absence of word w; and f; = 1 indicates its presence. The AMI is calculated for

each w; a
IC|

(C 7ft)
I1(C; Fy) Z Z P(cj, fr)log J (5)
Pl P(c;)P(ft)

4 The convention 0log0 = 0 was used, since zlogz — 0 as z — 0.



Stochastic Text Models for Music Categorization 59

where P(c;) is the number of documents for class ¢; divided by the total number
of documents; P(f:) is the number of documents containing the word w; divided
by the total number of documents; and P(c;, f;) is the number of documents in
class c¢; having a value f; for word w; divided by the total number of documents.

3.2 n-Grams

In this case, our language model is a probability distribution that assigns a
probability to a progression of words P(w1,...,wy), so that the probability of
each word in the sequence is dependent on its context P(w;|wy, ..., wi—1).

Estimating the probabilities of such a model can be an arduous task, and
maybe computationally unaffordable, when dealing with long sequences. This
is why language models are often approximated using n-gram models. An n-
gram is a sequence of n words in which the first n — 1 words are considered
as the context. Thus, the estimated probability of a word w; given a context
is computed as P(w;|w;—p41,-..,w;—1). Note that now we are modeling the
probability of finding a given word after a context of n — 1 words, while formerly
we were coding words as symbols in a vocabulary, and probabilities were then
estimated for those symbols.

In order to perform genre classification with the n-grams, a different language
model must be constructed for each genre in the data set. Each sequence (song)
in the data set is decomposed in n-grams of a fixed length n (see Fig. 2]). Then,
the probability of each different n-gram is computed as the probability of the
last word given its context. This probability can be easily calculated by dividing
the number of occurrences of the n-gram by the number of occurrences of its
context in the given data set:

Nwi—n 1y---5 W4
P(wi|wi_n+1, ey wi_l) = N(LG+j’ o wz)1) (6)
Once a language model is constructed for each genre, the probability that a
new progression w = wq, ..., wg has been generated by model c is:
k
Pc(w) = H Pc(wi|wi,n+1, e 711)1‘,1) . (7)
i=1

Thus, a test sample can be classified by following the risk minimization crite-
rion, i.e. given the set of classes C = {ci,...,¢|¢|}, each test sample is assigned
to the class ¢ of the model which holds ¢ = arg max, P.(w).

Progression: I -V - VI -V —1

Bigrams: I -V ; V-VI ; VI-V ; V-1
Trigrams: I -V -VI; V-VI-V; VI-V -1

Fig. 2. Decomposition of a chord progression in bigrams and trigrams
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Parameter smoothing. Even when the training set is big enough to build
a good language model, there can be situations where we can find words in a
test sample that have not been seen previously. When such situation occurs,
the probability of the n-grams containing those words is zero, thus causing the
probability of the whole sequence being zero by the application of Eq. ().

To avoid this problem, it is common to use a procedure known as smoothing,
in which a small probability is substracted from the set of known words, and then
shared out among all unseen words. There are several techniques to calculate the
optimal amount of probability that must be taken off, and what percentage of
it must receive every unseen word.

A similar problem happens when a new sequence of words is found. This can
be solved using a process known as backing-off in which the probability of a
previously unseen sequence of words can be estimated using a lower order model
built using (n — 1)-grams. In this work the Witten-Bell discounting method [I1]
combined with backing-off has been used.

3.3 Classifier Ensembles

The results for different similarity models may differ substantially. This feature
can be exploited by combining the outcomes of individual comparisons. Two
weighted voting methods have been utilized. These approaches are described
below.

‘p W % ‘p ew

Fig. 3. Different models for giving the authority (ax) to each classifier in the ensemble
as a function of the number of errors (ex) made on the training set

Best-worst weighted vote (BWWYV). In this ensemble, the best and the
worst classifiers C, in the ensemble are identified using their estimated accuracy.
A maximum authority, a; = 1, is assigned to the former and a null one, a; = 0,
to the latter, being equivalent to removing this classifier from the ensemble. The
rest of classifiers are rated linearly between these extremes (see figure Blleft).
The values for ay, are calculated using the number of errors ey as follows:

ap=1— €k —€B

ew — €B
where
ep = mkin{ek} and ey = ml?x{ek}
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Quadratic best-worst weighted vote (QBWWYV). In order to give more
authority to the opinions given by the most accurate classifiers, the values ob-
tained by the former approach are squared (see figure Blright). This way,

ew — €k 2
ap =
€w —€p

Classification. For these voting methods, once the weights for each classifier
decision have been computed, the class receiving the highest score in the voting
is the final class prediction. If ¢, (x;) is the prediction of Cj, for the sample x;,
then the prediction of the ensemble can be computed as

é(X) = argimax Z wké(ék (Xi)a Cj) ) (8)
7%
being 6(a,b) =1 if a = b and 0 otherwise.

4 Experiments

Experiments were performed at two levels of the genre hierarchy. The first level
corresponds to the three music domains considered: academic, jazz, and popular;
and the second level to the 9 sub-genres shown in Table [Il In order to build
ensembles of classifiers, we need to evaluate first the performance of each single
classifier so that they can be properly weighted. For this reason, the data set was
randomly split in two: 80% (684 songs) were used in section F.1] to evaluate the
single classifiers and compute their weights, and the remaining 20% (172 songs)
were used in section to evaluate the performance of the ensembles.

4.1 Evaluation of the Single Classifiers

In this preliminary stage we wanted to evaluate the performance of the classi-
fication methods on two different dimensions of the data set: 1) using the two
representations (harmony vs. melody), and 2) looking at the two levels of the
genre hierarchy. Besides the 3- and 9-class problems, we also considered the in-
tradomain problems, i.e. classifying among the 3 sub-genres within each domain.
For this, an experiment was run for each data set, classifier, and encoding. All
these experiments were validated using a 10-fold cross-validation scheme. Values
of n = {2, 3,4} were used for the n-gram models.

Table [2] shows the results obtained in these experiments. Note that the best
results were obtained when classifying among the three broad domains. In this
case the use of harmony is significantly better than using the melodies. When
descending to the second level in the genre hierarchy (9-class problem) there were
significant differences between the use of harmony or melody: using melody helps
to make better decisions. Although the performance for the 9-class problem is
poorer, a 62% in the best case, note that the baseline of the recognition rate is
now around 21%. Note also that the deviations for the three sub-problems in the
second level of the general hierarchy are much higher than those for the 3-class
problems. This shows less consistency in the performance against the different
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Table 2. Average classification percentages and deviations from the 10-fold sub-
experiments obtained with n-grams and naive Bayes

Chords (harmony) Melodic words
2-grams 3-grams 4-grams MB 2-grams 3-grams 4-grams MB
3classes 86 +3 8 +3 8+£3 8 +4 76+5 80+6 795 T6L6
9classes 36+£1038+12 38+15 62+6 55+8 508 50+9 55+£12
academic 40 £ 2040+ 20 40£20 54 + 14 60+ 20 60 +20 60+ 20 62 £ 10
jazz 62+7 63+£8 63+6 727 T0£1054+£11 54+£11 73410
popular 56+1260+9 60+9 85 +6 81+6 80+5 81+5 7946

partitions that suggests the presence of outliers. The validity of the ground-truth
should be addressed in further works.

When these results are studied in more detail (see Fig. ) one sees that the
errors mainly occur within the broad domains. Misclassifications among different
domains are much less frequent. We can profit from the good results achieved
at the 3-classes level in order to improve the performance, by pruning the errors
made between different domains using a hierarchical classifier.

Baroque

Classicism
0.8

Romanticism

Pre-bop 0.6

Bop

Bossanova 04

Celtic

0.2
Blues

Pop

0

Fig. 4. Confusion matrix for the 9-class problem using classification by Bernoulli with
naive Bayes. Grey levels represent the classification percentages. Rows are the ground
truth and columns the actual system output. The parts of the matrix corresponding
to the different music domains have been highlighted.

4.2 Hierarchical Classification

From the analysis of the results obtained in the previous section, we propose a
two-level classification scheme. At the first level of the hierarchy, decisions will
be made based on harmonic information to distinguish between the academic,
jazz, and popular domains. At the second level, three different classifiers will
be used, each one trained with the sub-genres belonging to their respective do-
mains. At this level we decided to use melodic information because it consistently
performed better than using harmony.
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At both levels, decisions were made by an ensemble of classifiers, built as
explained in section This is better than choosing just the classifier which
performed the best in the previous step because there is a risk that it will not
perform so well with a new data set, given the standard deviations observed in
the previous experiment, specially in the intradomain problems.

The weights for each classifier in the ensembles were computed using the
results shown in Table 2 and the two proposed weighting methods. As a result,
we have two hierarchical classifiers, one made up of ensembles using the BWWYV
voting method, and another using the QBWWYV method. Both classifiers were
trained using the whole training set, and then evaluated using the remaining
20% of previously unseen files. We also compared this approach with the one
using just the classifier which performed the best at each level. Finally, the
performance of the individual classifiers was assessed with this validation set, in
order to check whether there is a real improvement when using the hierarchical
approach. Results of these experiments are shown in Table[Bl As it can be seen,
all hierarchical classifiers performed slightly better that the best single classifier,
with the best results obtained when using ensembles with the QBWWYV voting
method.

Table 3. Classification percentages at the two levels of the hierarchy using single and
hierarchical classifiers

Single classifiers Hierarchical
2-grams 3-grams 4-grams MB Best BWWV QBWWYV
3 classes  87.8 88.4 88.4 87.8 884 90.1 90.1
9 classes  54.7 48.8 477 587 60.5 62.8 63.4

5 Conclusions and Future Work

In this paper, the feasibility of classifying music in genres using harmonic and
melodic information has been tested. For this, we applied n-gram models and a
naive Bayes classifier on a corpus of music files from three broad genres (aca-
demic, jazz, and popular music), and nine sub-genres. Full chord names encoded
as degrees with respect to the tonality have been used for encoding chord pro-
gressions, whereas pairs of intervals and duration ratios between consecutive
notes have been used for melodies.

When classifying the three broad genres we obtained an 86% recognition rate
using harmonic information, and comparable results were observed when using
both the naive Bayes classifier and n-gram models. For the nine-subgenre ex-
periment the performance was poorer, but the system was still able to correctly
classify close to a 60% of the target samples. Classification errors were mainly
made between close sub-genres, inside each of the three domains.

When comparing the performance of the system using harmonic and melodic
information better results were obtained by using harmony for distinguishing



64 C. Pérez-Sancho, D. Rizo, and J.M. Inesta

between the three broad domains, while the use of melodies was of better use
for the intradomain problems. Thus, we have proposed a hierarchical (two-level)
classification scheme in which decisions are made using harmony and melody in
the first and second levels, respectively. At each level, an ensemble of classifiers
is used in order to increase system stability. The results obtained with the hier-
archical ensembles equalled or outperformed those obtained with the best single
classifier in the nine-subgenre problem.
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