
Towards Automated WSDL-Based Testing of
Web Services�

Cesare Bartolini1, Antonia Bertolino1, Eda Marchetti1, and Andrea Polini1,2

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”
Consiglio Nazionale delle Ricerche
Via Moruzzi 1 - 56124 Pisa, Italy

2 Dipartimento di Matematica ed Informatica
University of Camerino

Via Madonna delle Carceri, 9 - 62032 Camerino, Italy
{cesare.bartolini, antonia.bertolino, eda.marchetti,

andrea.polini}@isti.cnr.it

Abstract. With the emergence of service-oriented computing, proper
approaches are needed to validate a Web Service (WS) behaviour. In
the last years several tools automating WS testing have been released.
However, generally the selection of which and how many test cases should
be run, and the instantiation of the input data into each test case, is still
left to the human tester.

In this paper we introduce a proposal to automate WSDL-based test-
ing, which combines the coverage of WS operations with data-driven test
case generation. We sketch the general architecture of a test environment
that basically integrates two existing tools: soapUI, which is a popular tool
for WS testing, and TAXI, which is a tool we have previously developed
for the automated derivation of XML instances from a XML Schema.

The test suite generation can be driven by basic coverage criteria and
by the application of some heuristics, aimed in particular at systemati-
cally combining the generated instance elements in different ways, and
at opportunely varying the cardinalities and the data values used for the
generated instances.

1 Introduction

Service-oriented Architecture (SOA) is the emerging paradigm for the develop-
ment of distributed applications that are easy to integrate and flexible to fast
changes of the environment and of user needs.

The escalation of Web Service (WS) technology is now evident to everyone.
All major IT vendors, such as IBM, Tibco, Software AG, Oracle, just to cite the
top competitors, have made huge investments into SOA in the last years.

Moreover service providers from virtually any domain, banks, governments,
hospitals, academies, travel agencies, and so on, are progressively shifting to-
wards the on-line service-market.
� The authors wish to thank Antonino Sabetta for his help in defining the test cases.

This work was supported by the TAS3 Project (EU FP7 CP n. 216287).

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 524–529, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards Automated WSDL-Based Testing of Web Services 525

The net effect of this IT technology trend is that unavoidably business and
social welfare are more and more depending on the proper functioning of services
delivered over the Net. WS trustworthiness is a modern buzzword to qualify those
characteristics that allow a client to put justified reliance on a provided service,
against accidental or intentional faults. Because of their pervasive distribution,
WSs must offer very strict guarantees in this regard, even for services that are
not dealing with safety-critical or money-critical applications.

For this reason, it is imperative that WSs are thoroughly tested before de-
ployment. Essentially, a WS collects a set of functions, whose invocation syntax
is defined in the associated WSDL document. The adoption of open standard
specifications for the WS interface has been instrumental to achieve interoper-
ability and is at the basis of several available testing tools. The WSDL formalized
description of service operations and of their input and output parameters can
be in fact taken as a reference for black box testing at the service interface. In
the last years a wealth of WSDL-based WS test tools has been developed [5,8].
In general such tools can automatically derive skeletons of WS test cases and
provide support for their execution and result analysis. Nevertheless they do not
provide support for input data selection, for which they still rely on the human
tester’s intervention.

To us, it is somewhat surprising that till today WS test automation is not pushed
further than this, since in principle the XML-based syntax of WSDL documents
could support fully automated WS test generation by means of traditional syntax-
based testing approaches. In this direction, we have defined a framework for “turn-
key” generation of WS test suites1, in which we combine coverage ofWS operations
(as provided by soapUI) with data-driven test case generation.

In this paper we illustrate the feasibility of the idea by means of a proof-of-
concept implementation that integrates soapUI and TAXI. The latter is a tool
we have previously developed [9] for the automated derivation of XML instances
from a XML Schema. The idea, in comparison with soapUI and other existing
WS test tools, is to derive from the WSDL interface of a WS, in a completely
automated way, a test suite that thoroughly exercises the WS operations by
systematically varying the possible input message structures and values.

The paper is structured as follows. In the next section we present the en-
visaged approach to fully automated WSDL-based testing; in Sec. 3 we then
illustrate some feedbacks from our preliminary hands-on experience. Related
work is briefly surveyed in Sec. 4 and conclusions are drawn in Sec. 5.

2 Approach

Our methodology aims at generating a set of SOAP messages sufficient to cover
the whole interface provided by a WSDL file. Specifically, the tasks which must
be carried out are:

1 To be precise the test suites and test cases we derive only refer to input messages and
data; the test oracle has still to be defined by the tester.

526 C. Bartolini et al.

1. WSDL Analysis: A parser reads the WSDL specification and extracts in-
formation on operations, messages and data structures.

2. SOAP Envelope Derivation: Some tool is used to generate a skeleton of
the SOAP message.

3. Message Parts Definition: For each data structure in the WSDL specifi-
cation, different message instances are generated.

4. Envelopes Composition: The bogus data in the envelope skeletons are
replaced with the actual derived instances.

5. Messages Sending and Results Analysis: The tester, or a batch script,
sends the envelopes to the WS under test and collects the outputs for future
inspection.

This methodology is eligible for combining different components to perform
some of the above mentioned activities; in particular, we have selected soapUI
and TAXI as two of them. The proposed architecture is sketched below.

The soapUI tool is responsible of the SOAP envelope skeleton derivation.
TAXI is in charge of the actual message definition, and to do this it must extract
the XML Schema data from the WSDL file (a modified version of the software or
a preproduction script can be used for this purpose). The XML instances derived
by TAXI and the envelope skeletons generated by soapUI can be assembled and
sent to the WS. The results of the WS invocation are presented to the tester, or
checked against provided expected output annotations (as done by soapUI). The
whole process can be automated via a wrapping tool and the incorporation of
suitable test strategies. We envisage that the generation of the SOAP messages
can be carried out with various coverage criteria such as Operation Coverage,
Message Coverage and so on, producing different degrees of detail.

2.1 soapUI

soapUI [5] is a tool developed by Eviware Software AB, available both in free
and improved commercial versions. It assists programmers in developing SOAP-
based web services. In particular, within the proposed methodology it allows
the developer to generate stubs of SOAP calls for the operations declared in a
WSDL file. Additionally, it is possible to use soapUI to send SOAP messages to
the web service and display the outputs; this can be used for preliminary testing
purposes.

Alternatively, for the purposes of this research it is possible to use any other
tool capable of generating SOAP envelopes from WSDL files, such as Altova
XMLSpy [1].

2.2 TAXI

TAXI (Testing by Automatically generated XML Instances) [3,4,9] is a tool
able to generate XML instances compliant with a given XML Schema. It has
been conceived so as to cover all interesting combinations of the schema by
adopting a systematic black-box criterion. For this reason, TAXI applies the

Towards Automated WSDL-Based Testing of Web Services 527

well-known Category Partition (CP) technique [6] to the XML Schema. CP
provides a stepwise intuitive approach to identify the relevant input parameters
and environment conditions and combine their significant values into an effective
test suite.

TAXI activity starts with the analysis of an input XML Schema. The imple-
mentation of CP requires the analysis of the XML Schema and the extraction
of the useful information.

choice elements are processed by generating instances with every possible child.
Multiple choice elements produce a combinatorial number of instances. This
ensures that the set of sub-schemas represents all possible structures deriv-
able from choice.

Element occurrences are analyzed, and the constraints are determined, from
the XML Schema definition. Boundary values for minOccurs and maxOccurs
are defined.

all elements result in a random sequence of the all children elements for generat-
ing the instance. This new sequence is then used during the values assignment
to each element.

Exploiting the information collected so far and the structure of the (sub)schema,
TAXI derives a set of intermediate instances by combining the occurrence values
assigned to each element.

The final instances are derived from the intermediate ones by assigning values
to the various elements. Two approaches can be adopted: values can be picked
from an associated database or generated randomly if no value is associated to an
element in the database. Since the number of instances with different structures
could be huge, in the current implementation TAXI only selects one value per
element for each instance.

3 Preliminary Evaluation

To measure the feasibility and strength of the proposed approach, our method-
ology has been trialed for testing a WS which queries a publications database.

Using the WSDL available description we derived systematically a test suite
along the steps presented in Sec. 2, and we compared it against a manually
generated one, mimicking a human tester using the soapUI tool.

Both test suites consisted exclusively of XSD-compliant messages, and in-
cluded both data actually taken from the publications database, and fictitious
names or keywords. The two test suites have been used for testing the web ser-
vices and the results have been collected. The first obtained feedbacks made
clear that the manual test suite completely ignored certain classes of problem
of the tested WS, while they evidenced a good performance of our approach in
finding more problems.

In particular this experiment gave us the opportunity to detect bugs which
had not popped out before. These errors were related to some parameters which
were not passed to the search function.

528 C. Bartolini et al.

The in-use version of the web service software had been thoroughly tested and
is “bug-free enough” for ordinary use, while the version used for this experiment
contains several improvements which still have to be integrated into the in-
use application. Several manual tests had been previously run against the new
features, but they were not sufficient to highlight the errors we found with a
proof-of-concept of our methodology.

In conclusion, the experiments showed out that our systematic automated
approach can provide a test suite which is more effective than the one which
is created manually. In particular, having a test suite which covers such a wide
range of variability in the structure and the values of the data would require a
huge effort if done manually, even starting from a basis of automatically gener-
ated skeletons such as those provided by soapUI. Even though we have not yet
performed a formal benchmark evaluation, the effort and time required appear
drastically reduced using this methodology.

4 Related Work

There is today a list of good tools that can be used and have been adapted to
test web services. Just to mention a few interesting ones, there are soapUI [5],
PushToTest [8], SOATest [7]. Tipically such tools are extremely effective in sup-
porting the various testing activities and in increasing the productivity of testers.
Nevetheless they mainly focus on management and execution of test cases and
none of them tries to automatically provide test design and generation. Such a
step is still mainly on the shoulder of testers and is strongly related to their abil-
ity. In particular none of the tools we analyzed take advantage of the availability
of service models expressed in computer readable format suitable for automatic
manipulation. In particular we refer here to the availability of XML-based de-
scription of service operation data models.

To the best of our knowledge, the only work which addresses issues similar
to ours is [2], which also proposes XML-based test data generation and test
operation generation. However, the work only outlines the possible perspectives
of WSDL-based testing, but does not provide a tool, nor does it rely on standard
test approaches. In our approach, instead, we intend to offer a “turn-key” tool
which, by exploiting the existing TAXI tool, focuses on a systematic generation
of test cases based on the Category Partition algorithm.

Finally, automatic generation of instances from XML Schemas its nowadays
a feature of some, even commercial, tools [1,10]. Therefore our approach could
be pursued even using other XML instance generation tools.

5 Conclusions and Future Work

Testing of Web Services is a challenging activity. Many characteristics (run-
time discovery, multi-organization integration) of this new paradigm and its
related technologies certainly contribute to make testing much more difficult.
Nevertheless there are other characteristics that could be fruitfully exploited

Towards Automated WSDL-Based Testing of Web Services 529

for testing purposes. Among these, the representation of data in a computer
readable format (typically XML-based) facilitates the automatic derivation of
data instances to be used for testing invocations.

Starting from this consideration we presented a methodology to automati-
cally derive test messages from WSDL descriptions. Such messages include data
representing possible values that a real implementation of the service should be
able to handle. We proposed that the generated data instances are encapsulated
in correct SOAP envelopes that can be used to invoke a service implementation.
Furthermore, by use of our tool TAXI, we proposed to exploit the characteristics
of an XML Schema-based data description to automatically apply well known
testing methods such as Category Partition and boundary value selection. This
would result in the derivation of a test suite of messages that are representative
of the space of possible messages.

The described methodology is still undergoing development and validation.
Main tasks for the future include: To perform focussed and extensive evaluations
in order to identify fault categories that are easily discovered and better define
the usage scope; to extend the embedded TAXI functionalities so as to also
generate non-compliant test cases that can support robustness testing of the
invoked service; to complete the approach implementation and make it available
as a free tool to the community for download and experimentation.

References

1. Altova. XML Spy, http://www.altova.com/products/xmlspy/xml editor.html
2. Bai, X., Dong, W., Tsai, W.-T., Chen, Y.: WSDL-based automatic test case gen-

eration for web services testing. In: Proc. of IEEE Int. Work. SOSE, Washington,
DC, USA, pp. 215–220. IEEE Computer Society, Los Alamitos (2005)

3. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Systematic generation of XML
instances to test complex software applications. In: Guelfi, N., Buchs, D. (eds.)
RISE 2006. LNCS, vol. 4401, pp. 114–129. Springer, Heidelberg (2007)

4. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Automatic test data generation
for XML Schema based partition testing. In: Proc. Int. Work. on Automation of
Software Test (ICSE 2007 companion), Minneapolis, Minnesota, USA (May 2007)

5. Eviware. soapUI; the Web Services Testing tool (accessed May 30, 2008),
http://www.soapui.org/

6. Ostrand, T.J., Balcer, M.J.: The category-partition method for specifying and gen-
erating fuctional tests. Commun. ACM 31(6), 676–686 (1988)

7. Parasoft. SOATest (accessed June 3, 2008),
http://www.parasoft.com/jsp/products/home.jsp?product=SOAP

8. PushToTest. PushToTest TestMaker (accessed June 3, 2008)
http://www.pushtotest.com/Docs/downloads/features.html

9. TAXI. Testing by automatically generated XML instances (2007),
http://labse.isti.cnr.it/index.php?option=com content&task=view&
id=94&Itemid=49

10. Toxgene. Toxgene (2005), http://www.cs.toronto.edu/tox/toxgene/

http://www.altova.com/products/xmlspy/xml_editor.html
http://www.soapui.org/
http://www.parasoft.com/jsp/products/home.jsp?product=SOAP
http://www.pushtotest.com/Docs/downloads/features.html
http://labse.isti.cnr.it/index.php?option=com_content&task=view&id=94&Itemid=49
http://labse.isti.cnr.it/index.php?option=com_content&task=view&id=94&Itemid=49
http://www.cs.toronto.edu/tox/toxgene/

	Towards Automated WSDL-Based Testing of Web Services
	Introduction
	Approach
	soapUI
	TAXI

	Preliminary Evaluation
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

