
Deriving Business Service Interfaces in Windows

Workflow from UMM Transactions

Marco Zapletal

Institute of Software Technology and Interactive Systems, Vienna University of
Technology, Austria

marco@ec.tuwien.ac.at

Abstract. Modeling inter-organizational business processes identifies
the services each business partner has to provide and to consume as
well as the flow of interactions between them. A model-driven approach
to inter-organizational business processes allows abstracting from the un-
derlying IT platform and, thereby, guarantees to survive changes in tech-
nology. UN/CEFACT’s Modeling Methodology (UMM), which is defined
as a UML profile, is currently one of the most promising approaches for
modeling platform-independent business collaborations. However, well
defined mappings to most of the current state-of-the-art candidate plat-
forms are still missing. A candidate platform of growing interest is the
Windows Workflow Foundation (WF). In this paper, we outline a map-
ping from the basic UMM building blocks, i.e. business transactions, to
business service interfaces (BSI) implemented in WF.

1 Motivation

Business-to-Business (B2B) electronic commerce presupposes the integration of
inter-organizational systems. In recent years, service-oriented computing has be-
come the next evolutionary step in connecting autonomous enterprise systems.
Service-orientation is considered as an enabler for aligning services in a business
sense with their technical implementation. If each business partner, however,
defines the service interactions with other partners in isolation, interoperabil-
ity is unlikely. Consequently, B2B requires an approach that describes business
collaborations from a global perspective. Furthermore, business logic should be
abstracted from implementation specifics. UN/CEFACT’s Modeling Methodol-
ogy (UMM) [1] is a UML-based modeling language following this approach. It
describes business collaborations from a neutral point of view by specifying the
services each partner has to provide and to consume as well as the flow between
them. A UMM model is not bound to any specific implementation platform.
However, in order to realize a business service interface based on UMM, map-
pings to specific target platforms have to be provided. A typical candidate are
Web Services based on the Business Process Execution Language (BPEL), which
we already discussed in [2]. In addition to the pure Web Services stack, the Win-
dows Workflow Foundation (WF) is a strong candidate for the implementation
of business service interfaces. In this paper we show the transformation of UMM

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 498–504, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Deriving Business Service Interfaces in Windows Workflow 499

business transactions to business service interfaces (BSI) realized in WF. The
flow within the BSI is defined using WF’s sequential workflow language. The
interface to the workflow, however, is composed of well-defined business ser-
vices implemented using Web Service specifications. Our model-driven approach
yields three major benefits: First, business partners may agree on a global model
serving as a kind of contract on the process. Second, the resulting business ser-
vice interfaces of collaborating roles are complementary to each other ensuring
their interoperability. Third, the graphical UMM representation abstracts from
the complexity of a business service interface, which becomes evident in the
workflow model.

Due to space limitations, we do not cover UMM business transactions in this
paper, but refer to its long version that is published as a technical report [3].

2 The Transformation Process

In this section, we elaborate on the transformation from a global UMM business
transaction model to partner-specific BSI’s implemented in WF. For describing
the mapping, we concentrate on the initiators’s part of the process. Evidently,
the responder’s business service interface is complementary to the one of the ini-
tiator. In other words, when the initiator invokes something, the responder has to
receive something. Thus, the order of sending and receiving business documents
has to be reversed. The same applies for the handling of acknowledgments.

We detail the mapping by means of figure 1 depicting the derived business
service interface for the initiator implemented in WF. The WF process is defined
as a sequential workflow resulting in 11 major steps (A-K), whereby steps F to J

ReceiveWasteMovem
entForm (A)

<< receive activity >>

RetriesLeft (B) << while >>

EventScope (C) << event handling scope >>

BT_Sequence (D) << sequence >>

receiveRequestDocu
ment (E)

<< send activity >>

WaitForAckReceipt
(F)

<< listen >>

WaitForAckProcessin
g (G)

<< listen >>

WaitForResponse (H)
<< listen >>

SendAckReceipt (I)
<< sequence >>

SendAckProcessing (J)
<< sequence >>

CheckIfRetryCou
d d ()ntExceeded (K)

<< if else >>

Fig. 1. The initiator’s business service interface implemented in WF

500 M. Zapletal

contain nested activities. If not explicitly noted else, all used activity types are
contained in WF’s basic activity library.
Step A: Interacting with the business application. At the very beginning,
the initiator’s BSI receives the request document from the business application.
Receiving the document is implemented by a handle external event activity.
This presupposes that the business application is implemented in .NET as well.
If this is not the case, the handle external event activity may be substituted
by a receive activity for enabling cross-platform communication - for example
realized by Web Service calls.
Step B: Checking the available retries. According to UMM business trans-
action semantics, the initiator has to re-start a business transaction in case of
time-outs. A time-out occurs if a business document or a business signal is not
received within an expected time frame. The maximum amount of retries is spec-
ified by the tagged value retry count in UMM. In WF, we use a while activity to
repeat the execution of the business transaction if required. The while activity
(B in figure 1) has to be executed until either the retry count is exceeded or the
business transaction is considered as successful. Thus, we define the loop’s condi-
tion as retryCount >= 0 || businessTransactionSuccessful, whereby both
parameters are defined as normal .NET variables within the workflow. In case
the business transaction is successful, the last action within the while loop sets
the variable businessTransactionSuccesful to true (step H).
Steps C and D: Listening to business signals during the regular pro-
cess flow. The only activity within the while activity is an event handling scope
activity. This activity type allows to act upon events concurrently to the ex-
ecution of the regular process flow. In UMM business transactions, business
partner’s may receive time-out exceptions or failed business control exceptions
from their counterpart at any time during the course of a business transaction.
Consequently, we use the event handling scope activity for receiving and process-
ing business signals concurrently to the regular process flow. The event handling
scope activity may have several event handlers attached - one for each event (i.e.,
business signal). Due to space limitations, we do not discuss event handlers in
this paper, but refer to its long version [3]. Within the event handling scope the
sequence activity (D in figure 1) serves as a container for the activities realizing
the message exchange with the responder’s BSI (steps E to J).
Step E: Sending the request document. Step E communicates the request
document from the initiator’s to the responder’s BSI. On the initiator’s side, the
service call is implemented using the send activity. Note, that receive request

document (E in figure 1) is indeed a send activity, which refers to the operation
offered by the responder. The call is performed asynchronously, which means
that the workflow continues immediately. The semantics of an asynchronous
operation call by a send activity correspond to a truly fire-and-forget behavior.
This entails that the client does not even receive a fault message from the service
in case of an exception.

This behavior is in line with the semantics of asynchronous UMM business
transactions patterns. Thereby, business document exchanges are completely

Deriving Business Service Interfaces in Windows Workflow 501

asynchronous in order to avoid blocking behavior of business service interfaces.
Nevertheless, interacting business service interfaces share the same understand-
ing about the state of a business document exchange by communicating business
signals as shown in the following steps.
Step F: Waiting for the acknowledgment of receipt. After sending the re-
quest document, the initiator waits for a business signal of type acknowledgment
of receipt from the responder’s BSI. According to UMM business transaction
semantics, an acknowledgment of receipt is issued after a received business doc-
ument passes grammar-, schema-, and sequence validation.

Figure 2 shows the required activities of step F in detail. The initiator expects
the acknowledgment of receipt from the responder’s BSI to confirm that the
business document passed the syntactical checks. The listen activity in step F
has two branches. The left branch is activated when the initiator’s business
service interface receives the acknowledgment of receipt. If the acknowledgment,
however, is not picked up within the agreed time frame, the right branch is
activated. The listen activity is responsible for activating that branch, whose
trigger event occurs first. The remaining branches are canceled.

In order to expose a service for receiving the acknowledgment, the first activ-
ity in the left branch is a receive activity (F1). The receive activity is bound to an
operation called receive acknowledgment of receipt. We define this operation
in a service contract particularly for business signals. This service contract is not
restricted to any business context and may be globally defined for business trans-
actions. In this paper, we assume that at least the initiator and the responder
bind their BSI’s to this service contract for exchanging business signals.

The receive activity is followed by an activity that is responsible for checking
the contents of the received acknowledgment (F2). Similar to the service contract
for business signals, these checks may be identical for the same type of business
signal across different business transactions. Thus, we propose to implement the
required checks and constraints in a custom activity type. The custom activity
check ack receipt may then be re-used in different WF business service inter-
faces. If, by any reason, checking the acknowledgment of receipt fails, the custom
activity throws an exception.

In the right branch, the first activity is a delay activity (F3). It monitors
the agreed time to acknowledge receipt. If exceeded, the delay activity triggers
a time event which makes the listen activity activating the right branch (and
consequently deactivating the left branch). In this case, the business transaction
has to be re-started due to a time-out exception. In order to re-start the business
transaction the current run has to be canceled and the condition of the while
activity, which monitors the retries, has to be evaluated again. This behavior is
accomplished by the throw activity (F4) following the delay activity. The throw
activity actuates a time-out detected exception that is caught by a fault handler
attached to the while activity. Please note that handling faults is not covered in
this paper.
Step G: Waiting for the acknowledgment of processing. In this step
the initiator expects an acknowledgment of processing as shown in figure 3. It

502 M. Zapletal

F1

F2

F3

F4

F2

Fig. 2. Step F: Waiting for the
acknowledgement of receipt

G1

G2

G3

G4

G2

Fig. 3. Step G: Waiting for the
acknowledgement of processing

H1 H2 H3

H4

Fig. 4. Step H: Waiting for the response document

I1

I2

Fig. 5. Step I: Sending the acknowl-
edgment of receipt

J1

J2

J3

J4

Fig. 6. Step J: Sending the acknowledg-
ment of processing

Deriving Business Service Interfaces in Windows Workflow 503

confirms that the request document was successfully handed over to the respon-
der’s business application for further processing. This implies that the business
document was delivered to the business application, where it passed additional
validation rules.

In terms of the activity flow, handling acknowledgments of processing and their
contingent time-outs is similar to the tasks processing acknowledgments of
receipts. In the left branch, the steps G1 and G2 model the reception and the
checks for a received acknowledgment, whereas the right branch (G3 and G4) han-
dles the time-out. The agreed time-out monitored by the delay activity (G3) cor-
responds to the time to acknowledge processing as defined by the UMM business
transaction. The acknowledgment of processing affirms the initiator that the re-
sponder is able to process the request document and will respond to it.
Step H: Waiting for the response document. Similar to steps F and G,
waiting for the response document is implemented by a listen activity (H). In
case of handling response documents two or more branches are required. Since
we may expect time-outs for business documents as well, we define one branch
for monitoring the maximum agreed time limit as agreed in the UMM model.
The cutout in figure 4 shows that the right branch keeps track of the time limit.
If no response document is received within the agreed time to perform, the delay
activity (H3) triggers a time event and the throw activity (H4) terminates the
current cycle.

Two-way UMM business transactions support one to many response document
types. Consequently, a business service interface requires one to many branches
for the receiving business documents - one for each business document type. In
our example, we specify two possible response documents - one representing a
positive response and the other one a negative response to the request document.
Accordingly, the business service interface requires two branches to receive both
business document types (see figure 4). A positive response triggers the execution
of the left branch containing the receive activity H1. Similarly, the receive activity
H2 listens to negative response documents.
Step I: Sending the acknowledgment of receipt. Before the receipt of
the response document is acknowledged, the business service interface needs to
perform grammar-, schema-, and sequence validation. Since these are generic
validation routines we employ the concept of custom activities. If the business
document passes the checks in step (I1 in figure 5), the send activity (I2) confirms
the successful receipt by communicating an acknowledgment of receipt to the
responder’s BSI.
Step J: Sending the acknowledgment of processing. After the proper
receipt of the response document is affirmed, the initiator’s BSI hands over
the document to the business application for further processing. We assume
that the business application hosts the business service interface. Therefore,
we implement the communication between those systems using a call external
method activity (J1 in figure 6). Once the business application is delivered, the
business application verifies that the document is processable according to pre-
defined business rules.

504 M. Zapletal

If no exception is thrown by the business application, the BSI sends an ac-
knowledgment of processing (J2) denoting that the verification was successful.
The following delay activity (J3) keeps the business transaction alive in order
to allow the responder to issue a time-out exception or a failed business control
exception. The former is communicated by the responder, if the acknowledgment
of processing is not received in time by its business service interface. The latter
one is thrown, if an acknowledgment is received, which is not processable. How
long the business transaction is kept alive is calculated by adding the time to
acknowledge processing of the response document to the time when the receipt
of the response document was acknowledged. Finally, the custom activity J4 sets
the variable businessTransactionSuccessful to true, so that the condition of
the while activity (C) is not met any longer.
Step K: Checking the retry count. Before the business transaction is even-
tually finished, the business service interface must check if the retry count has
not exceeded. Note, the loop continues until the retry count is equal or greater
than zero. If the retry count is decremented to -1 at the end of the last attempt,
the condition of the while activity is not met any longer and the control flow
reaches step K. Therefore, the if/else activity in step K queries if the retry count
is greater or equal to zero. If true, the business transaction was evidently suc-
cessful and the execution of the business service interface finishes. Otherwise,
a retry count exceeded exception is thrown and the business transaction failed.
Due to space limitations, we do not include a figure for this step.

3 Conclusion

UMM is a platform-independent modeling language for collaborative business
processes. In order to deploy UMM models to specific target platforms corre-
sponding mappings have to be defined. This paper contributes a UMM to Win-
dows Workflow binding. The generated code is in fact ready to compile. Before
executing the workflow, the following tasks remain: (i) declarative configurations
of service endpoints, (ii) hosting the workflow, (iii) binding its internal interfaces
to a business application.

References

1. UN/CEFACT: UN/CEFACT’s Modeling Methodology (UMM), UMM Meta Model
- Foundation Module, Public Draft V2.0 (2008)

2. Hofreiter, B., Huemer, C., Liegl, P., Schuster, R., Zapletal, M.: Deriving executable
BPEL from UMM Business Transactions. In: Proc. of the IEEE Intl. Conf. on Ser-
vices Computing (SCC 2007). IEEE CS, Los Alamitos (2007)

3. Zapletal, M.: Deriving business service interfaces in Windows Workflow from
UMM transactions - long version. Technical report, Institute of Software Tech-
nology and Interactive Systems, Vienna University of Technology, Austria (2008),
http://publik.tuwien.ac.at/files/PubDat 166624.pdf

http://publik.tuwien.ac.at/files/PubDat_166624.pdf

	Deriving Business Service Interfaces in Windows Workflow from UMM Transactions
	Motivation
	The Transformation Process
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

