
J. Stirna and A. Persson (Eds.): PoEM 2008, LNBIP 15, pp. 98–110, 2008.
© IFIP International Federation for Information Processing 2008

Fractal Modeling Approach for Supporting Business
Process Flexibility

Julija Stecjuka, Marite Kirikova, and Erika Asnina

Institute of Applied Computer Systems,
Riga Technical University,

1 Kalku, Riga, LV-1658 Latvia
{julija.stecjuka,marite.kirikova,erika.asnina}@cs.rtu.lv

Abstract. Ability to support various business models has been recognized as
one of the essential competitive advantages of companies operating in global
networked business environment. The use of several business models simulta-
neously, requires availability of flexible business process models. Flexibility of
business process models, in turn, depends on appropriate information systems
support. One of the ways how to support business process flexibility is to use a
fractal paradigm in information systems development. The fractal paradigm can
be applied at two levels of abstraction: the level of business process system and
the level of software system. Applications of the fractal paradigm at two ab-
straction levels correspond to two different opportunities of supporting flexible
business processes.

Keywords: business process, flexibility, information system.

1 Introduction

Ability to support various business models has been recognized as one of the essential
competitive advantages of companies operating in global networked business envi-
ronment [1]. The use of several business models simultaneously requires flexible
business process models. Flexibility of business process models, in turn, depends on
appropriate information systems support inside and outside the business organization.
One of the important problems to be resolved in information system development for
supporting business process flexibility, is the possibility to adapt an information sys-
tem’s functional model to business processes needs on a high level of detail, so that
both domains (business domain and computer system domain) become a whole in the
context of business process implementation.

The goal of this paper is to discuss applicability of a fractal approach in business
process modeling and information systems design. The approach is based on the idea
of a fractal enterprise that has been presented in [2] as well as on the research of busi-
ness process flexibility on different levels of abstraction [3]. Fractality of an enter-
prise implies goal adaptability and similarity at different levels of scale (or granular-
ity) of the enterprise. Flexibility of a business process implies that two different
constituents of the business process are recognized: (1) the core of the process that

 Fractal Modeling Approach for Supporting Business Process Flexibility 99

changes relatively slowly and (2) the “rural” parts of the process that may be changed
relatively frequently. In this paper we conceptually distinguish between (1) a fractal
business process system and (2) a fractal software system. The first concept is used
for supporting business process flexibility at the abstraction level of enterprise busi-
ness processes; the second concept is used for achieving flexibility of software design
that supports the business processes of the enterprise. The concepts are supported by
corresponding fractal information systems development approaches, which are briefly
presented in the paper.

The paper is structured as follows. Basic concepts and related work are discussed in
Section 2. Information systems design approach for fractal process systems is pre-
sented in Section 3. Object-oriented approach for designing fractal information systems
is presented in Section 4. Discussion of applicability of the approaches and conclusions
are given in Section 5.

2 Basic Concepts and Related Work

The use of fractal approach in systems development has been applied in a number of
different contexts [4]. Theoretically, fractal systems are self-organizing, cooperative,
self-similar at different levels of scale systems that can adapt to changing systems
goals and environment [5, 6 and 7]. Vitality and dynamics of such systems seem to be
attractive features of enterprises operating in turbulent global environment.

One of the central notions in fractal systems is the scale of the system. In a fractal
enterprise the scale is identical to the structure of enterprise decomposition [2], where
the largest scale refers to the whole enterprise and the smallest to the smallest organ-
izational unit exposing fractal properties. From the point of view of processes, self-
similarity can be considered in at least three different dimensions, namely: agent
(enterprise organizational units), process (functionality), and information architecture
(Fig. 1). While each organizational unit (including an individual employee) performs
particular processes and uses particular information structures, there is no simultane-
ous scaling commonality between organizational, process and information architec-
tures, i.e., a small scale organizational unit can perform processes of different scales

Agent Information

Process

a

b

Agent Information

Process

Agent Information

Process

a

b

Fig. 1. Fractal architecture of organizational units, processes and information

100 J. Stecjuka, M. Kirikova, and E. Asnina

and use information structures of different scales (see a and b in Fig. 1). Each process
at different levels of scale may be performed by different agents and use different in-
formation architectures. In general, fractality of the process can be considered from
several viewpoints or according to several dimensions simultaneously, i.e., it could be
reflected by a multi-fractal model. Models and approaches described in Sections 3 and
4 deal with multi-fractality, however, this aspect of the models is not emphasized in
the paper in order not to overcomplicate the discussion about the possibilities of sup-
porting business process flexibility.

Usually the processes in fractal systems are addressed via functions of agents. The
following basic process taxonomies may be found in fractal systems development
approaches:

• sensing, observing, analyzing, resolving, organizing, reporting, actuating [8]
• sensing, requirements definition and planning, execution, delivery, responding [7]
• monitoring, analyzing, reporting, planning, executing [9]
• goal dissociation, partner selection, business coordination, task execution,

schedule-progress monitoring [10].

Above-mentioned taxonomies are applicable in many cases, however, their
generality is not always helpful for identifying information systems requirements for
business process support (see more details in Section 5).

As regards the agent perspective the following information flows are to be taken
into consideration [8, 11]:

• information flows inside a fractal entity
• information flows between the same scale level fractals
• information flows between different scale level fractals
• information flows between external environment and fractal entities.

Information flows between external environment and fractal entities are used for
the assessment of the change against specific levels of work environment such as
cultural, strategic, socio-informal, financial, informational and technological [11, 12].

In fractal systems, information architecture has at least two orthogonal dimensions.
The existence of those dimensions depends on (1) different modes of information
processing (human brain, software) and (2) the particular fractal hierarchy under
consideration. Fractal hierarchy relates to the living systems theory [13] where hierar-
chical levels emerge to achieve a higher communication efficiency. With respect to
computer systems supported information transfer and processing, in a fractal level
software system, part of information is to be processed by software of a higher fractal
entity and, at the same time, each fractal entity may have independent information
processing functionalities.

There are different definitions of business process flexibility; however, most of
them focus on the ability to respond to external changes in the appropriate period of
time using a reasonable amount of resources [14, 15 and 16]. Flexibility, however, pos-
sesses some degree of stability because whenever a part of the system is made flexible,
some other part is made inflexible [17]. From the information systems viewpoint

 Fractal Modeling Approach for Supporting Business Process Flexibility 101

different approaches could be used to support relatively rigid and relatively flexible (or
more rapidly changing) business process constituents.

Fractal approach may seem to be somewhat similar to aspect-oriented methods of
software development [18]. However, aspect-oriented approaches, in general, do not
consider multiple scales of processes and goal adaptability, which are essential fea-
tures of fractal systems.

3 Business Process Fractality Oriented Software Requirements for
Flexibility Support: A Process-Oriented Approach

The approach discussed in this section focuses on fractal properties of the business
process system. The notion of the fractal business process system is discussed in Sub-
section 3.1. The approach of identification of software services for fractal process
system support is briefly presented in Subsection 3.2. The approach takes into consid-
eration commonalities and differences of requirements at different levels of process
fractals and tries to identify those functionalities that are least dependent on possible
changes affecting the fractal system.

3.1 The Notion of the Fractal Process System

We define the fractal process system by modifying definitions given in [8] and [9]:
the fractal is a functioning systems component (enterprise business process and/or
software service), whose goals and performance can be precisely described, which has
unique objectives, achieves concrete results and acts autonomously in a self-
optimizing way whilst interacting with other system’s fractals. The fractal processes
system may be described as follows [19]:

• It consists of fractals (enterprise business processes and/or software services),
where each of the fractals has unique objectives, which correspond to system’s
common objectives.

• Each fractal has its own structure in the fractal processes system, i.e., a unique set
of interconnected activities.

• Each single fractal acts separately to meet the system’s common objective and in-
teracts with other fractals in the case of the lack of resources (e.g., information
stored by other fractal component).

• The fractal processes system is organized as a multilevel structure, where the level
is the scale at which the fractal is examined. In a sense, a large-scale fractal in-
cludes self-similar small-scale fractals. So the system’s common objective could be
achieved by implementing an appropriate fractal for each scale.

• Information flows exist between fractals in the fractal processes system.

The main fractals properties in the fractal processes system are implemented in the
following way [19]:

• Self-similarity manifests when processes of different scale have a common objec-
tive and similar inputs and outputs.

102 J. Stecjuka, M. Kirikova, and E. Asnina

• Self-organization in the fractal processes system could be expressed as follows:
− Appropriate alternative selection during certain fractal task processing.
− Modification and optimization of interacting fractal relationships.
− Creation of a new fractal or a new alternative for accomplishing tasks of a frac-

tal process.
− Development of a new software service.
− Adapting to changes in external requirements.

• Systems common objectives are achieved iteratively, by developing each single
fractal’s individual objective taking into account feedbacks.

• Dynamics and vitality means that coordination and cooperation between self-
organizing fractals are characterized by individual dynamics and the ability to
adapt to dynamical environment. The information system plays a vital role in
achieving this property of the fractal business process system.

3.2 The Main Steps for the Identification of Requirements for Fractal Business
Processes

The main idea of the suggested method is to create a relatively simple approach for
describing the process system from the point of view of information processing. The
process-oriented method for fractal information system development is based on the
assumption that software services can be defined as soon as the fractal sub-system of
enterprise business processes is discovered.

The process-oriented method includes the following main stages [19]:

• Stage 1 – Fractal processes system development. This stage includes the following
three activities:
− Perform analysis of existing enterprise business processes with the aim of identify-

ing a business sub-process with common or similar goals, similar inputs and outputs.
− Identify the dimensions of the scale of selected business sub-processes.
− Define appropriate fractal hierarchy according to previously defined scales.

• Stage 2 – Software model development taking into account the fractal hierarchy.
To develop software model, the following activities are needed:
− Define software functional and non-functional requirements for each “fractal” in

fractals’ structure.
− Identify common and specific requirements for all identified “fractals” in the

fractal hierarchy.
− Identify appropriate software services for “fractals” taking into account common

and specific requirements identified in the previous step.
− Define interactions between identified software services.
− Define relationships between software services and process “fractals”. Relation-

ships have a very important role in “fractals” self-organization, thanks to which
“fractal” system is able to restructure and tolerates replacement of some of its
parts. Relationships help to track changes in fractals organization and introduce
necessary changes in software services.

 Fractal Modeling Approach for Supporting Business Process Flexibility 103

• Stage 3 – Detailed business processes model development for obtaining common vi-
sion of the situation in fractal information system. At this stage correspondence be-
tween business process decomposition and software services is defined by gradual
business process decomposition up to the granularity where it is possible to identify,
which software service directly corresponds to which business sub-process.

The approach is discussed in greater detail in [19].
Figure 2 illustrates to some extent the approach presented in this subsection by a

simplified fragment of travel agency processes.

Fig. 2. A simplified fragment of a travel agency business process model

The main goal of the agency is to receive and process client orders, which con-
tain the required tour code, hotel name and tour date [20] Analyzing the travel
agency’s business processes, a fractal business process “Register tour” was identi-
fied. It has common or similar goals, similar inputs and outputs on two scales: in-
ter-organizational scale (Register tour 1) and travel agency scale (Register tour 2).
According to similarities and differences in functional and non-functional re-
quirements [20], software service “Register tour” corresponds to fractals identified
in business process model Figure 3. The service supports business process flexi-
bility in the sense that, if there are changes in the registration process, both busi-
ness processes are supported by corresponding changes in one particular software
unit.

104 J. Stecjuka, M. Kirikova, and E. Asnina

Client data

Another tour

Register tour - (1)

Client, travel agency IS

Client data

Verify registered tour (hotel is
available at specified date)

Travel agency IS

The required room
for specified date
is not available

Conform registered
tour

Client, Travel agency IS

Client data

Register tour - (2)
Travel agency worker,

Travel agency IS,
International travel IS

Client ordered tour

Legend:

Event Data object Decision
Task

Performer

The required room
for specified date is

available

Client data

Register
tour

supports

supports

Association between
business process and

computerized IS
service

supports Software
service

Fig. 3. Correspondence between business processes and software services

4 Fractal Software for Supporting Process Flexibility: An Object-
Oriented Approach

The main idea of an object-oriented method is to create architecture of the system as po-
lymorphic as possible. The suggested method includes the following three stages [21, 22]:

• Stage 1 – analysis of the system organization and behavior. The following are the
main activities of Stage 1:
− Define organizational structure of the system. Analysis of organizational struc-

ture facilitates the identification of actors and use cases. This relates to that in
object-oriented analysis and design, system analysis starts with the identification
of system’s actors and use cases.

− Define actors and their goals, use cases that are necessary for the achievement of
those goals, and operation contracts, i.e., define the behavior of the information
system under consideration. Use cases characterize the behavior of the software
system that produces a measurable result of value to an actor. Use cases are
goal-oriented. Additionally, one or several use cases can be used for the same

 Fractal Modeling Approach for Supporting Business Process Flexibility 105

goal. Actors are humans or roles of other computer systems in an organization.
Besides that, actors activate the execution of use cases. Thus, after the identifi-
cation of actors, their functional goals are determined. In accordance with the
identified functional goals, use cases needed for the goal achievement are iden-
tified. Use cases are specified by their scenarios that are main flow and alternate
flow (in case of errors or exceptions) description of each use case. Here it is im-
portant to identify the so-called operation contracts for each actor’s request.
Each contract describes one operation with the specified name, parameter list,
references to other use case that use the same operation, pre and post condi-
tions. The result of this activity is a use case model and use case descriptions for
each organizational level “fractal”.

− Define a conceptual model. In addition the third activity is identification of con-
cepts in the system’s description. Concepts are ideas, things, or objects. Con-
cepts and their relationships should be defined in the initial model of concepts.

• Stage 2 – definition of fractal scale invariants and organization. Scale invariants
are properties of the system that do not change with the change of scale. The fol-
lowing are the main activities of Stage 2:
− Define behavioral scale invariants. Initially the interactions in each identified

use case should be analyzed and may be specified using UML interaction dia-
grams – sequence or collaboration diagrams. During the analysis of interactions,
it is important to define messages that are sent and received by objects on dif-
ferent scales while acting towards the achievement of the same goal.

− Define structural scale invariants. To define structural scale invariants, it is nec-
essary to analyze the data of the structure. In fractal systems, structural data that
are related to the fractal structure can be candidates to structural scale invariants.
Those candidates that must be presented on all scales of the fractal system are
separated as attributes of a fractal class (classes).

− Define fractals’ architecture. To support fractal’s property “self-organization”, a
designer should define architecture (organization) of fractals by mapping it to
the organizational structure of the system in the real world.

• Stage 3 – design of fractal classes and interfaces. Since the object-oriented ap-
proach supports inheritance and platform-independent modeling supports imple-
mentation of a defined behavior and structure at different platforms, it is useful to
define all shared fractal related aspects as a distinct class – a fractal class. A frac-
tal class is a class that specifies similar structure and functionality of fractals of
the same kind. A fractal interface is an interface that should be implemented by a
class that specifies a fractal. The interface specifies those scale invariants that are
mandatory for specific kinds of fractals.

• Stage 4 – design of fractal classes’ behavior on distinct scales. During Step 4
classes (and their behavior), which correspond to organizational scales and inherit
fractal classes, must be defined. Here the important point is to make sure that all
differences in operation implementations are taken into account.

106 J. Stecjuka, M. Kirikova, and E. Asnina

A simplified use case model detected in Stage 1 is represented in Figure 4.

Fig. 4. Use case model for process “Order tour”

Web_form

Order_form

Choose_another_hotel(): void
Choose_another_tour(): void
Register_new_order (tour_code: char,
order_date:Date, subscriber: char): void
Send_order(): void

Questions_form

Insert_new_question (question: char): void
Send_answer (answer: char): void
Send_new_question (question: char): void
View_question (question: char): void
Write_answer (answer: char): void

Registration_form

Register_new_user
(name: char, password:
char): void

Authorization_form

Authorize (name: char,
password: char): void

iWeb_form

Close(): void
Open(): void

Name: char
Permission: char

Fig. 5. Fractal interface iWeb_form

One of the fractal classes interfaces defined after analyzing use cases in Stage 3 is
represented in Figure 5.

Figure 5 illustrates the fractal interface class iWeb_form. The fractal class
Web_Form implements this interface. The interface iWeb_form specifies that a class,
which realizes it, must contain information about its name and access permission and
must perform its opening and closing if necessary. Hence, classes Authoriza-
tion_form, Registration_form, Order_form and Questions_form inherit this responsi-
bility and may realize this responsibility in their specific way. Interfaces of fractals
support rapid propagation of changes in the behavior of agents from the business level
to information system’s functionality.

5 Discussion and Conclusions

Section 3 and 4 of this paper illustrate that, using fractal approach, several ways of
business process flexibility support can be identified. The solutions depend on the

 Fractal Modeling Approach for Supporting Business Process Flexibility 107

IDivision
subDivisions[0..n] : Division
division : Division

evalua teDivisionResearch(division : Division) : Report
correctEv alua tionResult() : Boolean

<<Int erface>>

Division

-division

-subdivision

Report

1

0..n

1

0..n

ReportOfDepartment

Department

getScientifiPublications () : Boolean
getVisitedConferences() : Boolean

ReportOfFaculty

Faculty

ReportOfInstitute

Institute

Fig. 6. Differences between process-oriented (a) and object-oriented (b) fractal approaches for
information systems design

level of abstraction or decomposition where fractality of the system is identified or
defined. Both approaches are compared in Figure 6. The process-oriented approach
(discussed in Section 3) seeks to, first, identify fractal properties at the business proc-
ess level and then structures software requirements according to identified fractal
processes. In software systems design this allows to distinguish between more fre-
quently and less frequently changing parts of the business process. The object-
oriented approach (discussed in Section 4) analyzes goals of actors and seeks to iden-
tify fractals at the computerized information processing level thus introducing the
fractal software architecture for business system support. Both object-oriented para-
digm and fractal paradigm support flexibility. The contribution of a fractal paradigm
in the object-oriented approach is in the utilization of self-similarity, i.e. fractals can
organize themselves in order to perform some task due to their self-similarity.
Flexibility in the object-oriented paradigm is effect of the realization of the "polymor-
phism" principle where the units that implement this principle may not be self-similar.
It means that the object-oriented paradigm provides a technique to implement a cer-
tain property of fractals, namely, their self-similarity.

Process-oriented and object-oriented approaches were applied to 15 different me-
dium complexity business systems by 15 information systems designers [23]. While
theoretically it would be possible that both approaches suggest similar software for
business process support, it was not so in any of 15 cases. Almost in all cases seeking
fractals at the business process level led to service-oriented software architectures for
business system support, while seeking fractals at the level of software processes led

108 J. Stecjuka, M. Kirikova, and E. Asnina

to object-oriented software architectures. With the process-oriented approach two dif-
ferent situations were observed: in some cases identified software services corre-
sponded to the basic functionality of the business process, but in most cases these
were “satellite” services such as saving data in the data base, data transfer from one
location to another, etc. In addition, the depth of the analysis of processes was greater
than the process taxonomies used in several sources devoted to fractal approaches in
systems design (see Section 2). In the object-oriented approach, fractality of data in
information flows was taken into consideration while in the process-oriented ap-
proach only intuitively perceivable similarity of information flows was analyzed.
Thus the object-oriented approach utilized two and the process-oriented approach util-
ized one fractal hierarchy of three essential business systems dimensions represented
in Figure 1.

The usefulness of the fractal process- and object-oriented approaches of system de-
sign was perceived differently by different designers. Two basic criteria they used in
the evaluation of approaches were 1) compatibility of the method with their previous
knowledge and 2) simplicity of defining fractal subsystems in the particular applica-
tion domain. Thus practitioners of the object-oriented approach perceived the object-
oriented method to be easier than the process-oriented one, and vice versa: designers
used to process analyses preferred the process-oriented approach. In almost all cases it
was possible to identify multi-scale “fractals” of software hierarchy. However, not all
business processes exhibited this property. For instance, fractals were not found in
VCOR framework [24], which initially seemed to be a very appropriate reference
base for the use of process-oriented approach.

One of the expectations of the use of a fractal paradigm for supporting business
processes was cutting of the time for user and software requirements definition. How-
ever, none of the designers reported shorter time for requirements acquisition when
using a fractal paradigm in the systems development. Almost all pointed to the fact
that the use of a fractal paradigm forces the requirements engineer to gather more de-
tailed requirements and pay more attention to a variety of requirements with respect to
different levels of scale in identified “fractals”.

On the whole, the use of a fractal paradigm for support of business process flexibil-
ity has the following benefits:

• The process-oriented approach makes it possible to define software services that
support fractal business processes and thus utilize flexibility support opportunities
provided by service-oriented architectures.

• The object-oriented approach makes it possible to define flexible object-oriented
software designs to support the user requirements of business process participants.

• Both approaches foster acquisition of detailed requirements with respect to indi-
vidual differences at different scales of “fractals” in the business process or soft-
ware respectively.

The application of a fractal paradigm is limited only to those business process
and software subsystems in the enterprise, which exhibit fractal properties in at
least one modeling dimension (agent, process or information architecture). The
agent perspective was not analyzed in depth in the paper while it could to some

 Fractal Modeling Approach for Supporting Business Process Flexibility 109

extent contribute to both process- and object-oriented approaches. Actually, consid-
eration of agents’ fractality imposes analysis of agents’ goals on a higher level of
abstraction, i.e., not only with respect to software use as it was in Section 4. That
suggests slightly different process- and object-oriented approaches to information
systems design for support of enterprise flexibility and agility. Another direction of
further research is the investigation of possibilities to integrate process- and object-
oriented approaches in order to support business process flexibility simultaneously
from both business and software perspectives.

References

1. Chapman, M., Berman, S., Blitz, A.: Foreword by Tushman M.: Rethinking innovation.
Fast Thinking (2008)

2. Warneke, H.J.: The Fractal Company. Springer, Heidelberg (1993)
3. Kirikova, M., Strazdina, R., Grundspenkis, J., Osis, J.: Analysis of business process flexi-

bility at different levels of abstraction. In: The 9th International Conference on Enterprise
Information Systems: Software Agents and Internet Computing, Funchal, Madeira,
INSTICC, Portugal, pp. 389–396 (2007) ISBN 978-972-8865-91-7

4. Kirikova, M.: Toward multi-fractal approach in IS development. In: 16th International
Conference on Information Systems Development Challenges in Practice, Theory and
Education (ISD 2007), Galway, Ireland (in print, 2008)

5. Bruneton, E., Coupaye, T., Stefani, J.B.: The Fractal Component Model. Specification,
The ObjectWeb Consortium (2004)

6. Fryer, P., Ruis, J.: What are fractal systems: A brief description of complex adaptive and
emerging systems (2006) (accessed April 14, 2007), http://www.fractal.org

7. Ramanathan, Y.: Fractal architecture for the adaptive complex enterprise. Communications
of ACM 48(5), 51–67 (2005)

8. Ryu, K., Jung, M.: Fractal approach to managing intelligent enterprises: Creating Knowl-
edge Based Organizations. In: Gupta, J.N.D., Sharma, S.K. (eds.), pp. 312–348. Idea
Group Publishers (2003)

9. Canavesio, M.M., Martinez, E.: Enterprise modeling of a project-oriented fractal company
for SMEs networking. Computers in Industry (2007),

 http://www.sciencedirect.com, doi:10.1016/j.compind.2007.02.-05
10. Hongzhao, D., Dongxu, L., Yanwei, Z., Chen, Y.: A novel approach of networked manu-

facturing collaboration: fractal web based enterprise. Int. Journal on Advanced Manufac-
turing Technology 26, 1436–1442 (2005)

11. Tharumarajah, A., Wells, A.J., Nemes, L.: Comparison of emerging manufacturing con-
cepts. Systems, Man and Cybernetics 1, 325–331 (1998)

12. Sihn, W.: Re-engineering through fractal structures. In: IFIPWG5.7 working conference
Reengineering the Enterprise, Ireland, pp. 21–30 (1995)

13. Cottam, R., Ranson, W., Vounckx, R.: Life and simple systems. Systems Research and
Behavioral Science 22(5), 413–430 (2005)

14. Regev, G., Soffer, P., Schmidt, R.: Taxonomy of Flexibility in Business Processes (2006),
http://lamswww.epfl.ch/conference/bpmds06/taxbpflex

15. Daoudi, F., Nurcan, S.: A Benchmarking Framework for Methods to Design Flexible
Business Processes. In: Software Process Improvement and Practice, pp. 51–63 (2007)

16. Snowdon, R.A.: On the Architecture and Form of Flexible Process Support. In: Software
Process Improvement and Practice. John Wiley & Sons, Chichester (2006)

110 J. Stecjuka, M. Kirikova, and E. Asnina

17. Regev, G., Wegmann, A.: Business Process Flexibility: Weick’s Organizational Theory to
the Rescue (2006), http://lamswww.epfl.ch/conference/bpmds06/program/
Regev_13.pdf

18. Chitchyan, R., Rashid, A., Sawyer, P.: Survey of Analysis and Design Approaches, OSD-
Europe EU Network of Excellence (2005), http://www.comp.lancs.ac.uk/
computing/aop/papers/d11.pdf

19. Stecjuka, J., Kirikova, M.: The process-oriented fractal information system development
method. In: 14th International Conference on Information and Software Technologies (IT
2008), pp. 171–181. Kaunas University of Technology (2008)

20. Astahova, T.: Course work in Requirements Engineering. Riga Technical University, Riga
(2007) (in Latvian)

21. Asnina, E., Osis, J., Kirikova, M.: Design of fractal-based systems within MDA: platform
independent modeling. In: 3rd EuroSIGSAND Symposium 2008, Marburg/Lahn. GI-LNI
P-129, pp. 39–53. Koellen-Verlag (2008)

22. Asnina, E., Osis, J.: Analyzing of multifractal system properties in object-oriented soft-
ware development. In: 48th International Riga Technical University Conference, Scientific
Proceedings of RTU, Series — Computer Science (5), Applied Computer Systems. RTU,
Riga (2007)

23. Deliverables of project Nr. R7199 Development of fractal information systems design
methodologies, Riga, RTU (2007) (in Latvian)

24. VCOR framework (2007), http://www.value-chain.org/

	Fractal Modeling Approach for Supporting Business Process Flexibility
	Introduction
	Basic Concepts and Related Work
	Business Process Fractality Oriented Software Requirements for Flexibility Support: A Process-Oriented Approach
	The Notion of the Fractal Process System
	The Main Steps for the Identification of Requirements for Fractal Business Processes

	Fractal Software for Supporting Process Flexibility: An Object- Oriented Approach
	Discussion and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

