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Abstract. Affine registration has a long and venerable history in computer vi-
sion literature, and extensive work have been done for affine registrations in IR?
and IR3. In this paper, we study affine registrations in IR™ for m > 3, and to
justify breaking this dimension barrier, we show two interesting types of match-
ing problems that can be formulated and solved as affine registration problems
in dimensions higher than three: stereo correspondence under motion and image
set matching. More specifically, for an object undergoing non-rigid motion that
can be linearly modelled using a small number of shape basis vectors, the stereo
correspondence problem can be solved by affine registering points in IR**. And
given two collections of images related by an unknown linear transformation of
the image space, the correspondences between images in the two collections can
be recovered by solving an affine registration problem in IR™, where m is the
dimension of a PCA subspace. The algorithm proposed in this paper estimates
the affine transformation between two point sets in IR™. It does not require con-
tinuous optimization, and our analysis shows that, in the absence of data noise,
the algorithm will recover the exact affine transformation for almost all point sets
with the worst-case time complexity of O(mk?), k the size of the point set. We
validate the proposed algorithm on a variety of synthetic point sets in different
dimensions with varying degrees of deformation and noise, and we also show
experimentally that the two types of matching problems can indeed be solved
satisfactorily using the proposed affine registration algorithm.

1 Introduction

Matching points, particularly in low-dimensional settings such as 2D and 3D, has been
a classical problem in computer vision. The problem can be formulated in a variety of
ways depending on the allowable and desired deformations. For instance, the orthogonal
and affine cases have been studied already awhile ago, e.g., [T[2]], and recent research
activities have been focused on non-rigid deformations, particularly those that can be
locally modelled by a family of well-known basis functions such as splines, e.g., [3]]. In
this paper, we study the more classical problem of matching point setd] related by affine
transformations. The novel viewpoint taken here is the emphasis on affine registrations

! In this paper, the two point sets are assumed to have the same size.
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in IR™ for m > 3, and it differs substantially from the past literature on this subject,
which has been overwhelmingly devoted to registration problems in IR? and IR?.

To justify breaking this dimension barrier, we will demonstrate that two important
and interesting types of matching problems can be formulated and solved as affine reg-
istration problems in IR™ with m > 3: stereo correspondence under motion and image
set matching (See Figure[I). In the stereo correspondence problem, two video cameras
are observing an object undergoing some motion (rigid or non-rigid), and a set of k
points on the object are tracked consistently in each view. The problem is to match
the tracking results across two views so that the k feature points can be located and
identified correctly. In the image set matching problem, two collections of images are
given such that the unknown transformation between corresponding pairs of images
can be approximated by some linear transformation F : R™ — R™ between two
(high-dimensional) image spaces. The task is to compute the correspondences directly
from the images. Both problems admit quick solutions. For example, for stereo corre-
spondence under motion, one quick solution would be to select a pair of corresponding
frames and compute the correspondences directly between these two frames. This ap-
proach is clearly since there is no way to know a priori which pair of frames is optimal
for computing the correspondences. Furthermore, if the baseline between cameras is
large, direct stereo matching using image features does not always produce good re-
sults, even when very precise tracking result are available. Therefore, there is a need
for a principled algorithm that can compute the correspondences directly using all the
tracking results simultaneously instead of just a pair of frames.
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Fig. 1. Left: Stereo Correspondence under Motion. A talking head is observed by two (affine)
cameras. Feature points are tracked separately on each camera and the problem is to compute
the correspondences between observed feature points across views. Center and Right: Image
Set Matching. Two collections (432 images each) of images are given. Each image on the right
is obtained by rotating and down-sizing an image on the left. The problem is to recover the
correspondences. These two problems can be formulated as affine registration problems in IR™
withm > 3.

An important point to realize is that in each problem there are two linear subspaces
that parameterize the input data. For nonrigid motions that can be modelled using linear
shape basis vectors, this follows immediately from the work of [4][5]]. For image set
matching, each set of images can usually be approximated by a linear subspace with
dimension that is considerably smaller than that of the ambient image space. We will
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show that the correspondences can be computed (or be approximated) by affine regis-
tering point sets in these two linear subspaces. Therefore, instead of using quantities
derived from image intensities, our solution to these two matching problems is to first
formulate them as affine point set matching problems in IR™, with m > 3, and solve
the resulting affine registration problems.

LetP ={p1, - -,pr}and Q = {q1, - -, qi } denote two point sets in IR"* with equal
number of points. The affine registration problem is typically formulated as an opti-
mization problem of finding an affine transformation A and a correspondence map 7 be-
tween points in P,Q such that the following registration error function is
minimized i

E(A,m) = d*(Api, x(i)); )

i=1

where d(Ap;, g-(;)) denotes the usual L?-distance between Ap; and r(i)- The vener-
able iterative closest point (ICP) algorithm [6]][7] can be easily generalized to handle
high-dimensional point sets, and it gives an algorithm that iteratively solves for corre-
spondences and affine transformation. However, the main challenge is to produce good
initial correspondences and affine transformation that will guarantee the algorithm’s
convergence and the quality of the solution. For dimensions two and three, this is al-
ready a major problem and the difficulty increases exponentially with dimension. In this
paper, we propose an algorithm that can estimate the affine transformation (and hence
the correspondences ) directly from the point sets P, Q. The algorithm is algebraic in
nature and does not require any optimization, which is its main strength. Furthermore, it
allows for a very precise analysis showing that for generic point sets and in the absence
of noise, it will recover the exact affine transformation and the correspondences. For
noisy data, the algorithm’s output can serve as a good initialization for the affine-ICP
algorithm. While the algorithm is indeed quite straightforward, it is to the best of our
knowledge that there has not been published algorithm which is similar to ours in its
entirety. In this paper, we will provide experimental results that validate the proposed
affine registration algorithm and show that both the stereo correspondence problem un-
der motion and image set matching problem can be solved quite satisfactorily using the
proposed affine registration algorithm.

2 Affine Registrations and Vision Applications

In this section, we provide the details for formulating the stereo correspondence under
motion and image set matching problems as affine registration problems.

2.1 Stereo Correspondences under Motion

For clarity of presentation, we will first work out the simpler case of rigid motions.
We assume two stationary affine cameras C7, Co observing an object O undergoing
some (rigid or nonrigid) motion. On each camera, we assume that some robust tracking
algorithm is running so that a set {X7y, -+, X} of k points on O are tracked over
T frames separately on both cameras. Let (azﬁj, yfj) 1<i<21<j<k1<
t < T denote the image coordinates of X; € O in the t*" frame from camera i. For
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each camera, the tracker provides the correspondences (z7;, yf;) < (xf;, y;;) across
different frames ¢ and ¢’. Our problem is to compute correspondences across two views
so that the corresponding points (27, y{;) < (25;,y5;) are the projections of the scene
point X; in the images. We show next that it is possible to compute the correspondences
directly using only the high-dimensional geometry of the point sets (z};, y;;) without
referencing to image features such as intensities.

For each view, we can stack the image coordinates of one tracked point over 7" frames
vertically into a 27-dimensional vector:

1.1 T T 11 T T
Pj:(l"lj Yij Ty ylj)ta qJ:(ffzj Yoj 5Ty y2j)t (2

In motion segmentation (e.g., [8]), the main objects of interest are the 4-dimensional
subspaces L, L, spanned by these 27-dimensional vectors

P:{pla'.'apk}a Q:{qla'.'aqk}a

and the goal is to cluster motions by determining the subspaces L,, L, given the set of
vectors P U Q. Our problem, on the hand, is to determine the correspondences between
points in P and Q. It is straightforward to show that there exists an affine transformation
L : L, — L, that produces the correct correspondences, i.e., L(p;) = q; for all i. To
see this, we fix an arbitrary world frame with respect to which we can write down the
camera matrices for C; and Cs. In addition, we also fix an object coordinates system
with orthonormal basis {i, j, k} centered at some point o € O. Since O is undergoing
a rigid motion, we denote by oy, i¢, j¢, k¢, the world coordinates of o, 1, j, k at frame ¢.
The point X, at frame ¢, with respect to the fixed world frame is given by

X; = oy + ajiy + Biji + vike, (3)

for some real coefficients «;, 35, v; that are independent of time ¢. The corresponding
image point is then given as

(xhy,8)" = it + ajlis + Bjjie + Bk,

where 0;¢, Lt,jit, l~<it are the projections of the vectors oy, i, j;, k; onto camera ¢. In par-
ticulNar, jf we define the 27'-dimensional vectors O;, I;, J;, K; by stacking the vectors

Oit, 1;t, jit, kit vertically as before, we have immediately,
pP; = O, + ijIl + ﬁle + ’7jK1, qj = Os + ijIQ + 5jJ2 + ’YjKQ. 4)

The two linear subspaces L, L, are spanned by the basis vectors {O1,1;,J1, K},
{O3,15,J5, K5}, respectively. The linear map that produces the correct correspon-
dences is given by the linear map L such that L(O;) = O, L(I;) = Iy, L(J;) = Jo
and L(K;) = Ko. A further reduction is possible by noticing that the vectors p;, q; be-
long to two three-dimensional affine linear subspaces L;,, Lﬁl in IR*”, affine subspaces
that pass through the points Oy, O5 with bases {I;,J;,K;} and {I5, J2, Ko}, respec-
tively. These two subspaces can be obtained by computing the principle components
for the collections of vectors P, Q. By projecting points in 7, Q onto Lj,, Ly, respec-
tively, it is clear that the two sets of projected points are now related by an affine map
A L; — L;. In other words, the correspondence problem can now be solved by
solvingfg the equivalent affine registration problem for these two sets of projected points
(in IR7).
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Non-Rigid Motions. The above discussion generalizes immediately to the types of non-
rigid motions that can be modelled (or approximated) using linear shape basis [2/59].
In this model, for k feature points, a shape basis element B; is a 3 x k matrix. For a
model that employs m linear shape basis elements, the 3D world coordinates of the &
feature points at t* frame can be written as a linear combination of these shape basis
elements:

(X1 X[ =) aiBy, %)
=1

for some real numbers a}. Using affine camera model, the imaged points (disregarding
the global translation) are given by the following equation [[9]

[xi-x] =(a® P)B, 6)
where a® = (af,---,al,), P is the first 2 x 3 block of the affine camera matrix and B is
the 3m x k matrix formed by vertically stacking the shape basis matrices B;. The right
factor in the above factorization is independent of the camera (and the images), and we
have the following equations similar to Equations[4}

p; = 01+Z(Oéj111z+ﬂsz1z+%‘zK1z), q; = 02+Z(0¢j1121+ﬂszzz+%‘szz),

=1 =1

(7)
where I;;, J;K;; are the projections of the three basis vectors in the [th shape basis
element B; onto camera 7. The numbers aj;, 3;; and y;; are in fact entries in the matrix
B;. These two equations then imply, using the same argument as before, that we can re-
cover the correspondences directly using a 3m-dimensional affine registration provided
that the vectors O;, I;;, J;;, K;; are linearly independent for each ¢, which is typically
the case when the number of frames is sufficiently large.

2.2 Image Set Matching

In the image set matching problem, we are given two sets of images P = {I1,---, I}
CR™ Q={I{,---,I}} C IR™ and the corresponding pairs of images I;, I} are
related by a linear transformation 7 : IR™ — R™ between two high-dimensional
image spaces:

I ~ F(I).

Examples of such sets of images are quite easy to come by, and Figure [I] gives an
example in which I/ is obtained by rotating and downsizing I;. It is easy to see that
many standard image processing operations such as image rotation and down-sampling
can be modelled as (or approximated by) a linear map F between two image spaces.
The problem here is to recover the correspondences I; < I/ without actually computing
the linear transformation F, which will be prohibitively expensive since the dimensions
of the image spaces are usually very high.

Many interesting sets of images can in fact be approximated well by low-dimensional
linear subspaces in the image space. Typically, such linear subspaces can be computed
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readily using principal component analysis (PCA). Let L,,, L, denote two such low-
dimensional linear subspaces approximating P, Q, respectively and we will use the
same notations P, Q to denote their projections onto the subspace L,, L,. A natural
question to ask is how are the (projected) point sets P, Q related? Suppose that F is
orthogonal and L,,, L, are the principle subspaces of the same dimension. If the data
is “noiseless”, i.e., I;, = F(Ij), it is easy to show that P, Q are then related by an
orthogonal transformation. In general, 7 may not be orthogonal and data points are
noisy, the point sets P, Q are related by a transformation T = A + r, which is a sum
of an affine transformation A and a nonrigid transformation r. If the nonrigid part is
small, we can recover the correspondences by affine registering the two point sets P, Q.
Note that this gives an algorithm for computing the correspondences without explicitly
using the image contents, i.e., there is no feature extraction. Instead, it works directly
with the geometry of the point sets.

3 Affine Registrations in IR™

The above discussion provides the motivation for studying affine registration in IR™ for
m > 3.Let P = {p1,---,pr} and Q = {q1, -, qr} be two point sets in IR™ related
by an unknown affine transformation

Ir(i) = Api + t, 3

where A € GL(m), t € IR™ the translational component of the affine transformation
and 7 : P — Q, the unknown correspondence to be recovered. We assume that the
point sets P, Q have same number of points and 7 is a bijective correspondence.

Iterative closest point (ICP) algorithm is a very general point registration algorithm
that generalizes easily to higher dimensions. Several papers have been published re-
cently [TOITTUI2IT3I14] on ICP-related point registration algorithms in IR? and IR®.
While these works concern exclusively with rigid transformations, it is straightfor-
ward to incorporate affine transformation into ICP algorithm, which iterative solves for
correspondences and affine transformatiorl. Given an assignment (correspondences)
m:{l,--- k} — {1,---, k} the optimal affine transformation A in the least squares
sense can be solved by minimizing

k
E(At,m) =Y d*(Api + b, ¢r(i))- ©)

i=1

Solving A, t separately while holding 7 fixed, the above registration error function
gives a quadratic programming problem in the entries of A, and the optimal solution
can be computed readily by solving a linear system. With a fixed A, t can be solved
immediately. On the hand, given an affine transformation, a new assignment 7 can be
defined using closest points:

(i) = arg nin, d*(Ap; +t,q;).

2 We will call this algorithm affine-ICP.
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Once an initial affine transformation and assignment is given, affine-ICP is easy to
implement and very efficient. However, the main difficulty is the initialization, which
can significantly affect the algorithm’s performance. With a poor initialization, the al-
gorithm almost always converges to an undesirable local minimum and as the group
of affine transformations is noncompact, it is also possible that it diverges to infinity,
i.e., the linear part of the affine transformation converges to a singular matrix. One
way to generate an initial affine transformation (disregarding t) is to randomly pick m
pairs of points from P, Q, {(x1,v1), ", (Tm,Ym)}, i € P,y; € Q and define A as
y; = A(x;). It is easy to see that the probability of picking a good set of pairs that will
yield good initialization is roughly in the order of 1/C'(k,m). For small dimensions
m = 2,3 and medium-size point sets (k in the order of hundreds), it is possible to ex-
haustively sample all these initial affine transformations. However, as C'(k, m) depends
exponentially on the dimension m, this approach becomes impractical once m > 3.
Therefore, for affine-ICP approach to work, we need a novel way to generate good
initial affine transformation and correspondences.

Our solution starts with a novel affine registration algorithm. The outline of the al-
gorithm is straightforward: we first reduce the problem to orthogonal case and spectral
information is then used to narrow down the correct orthogonal transformation. This
algorithm does not require continuous optimization (e.g., solving linear systems) and
we can show that for generic point sets without noise, it will recover the exact affine
transformation. This latter property suggests that for noisy point sets, the affine trans-
formation estimated by the proposed algorithm should not be far from the optimal one.
Therefore, the output of our proposed algorithm can be used as the initial affine trans-
formation for the affine-ICP algorithm.

3.1 Affine Registration Algorithm

Let P, Q be two point sets as above related by an unknown affine transformation as in
Equation[8] By centering the point sets with respect to their respective centers of mass
my, mg,

i i
mp: kzpza mq: qu“
i=1 1=1

the centered point sets P° = {p1 —my,---,pr —my,}and Q° = {¢1 —my, -, q; —
m, } are related by the same A: g(;) — m, = A(p; — m,). That is, we can work with
centered point sets P¢ and Q°. Once A and 7 have been recovered from the point sets
P¢ and Q°, the translational component t can be estimated easily. In the absence of
noise, determining the matrix A is in fact a combinatorial search problem. We can se-
lect m linearly independent points {p;,, - - -, p;,, } from P. For every ordered m points
w = {q, ¢, } in Q, there is a (nonsingular) matrix B,, sending p;; to ¢;, for
1 < j < m. The desired matrix A is among the set of such matrices, which numbers
roughly £™ (k is the number of points). For generic point sets, this exponential depen-
dence on dimension can be avoided if A is assumed to be orthogonal. Therefor, we
will first use the covariance matrices computed from P and Q to reduce the problem
to the ‘orthogonal case’. Once the problem has been so reduced, there are various ways
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to finish off the problem by exploiting invariants of the orthogonal matrices, namely,
distances. Let Sp and Sq denote the covariance matrices for P and Q, respectively:

k k
Sp=> pipl,  Sq=) ad.
i=1 =1

We make simple coordinates changes using their inverse square-roots:

_1 1
pi — Sp’pi, 4 — 8o ¢ (10)

We will use the same notations to denote the transformed points and point sets. If the
original point sets are related by A, the transformed point sets are then related by A =

_1 1 _
So% AS}. The matrix A can be easily shown to be orthogonal:

Proposition 1. Ler P and Q denote two point sets (of size k) in R™, and they are
related by an unknown linear transformation A. Then, the transformed point sets (using
Equation[IQ) are related by a matrix A, whose rows are orthonormal vectors in IR™".

The proof follows easily from the facts that 1) the covariance matrices Sp and Sq
are now identity matrices for the transformed point sets, and 2) Sq = ASp At They
together imply that the rows of A must be orthonormal.

3.2 Determining the Orthogonal Transformation A

Since the point sets PP, Q have unit covariance matrices, the invariant approach in
cannot be applied to solve for the orthogonal transformation A. Nevertheless, there are
other invariants that can be useful. For example, if the magnitudes of points in P are all
different, registration becomes particularly easy: each point p;, is matched to the point
qi; with the same magnitude. Of course, one does not expect to encounter such nice
point sets very often. However, for orthogonal matrices, there is a very general way to
produce a large number of useful invariants.

Let p1, p2 be any two points in P and ¢, g2 their corresponding points in Q. Since
A is orthogonal, the distance d(p1, p2) between p; and p, equals the distance d(q1, ¢2)
between ¢; and go. Although we do not know the correspondences between points in
P and Q, the above observation naturally suggests the idea of canonically constructing
two symmetric matrices, Lp and Lo, using pairwise distances between points in P and
Q, respectively. The idea is that the matrices so constructed differ only by an unknown
permutation of their columns and rows. Their eigenvalues, however, are not effected by
such permutations, and indeed, the two matrices Lp and Lo have the same eigenval-
ues. Furthermore, there are also correspondences between respective eigenspaces L
and E/\Q associated with eigenvalue A. If \ is a non-repeating eigenvalue, we have two
associated (unit) eigenvectors v and v of Lp and L, respectively. The vector v}
differs from vg by a permutation of its components and a possible multiplicative factor
of —1.

There are many ways to construct the matrices Lp and Lg. Let f(x) be any function.
We can construct a k& X k symmetric matrix Lp(f) from pairwise distances using the
formula



264 Y.-T. Chi et al.

fd(p1,p1)) - f(d(p1,pr))
Lp(f) =T — u L , (11)
f(d(pk,p1)) -+ f(d(pr,pK))

where I} is the identity matrix and p some real constant. One common choice of f
that we will use here is the Gaussian exponential f(z) = exp(—2?2/0?), and the result-
ing symmetric matrix Lp is related to the well-known (unnormalized) discrete Lapla-
cian associated with the point set P [I3]]. Denote U, DU} = Lp,U,D,U} = Lo
the eigen-decompositions of Lp and Lg. When the eigenvalues are all distinct, up to
sign differences, U, and U, differ only by some unknown row permutation if we order
the columns according to the eigenvalues. This unknown row permutation is exactly
the desired correspondence 7. In particular, we can determine m correspondences by
matching m rows of U, and U,;, and from these m correspondences, we can recover the
orthogonal transformation A. The complexity of this operation is O(mk?) and we have
the following result

Proposition 2. For a generic pair of point sets P, Q with equal number of points in
R™ related by some orthogonal transformation L and correspondences w such that
qr(i) = Lpi, the above method will recover L and  exactly for some choice of o.

The proof (omitted here) is an application of Sard’s theorem and transversality in dif-
ferential topology [16]. The main idea is to show that for almost all point sets P, the
symmetric matrix Lp will not have repeating eigenvalues for some o. This will guaran-
tee that the row-matching procedure described above will find the m needed correspon-
dences after examining all rows of U, m times. Since the time complexity for matching
one row is O(k), the total time complexity is no worse than O(mk?).

3.3 Dealing with Noises

The above method breaks down when noise is present. In this case, the sets of eigenval-
ues for Lp, Lg are in general different, and the matrices U),, U, are no longer expected
to differ only by a row permutation. Nevertheless, for small amount of noise, one can
expect that the matrices Lp, Lo are small perturbations of two corresponding matrices
for noiseless data. For example, up to a row permutation, U, is a small perturbation
of U,. For each eigenvalue A\’ of Lp, there should be an eigenvalue A of Lo such
that the difference |\, — A\,| is small, and this will allow us to establish correspon-
dences between eigenvalues of Lp, Lo. The key idea is to define a reliable matching
measure M using eigenvectors of Lp, Lo, e.g., if p, g are two corresponding points,
M(p, q) will tend to be small. Otherwise, it is expected to be large. Once a matching
measure M is defined, it will allow us to establish tentative correspondences p; «+— ¢;:
g; = argming M(p;, ¢;+). Similar to the homography estimation in structure from mo-
tion [2]], some of the tentative correspondences so established are incorrect while a good
portion of them are expected to be correct. This will allow us to apply RANSAC
to determine the orthogonal transformation: generate a small number of hypotheses (or-
thogonal matrices from sets of randomly generated m correspondences) and pick the
one that gives the smallest registration error. We remark that in our approach, the tenta-
tive correspondences are computed from the geometry of the point sets P, Q embedded
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in IR™. In stereo matching and homography estimation [2]], they are computed using
image features such as image gradients and intensity values.

More precisely, let A} < M) < -+ < AP (I < k) be | non-repeating eigenvalues of
Lp and likewise, A{ < AJ < --- < A/ the [ eigenvalues of Lg such that [A\] — AP| <
e for some threshold value e. Let v} ,v{ ,---, v}, and v% , 1))%, . v/\Ql denote the
corresponding eigenvectors. We stack these eigenvectors horizontally to form two k x [

matrices VP and VQ:
PP P
VP = [vy, v}, - Uy, s VQ:[U)% v)% v)%] (12)

Denote the 4, j-entry of VP (and also VQ) by VP(i, j). We define the matching measure
M as

l
M(pi, q;) = »_ min{ (VP(i, h) — VQ(j, h))?, (VP(i, h) + VQ(j, h))* }.
h=1

Note that if I = k, M is comparing the i*" row of Lp with j* row of Lg. For ef-
ficiency, one does not want to compare the entire row; instead, only a small fragment
of it. This would require us to use those eigenvectors that are most discriminating for
picking the right correspondences. For discrete Laplacian, eigenvectors associated with
smaller eigenvalues can be considered as smooth functions on the point sets, while those
associated with larger eigenvalues are the non-smooth ones since they usually exhibit
greater oscillations. Typically, the latter eigenvectors provide more reliable matching
measures than the former ones and in many cases, using one or two such eigenvectors
(I = 2) is already sufficient to produce good results.

Table 1. Experimental Results 1. For each dimension and each noise setting, one hundred trials,
each with different point sets and matrix A, were performed. The averaged relative error and
percentage of mismatched points as well as standard deviations (in parenthesis) are shown.

Dim — 3 3 5 5 10 10
Noise | Matrix Error Matching Error Matrix Error Matching Error Matrix Error Matching Error
0% 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

1% 0.001 (0.0005) 0(0) 0.002 (0.0006) 0(0) 0.004 (0.0008) 0(0)
2%  0.003 (0.001) 0(0) 0.004 (0.001) 0(0) 0.008 (0.001) 0(0)
5%  0.008 (0.003) 0(0) 0.01 (0.003) 0(0) 0.02 (0.003) 0(0)
10%  0.017 (0.01)  0.008 (0.009)  0.05 (0.05)  0.009 (0.04)  0.04 (0.009) 0(0)

4 Experiments

In this section, we report four sets of experimental results. First, with synthetic point
sets, we show that the proposed affine registration algorithm does indeed recover exact
affine transformations and correspondences for noiseless data. Second, we show that
the proposed algorithm also works well for 2D point sets. Third, we provide two se-
quences of nonrigid motions and show that the feature point correspondences can be
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Table 2. Experimental Results II. Experiments with point sets of different sizes with 5% noise
added. All trials match point sets in IR' with settings similar to Table[Il Average errors for one
hundred trials are reported with standard deviations in parenthesis.

# of Pts — 100 150 200 250 300 400
Errors | Points Points Points Points Points Points
Matrix Error 0.02 (0.003) 0.05(0.008) 0.05 (0.009) 0.05 (0.01) 0.05 (0.01) 0.04 (0.009)

Matching Error 0(0) 0 (0) 0(0) 0 (0) 0(0) 0 (0)

satisfactorily solved using affine registration in IR®. And finally, we use images from
COIL database to show that the image set matching problem can also be solved using
affine registration in IR®. We have implemented the algorithm using MATLAB without
any optimization. The sizes of the point sets range from 20 to 432, and on a DELL
desktop with single 3.1GHz processor, each experiment does not run longer than one
minute.

4.1 Affine Registration in IR™

In this set of experiments, our aim is to give a qualitative as well as quantitative analy-
sis on the accuracy and robustness of the proposed method. We report our experimental
results on synthetic data in several different dimensions and using various different
noise settings. Tables [Tl and P summarize the experimental results. In Table [I] the al-
gorithm is tested in three dimensions, 3, 5 and 10, and five different noise settings,
0%, 1%, 2%, 5%, 10%. For each pair of dimension and noise setting, we ran 100 trials,
each with a randomly generated non-singular matrix A and a point set containing 100
points. In trials with 2% noise setting, we add a uniform random noise (+2:%) to each
coordinate of every point independently. Let A’ denote the estimated matrix. A point
p € P is matched to the point ¢ € Q if ¢ = ming,co dist(A’p, ¢;). For each trial,
we report the percentage of mismatched points and the relative error of the estimated
matrix A': ”AHX‘f I , using the Frobenius norm.

The number of (RANSAC) samples drawn in each trial has been fixed at 800 for
the results reported in Table [Tl This is the number of samples needed to produce zero
mismatch for dimension 10 with 10% noise setting. In general, for lower dimensions,
a much smaller number of samples (around 200) would also have produced similar re-
sults. In Table 2 we vary the sizes of the point sets and work in IR'". The setting is
similar to that of Table [[] except with fixed 5% noise setting for all trials. The results
clearly show that the proposed algorithm consistently performs well with respect to the
sizes of the point sets. Note also that for noiseless point sets the exact affine transfor-
mations are always recovered.

4.2 2D Point Sets

In the second set of experiments, we apply the proposed algorithm to 2D image registra-
tion. It is known that the effect of a small view change on an image can be approximated
by a 2D affine transformation of the image [2]]. Using images from COIL database, we
manually click feature points on pairs of images with 15° to 30° difference in view
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Fig. 2. 2D Image Registration. 1st column: Source images (taken from COIL database) with
feature points marked in red. 2nd and 4th column: Target images with feature points marked in
blue. 3rd and 5th column: Target images with corresponding feature points marked in blue. The
affine transformed points from the source images are marked in red. Images are taken with 15°
and 30° differences in viewpoint. The RMS errors for these four experiments (from left to right)
2.6646, 3.0260, 2.0632, 0.7060, respectively.

Fig. 3. Top: Sample frames from two video sequences of two objects undergoing nonrigid mo-
tions. Bottom: Sample frames from another camera observing the same motions.

point. The registration results for four pairs of images are shown in Figure[2l Notice the
small RMS registration errors for all these results given that the image size is 128 x 128.

4.3 Stereo Correspondences under Nonrigid Motions

In this experiment, we apply affine registration algorithm to compute correspondences
between tracked feature points in two image sequences. We gathered four video se-
quences from two cameras observing two objects undergoing nonrigid motions
(Figure [3). One is a talking head and the other is a patterned tatoo on a man’s belly.
A simple correlation-based feature point tracker is used to track twenty and sixty points
for these two sequences, respectively. Seventy frames were tracked in both sequences
and manual intervention was required several times in both sequences to correct and
adjust tracking results. We use three shape basis for both sequences [35]], and to com-
pute the correspondences, we affine register two point sets in IR? as discussed before.
For the two point sets P, Q C IR, we applied the proposed algorithm to obtain ini-
tial correspondences and affine transformation. This is followed by running an affine-
ICP algorithm with fifty iterations. For comparison, the affine-ICP algorithm initialized
using closest pointﬁ is run for one hundred iterations. For the talking sequence, the

3 Given two point sets in IR?, the initial correspondence p; < g; is computed by taking g; to
be the point in Q closest to p;.
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proposed algorithm recovers all the correspondences correctly, while for the tatoo se-
quence, among the recovered sixty feature point correspondences, nine are incorrect.
This can be explained by the fact that in several frames, some of the tracked feature
points are occluded and missing and the subsequent factorizations produce relatively
noisy point sets in IR?. On the other hand, affine-ICP with closest point initialization
fails poorly for both sequences. In particular, more than three quarters of the estimated
correspondences are incorrect.

4.4 Image Set Matching

In this experiment, images from the first six objects in the COIL database are used.
They define the image set .4 with 432 images. Two new sets 3, C of images are gener-
ated from A: the images are 80% down-sampled and followed by 45° and 90° rotations,
respectively. The original images have size 128 x 128 and the images in the two new
sets have size 100 x 100. An eight-dimensional PCA subspace is used to fit each set of
images with relative residue smaller than 1%. Images in each set are projected down to
their respective PCA subspaces and the correspondences are automatically computed
by affine registering the projected point sets. The two experiments shown in Figure @]
match point sets A, B and A, C. We apply the proposed affine registration algorithm to
obtain an initial estimate on correspondences and affine transformation. Since the data
is noisy, we follow this with the affine-ICP algorithm running fifty iterations as above.
For comparison, we apply the affine-ICP algorithm using closest points as initializa-
tion. In both experiments, the affine-ICP algorithm, not surprisingly, performs poorly
with substantial L2-registration errors (Equation[J) and large number of incorrect cor-
respondences. The proposed algorithm recovers all correspondences correctly and it
yields small L2-registration errors.
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Fig.4. Image Set Matching. The original image set A is shown in Figure[Il Image sets B, C are
shown above. The plots on the right show the L?-registration error for each of the fifty iterations
of running affine-ICP algorithm using different initializations. Using the output of the proposed
affine registration as the initial guess, the affine-ICP algorithm converges quickly to the desired
transformation (blue curves) and yields correct correspondences. Using closest points for initial
correspondences, the affine-ICP algorithm converges (red curves) to incorrect solutions in both
experiments.
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5 Conclusion and Future Work

In this paper, we have shown that the stereo correspondence problem under motion and
image set matching problem can be solved using affine registration in R™ with m > 3.
We have also proposed an algorithm for estimating an affine transformation directly
from two point sets without using continuous optimization. In the absence of noise, it
will recover the exact affine transformation for generic pairs of point sets in IR™. For
noisy data, the output of the proposed algorithm often provides good initializations for
the affine-ICP algorithm. Together, they provide us with an efficient and effective algo-
rithm for affine registering point sets in IR"* with m > 3. We have applied the proposed
algorithm to the two aforementioned problems. Preliminary experimental results are
encouraging and they show that these two problems can indeed be solved satisfactorily
using the proposed affine registration algorithm.
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