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Abstract. Algorithms designed to estimate 3D pose in video sequences
enforce temporal consistency but typically overlook an important source
of information: The 3D pose of an object, be it rigid or articulated, has
a direct influence on its direction of travel.

In this paper, we use the cases of an airplane performing aerobatic
maneuvers and of pedestrians walking and turning to demonstrate that
this information can and should be used to increase the accuracy and
reliability of pose estimation algorithms.

1 Introduction

Temporal consistency is a key ingredient in many 3D pose estimation algorithms
that work on video sequences. However, the vast majority of methods we know of
neglect an important source of information: The direction in which most objects
travel is directly related to their attitude. This is just as true of the fighter plane
of Fig.[Il(a) that tends to move in the direction in which its nose points as of the
pedestrian of Fig. M(b) who is most likely to walk in the direction he is facing.
The relationship, though not absolute—the plane can slip and the pedestrian
can move sideways—provides nevertheless useful constraints.

There are very many Computer Vision papers on rigid, deformable, and ar-
ticulated motion tracking, as recent surveys can attest [T/2]. In most of these,
temporal consistency is enforced by regularizing the motion parameters, by re-
lating parameters in an individual frame to those estimated in earlier ones, or
by imposing a global motion model. However, we are not aware of any that ex-
plicitly take the kind of constraints we propose into account without implicitly
learning it from training data, as is done in [3].

In this paper, we use the examples of the plane and the pedestrian to show
that such constraints, while simple to enforce, effectively increase pose estimation
reliability and accuracy for both rigid and articulated motion. In both cases, we
use challenging and long video sequences that are shot by a single moving camera
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(a)

Fig. 1. Airplanes and people are examples of objects that exhibit a favored direction
of motion. (a) We project the 3D aircraft model using the recovered pose to produce
the white overlay. The original images are shown in the upper right corner. (b) We
overlay the 3D skeleton in the recovered pose, which is correct even when the person
is occluded.

that can zoom to keep the target object in the field of view, rendering the use
of simple techniques such as background subtraction impractical.

2 Related Work and Approach

Non-holonomic constraints that link direction of travel and position have been
widely used in fields such as radar-based tracking [4] or robot self-localization [5],
often in conjunction with Kalman filtering. However, these approaches deal with
points moving in space and do not concern themselves with the fact that they
are extended 3D objects, whether rigid or deformable, that have an orientation,
which conditions the direction in which they move. Such constraints have also
been adopted for motion synthesis in the Computer Graphics community [6],
but they are not directly applicable in a Computer Vision context since they
make no attempt at fitting model to data.

Tracking rigid objects in 3D is now a well understood problem and can rely
on many sources of image information, such as keypoints, texture, or edges [IJ. If
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the image quality is high enough, simple dynamic models that penalize excessive
speed or acceleration or more sophisticated Kalman filtering techniques [7] are
sufficient to enforce temporal consistency. However, with lower quality data such
as the plane videos of Fig.[I|(a), the simple quadratic regularization constraints [S]
that are used most often yield unrealistic results, as shown in Fig.

Fig. 2. The first 50 frames of the first airplane sequence. The 3D airplane model is
magnified and plotted once every 5 frames in the orientation recovered by the algorithm:
(a) Frame by Frame tracking without regularization. (b) Imposing standard quadratic
regularization constraints. (c¢) Linking pose to motion produces a much more plausible
set of poses. Note for example the recovered depth of the brightest airplane: In (a) and
(b) it appears to be the frontmost one, which is incorrect. In (c) the relative depth is
correctly retrieved.

Tracking a complex articulated 3D object such as a human body is much more
complex and existing approaches remain brittle. Some of the problems are caused
by joint reflection ambiguities, occlusion, cluttered backgrounds, non-rigidity of
tissue and clothing, complex and rapid motions, and poor image resolution.
The problem is particularly acute when using a single video to recover the 3D
motion. In this case, incorporating motion models into the algorithms has been
shown to be effective [2]. The models can be physics-based [9] or learned from
training data [TOITTUT2/T3]. However, all of these assume the joint angles, that
define the body pose, and the global motion variables are independent. As is the
case for rigid body tracking, they typically revert to second order Gauss-Markov
modeling or Kalman filtering to smooth the global motion. Again, this can lead
to unrealistic results as shown in Fig. Bl Some approaches implicitly take into
account the relationship between pose and direction of travel by learning from
training data a low-dimensional representation that includes both [BIT4UT5ITG].
However, the set of motions that can be represented is heavily constrained by
the contents of the training database, which limits their generality.

To remedy these problems, we explicitly link pose and motion as follows: Given
an object moving along its trajectory as depicted by Fig. @l the angle between
Py, the derivative of its position, and its orientation A; should in general be
small. We can therefore write that
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Fig. 3. Recovered 2D trajectory of the subject of Fig. [[(b). The arrows represent the
direction he is facing. (a) When pose and motion are not linked, he appears to walk
sideways. (b) When they are, he walks naturally. The underlying grid is made of 1
meter squares.
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should be close to 1. To enforce this, we can approximate the derivative of the
locations using finite differences between estimated locations P at different time
instants. This approximation is appropriate when we can estimate the location
at a sufficiently high frequency (e.g. 25 Hz).

Fig. 4. The continuous curve represents the real trajectory of the object, while the
dashed lines show its approximation by finite differences

Our constraint then reduces to minimizing the angle between the finite dif-
ferences ‘approximation of the derivative of the trajectory at time ¢, given by
Pt+1 Ph and the object’s estimated orientation given by At We write this
angle, which is depicted as filled both at time ¢ — 1 and ¢ in Fig. [l as
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and will seek to minimize it. It is important to note that the constraint we impose
is not a hard constraint, which can never be violated. Instead, it is a prior that
can be deviated from if the data warrants it. In the remainder of the paper we
will demonstrate the effectiveness of this idea for both rigid and articulated 3D
tracking.

3 Rigid Motion

In the case of a rigid motion, we demonstrate our approach using video sequences
of a fighter plane performing aerobatic maneuvers such as the one depicted by
Fig. In each frame of the sequences, we retrieve the pose which includes
position expressed by cartesian coordinates and orientation defined by the roll,
pitch and yaw angles. We show that these angles can be recovered from single
viewpoint sequences with a precision down to a few degrees, and that linking
pose and motion estimation contributes substantially to achieving this level of
accuracy. This is extremely encouraging considering the fact that the videos we
have been working with were acquired under rather unfavorable conditions: As
can be seen in Fig. [l the weather was poor, the sky gray, and the clouds many, all
of which make the plane less visible and therefore harder to track. The airplane
is largely occluded by smoke and clouds in some frames, which obviously has an
adverse impact on accuracy but does not result in tracking failure.

The video sequences were acquired using a fully calibrated camera that could
rotate around two axes and zoom on the airplane. Using a couple of encoders, it
could keep track of the corresponding values of the pan and tilt angles, as well
as the focal length. We can therefore consider that the intrinsic and extrinsic
camera parameters are known in each frame. In the remainder of this section,
we present our approach first to computing poses in individual frames and then
imposing temporal consistency, as depicted by Fig. Fl to substantially improve
the accuracy and the realism of the results.

3.1 Pose in Each Frame Independently

Since we have access to a 3D model of the airplane, our algorithm computes the
pose in each individual frame by minimizing an objective function L, that is a
weighted sum of a color and an edge term:

— The color term is first computed as the Bhattacharyya distance [17] between
the color histogram of the airplane that we use as a model, whose pose was
captured manually in the first frame, and the color histogram of the image
area corresponding to its projection in subsequent frames. To this we add
a term that takes into account background information, also expressed as
a difference of color histograms, which has proved important to guarantee
robustness.
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Fig. 5. Airplane video and reprojected model. First and third rows: Frames from
the input video. Note that the plane is partially hidden by clouds in some frames, which
makes the task more difficult. Second and fourth rows: The 3D model of the plane
is reprojected into the images using the recovered pose parameters. The corresponding
videos are submitted as supplemental material.

— The edge term is designed to favor poses such that projected model edges
correspond to actual image edges and plays an important role in ensuring
accuracy.

In each frame ¢, the objective function L, is optimized using a particle-based
stochastic optimization algorithm [I§] that returns the pose corresponding to
the best sample. The resulting estimated pose is a six-dimensional vector S, =
(Pt, /it) = argming L, (S) where P, = ()A(t,Yt, Zt) is the estimated position of
the plane in an absolute world coordinate system and A, = (j, ét,’yt) is the
estimated orientation expressed in terms of roll, pitch and yaw angles. The esti-
mated pose S, at time ¢ is used to initialize the algorithm in the following frame
t 4+ 1, thus assuming that the motion of the airplane between two consecutive
frames is relatively small, which is true in practice.
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3.2 Imposing Temporal Consistency

Independently optimizing L, in each frame yields poses that are only roughly
correct. As a result, the reconstructed motion is extremely jerky. To enforce
temporal consistency, we introduce a regularization term M defined over frames
t—1,t,and t+ 1 as

M(S:) = an||A(P)I]* + col [A(A)® + B(6T- 1 + Gi—i41) 5 (1)
AP,))=Py1 — 2P, + Py, (2)
A(At) = At+1 - 2/175 + Atfl . (3)

The first two terms of () enforce motion smoothness. The third term is
the one of Fig. [ which links pose to motion by forcing the orientation of the
airplane to be consistent with its direction of travel. In practice, oy, as and 3
are chosen to relate quantities that would otherwise be incommensurate and are
kept constant for all the sequences we used. For an N-frame video sequence,
ideally, we should minimize

N N-1
Fo(S1ye Sn) =Y Lio(Se) + > M(S)) (4)
t=1 t=

with respect to the poses in individual images. In practice, for long video
sequences, this represents a very large optimization problem. Therefore, in our
current implementation, we perform this minimization in sliding temporal 3-frame
windows using a standard simplex algorithm that does not require the computa-
tion of derivatives. We start with the first set of 3 frames, retain the resulting pose
in the first frame, slide the window by one frame, and iterate the process using the
previously refined poses to initialize each optimization step.

3.3 Tracking Results

The first sequence we use for the evaluation of our approach is shown in Fig.
and contains 1000 frames shot over 40 seconds, a time during which the plane
performs rolls, spins and loops and undergoes large accelerations.

In Fig. [6(a) we plot the locations obtained in each frame independently. In
Fig.[B(b) we imposed motion smoothness by using only the first two terms of ().
In Fig[tlc) we link pose to motion by using all three terms of ([I]). The trajectories
are roughly similar in all cases. However, using the full set of constraints yields
a trajectory that is both smoother and more plausible.

In Fig. Bl we zoom in on a portion of these 3 trajectories and project the 3D
plane model in the orientation recovered every fifth frame. Note how much more
consistent the poses are when we use our full regularization term.

The plane was equipped with sophisticated gyroscopes which gave us mean-
ingful estimates of roll, pitch, and yaw angles, synchronized with the camera
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Fig. 6. Recovered 3D trajectory of the airplane for the 40s sequence of Fig.[&} (a) Frame
by Frame tracking. (b) Imposing motion smoothness. (c¢) Linking pose to motion. The
coordinates are expressed in meters.

and available every third frame. We therefore use them as ground truth. Table[Il
summarizes the deviations between those angles and the ones our algorithm
produces for the whole sequence. Our approach yields an accuracy improvement
over frame by frame tracking as well as tracking with simple smoothness con-
straint. The latter improvement is in the order of 5 %, which is significant if one
considers that the telemetry data itself is somewhat noisy and that we are there-
fore getting down to the same level of precision. Most importantly, the resulting
sequence does not suffer from jitter, which plagues the other two approaches, as
can be clearly seen in the videos given as supplemental material.

Table 1. Comparing the recovered pose angles against gyroscopic data for the sequence
of Fig. Bl Mean and standard deviation of the absolute error in the 3 angles, in degrees.

Roll Angle Error Pitch Angle Error Yaw Angle Error

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Frame by Frame 2.291 2.040 1.315 1.198 3.291 2.245
Smoothness Constraint only 2.092  1.957 1.031 1.061 3.104  2.181
Linking Pose to Motion 1.974  1.878 0.975 1.000 3.003  2.046

In Fig. [d we show the retrieved trajectory for a second sequence, which lasts
20 seconds. As before, in Table Bl we compare the angles we recover against
gyroscopic data. Again, linking pose to motion yields a substantial improvement.

4 Articulated Motion

To demonstrate the effectiveness of the constraint we propose in the case of
articulated motion, we start from the body tracking framework proposed in [19].
In this work, it was shown that human motion could be reconstructed in 3D
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Fig. 7. Recovered 3D trajectory of the airplane for a 20s second sequence: (a) Frame
by Frame tracking. (b) Imposing motion smoothness. (c¢) Linking pose to motion. The
coordinates are expressed in meters.

Table 2. Second sequence: Mean and standard deviation of the absolute error in the
3 angles, in degrees

Roll Angle Error Pitch Angle Error Yaw Angle Error

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Frame by Frame 3.450  2.511 1.607 1.188 3.760 2.494
Smoothness Constraint only 3.188  2.445 1.459 1.052 3.662  2.237
Linking Pose to Motion 3.013 2.422 1.390 0.822 3.410 2.094

by detecting canonical poses, using a motion model to infer the intermediate
poses, and then refining the latter by maximizing an image-based likelihood in
each frame independently. In this section, we show that, as was the case for
rigid motion recovery, relating the pose to the direction of motion leads to more
accurate and smoother 3D reconstructions.

In the remainder of the section, we first introduce a slightly improved version
of the original approach on which our work is based. We then demonstrate the
improvement that the temporal consistency constraint we advocate brings about.

4.1 Refining the Pose in Each Frame Independently

We rely on a coarse body model in which individual limbs are modeled as cylin-
ders. Let S; = (P, ©;) be the state vector that defines its pose at time ¢, where
O, is a set of joint angles and P; a 3D vector that defines the position and orien-
tation of the root of the body in a 2D reference system attached to the ground
plane.

In the original approach [I9], a specific color was associated to each limb by
averaging pixel intensities in the projected area of the limb in the frames where
a canonical pose was detected. Then Sy was recovered as follows: A rough initial
state was predicted by the motion model. Then the sum-of-squared-differences
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between the synthetic image, obtained by reprojecting the model, and the actual
one was minimized using a simple stochastic optimization algorithm.

Here, we replace the single color value associated to each limb by a histogram,
hereby increasing generality. As in Sect. Bl we define an objective function
L, that measures the quality of the pose using the Bhattacharyya distance to
express the similarity between the histogram associated to a limb and that of
the image portion that corresponds to its reprojection. Optimizing L, in each
frame independently leads, as could be expected, to a jittery reconstruction as
can be seen in the video given as supplemental material.

4.2 Imposing Temporal Consistency

In order to improve the quality of our reconstruction, we perform a global opti-
mization on all N frames between two key-pose detections, instead of minimizing
L, independently in each frame. To model the relationship between poses we
learn a PCA model from a walking database and consider a full walking cycle as
a single data point in a low-dimensional space [20/11]. This lets us parameterize
all the poses S; between consecutive key-pose detections by n PCA coefficients
(a1 ...ap), plus a term, 7, that represents possible variations of the walking
speed during the walking cycle (n = 5 in our experiments). These coefficients
do not take into account the global position and orientation of the body, which
needs to be parameterized separately. Since the walking trajectory can be ob-
tained by a 2D spline curve lying on the ground plane, defined by the position
and orientation of the root at the two endpoints of the sequence, modifying these
endpoints Piart and Pepnq will yield different trajectories. The root position and
orientation corresponding to the different frames will then be picked along the
spline curve according to the value of 7. It in fact defines where in the walk-
ing cycle the subject is at halftime between the two detections. For a constant
speed during a walking cycle the value of 7 is 0.5, but it can go from 0.3 to 0.7
depending on change in speed between the first and the second half-cycle.

We can now formulate an objective function that includes both the image
likelihood and a motion term, which, in this case, constrains the person to move
in the direction he is facing. This objective function is then minimized with
respect to the parameters introduced above (i, ..., an, Psart; Pend,7) on the
full sequence between two consecutive key-pose detections. In other words, we
seek to minimize

N N

fa(S1,- o SN) =Y La(S) + Y B(67-1-0) (5)

t=1 t=2

with respect to (a1, ..., @n, Psart, Pend, 1), where the second term is defined the
same way as in the airplane case and [ is as before a constant weight that
relates incommensurate quantities. The only difference is that in this case both
the estimated orientation and the expected motion, that define the angle ¢, are
2-dimensional vectors lying on the ground plane. This term is the one that links
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pose to motion. Note that we do not need quadratic regularization terms such as
the first two of ([II) because our parameters control the entire trajectory, which
is guaranteed to be smooth.

4.3 Tracking Results

We demonstrate our approach on a couple of very challenging sequences. In the
sequence of Fig. B the subject walks along a circular trajectory and the camera
is following him from its center. At a certain point the subject undergoes a total
occlusion but the algorithm nevertheless recovers his pose and position thanks
to its global motion model. Since the tracking is fully 3D, we can also recover
the trajectory of the subject on the ground plane and his instantaneous speed
at each frame.

In Fig. Bl we examine the effect of linking or not pose to motion on the recov-
ered trajectory: That is, setting 3 to zero or not in (). The arrows represent the
orientation of the subject on the ground plane. They are drawn every fifth frame.

Fig. 8. Pedestrian tracking and reprojected 3D model for the sequence of Fig.[I] First
and third rows: Frames from the input video. The recovered body pose has been
reprojected on the input image. Second and fourth rows: The 3D skeleton of the
person is seen from a different viewpoint, to highlight the 3D nature of the results. The
numbers in the bottom right corner are the instantaneous speeds derived from the re-
covered motion parameters. The corresponding videos are submitted as supplementary
material.
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The images clearly show that, without temporal consistency constraints, the sub-
ject appears to slide sideways while when the constraints are enforced the motion
is perfectly consistent with the pose. This can best be evaluated from the videos
given as supplemental material.

Fig. 9. Pedestrian tracking and reprojected 3D model in a second sequence. First
and third rows: Frames from the input video. The recovered body pose has been
reprojected on the input image. Second and fourth rows: The 3D skeleton of the
person is seen from a different viewpoint, to highlight the 3D nature of the results.
The numbers in the bottom right corner are the instantaneous speeds derived from the
recovered motion parameters.

To validate our results, we manually marked the subject’s feet every 10 frames
in the sequence of Fig. Bl and used their position with respect to the tiles on the
ground plane to estimate their 3D coordinates. We then treated the vector joining
the feet as an estimate of the body orientation and the midpoint as an estimated
of its location. As can be seen in Table[3] linking pose to motion produces a small
improvement in the position estimate and a much more substantial one in the
orientation estimate, which is consistent with what can be observed in Fig. Bl

In the sequence of Fig. [0 the subject is walking along a curvilinear path and
the camera follows him, so that the viewpoint undergoes large variations. We
are nevertheless able to recover pose and motion in a consistent way, as shown
in Fig. [[0 which represents the corresponding recovered trajectory.
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Table 3. Comparing the recovered pose angles against manually recovered ground
truth data for the sequence of Fig. B It provides the mean and standard deviation
of the absolute error in the X and Y coordinates, in centimeters, and the mean and
standard deviation of the recovered orientation, in degrees.

X Error Y Error Orientation Error
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Not Linking Pose to Motion 12.0 7.1 16.8 11.9 11.7 7.6
Linking Pose to Motion 11.8 7.3 14.9 9.3 6.2 4.9

Fig. 10. Recovered 2D trajectory of the subject of Fig.[0l As in Fig.Bl when orientation
and motion are not linked, he appears to walk sideway (a) but not when they are (b).

5 Conclusion

In this paper, we have used two very different applications to demonstrate that
jointly optimizing pose and direction of travel substantially improves the quality
of the 3D reconstructions that can be obtained from video sequences. We have
also shown that we can obtain accurate and realistic results using a single moving
camera.

This can be done very simply by imposing an explicit constraint that forces
the angular pose of the object or person being tracked to be consistent with their
direction of travel. This could be naturally extended to more complex interac-
tions between pose and motion. For example, when a person changes orientation,
the motion of his limbs is not independent of the turn radius. Similarly, the di-
rection of travel of a ball will be affected by its spin. Explicitly modeling these
subtle but important dependencies will therefore be a topic for future research.
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