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Abstract. In this work we present a method to synchronize video se-
quences of events that are acquired via uncalibrated cameras at unknown
and dynamically varying temporal offsets. Unlike existing methods that
synchronize videos of similar events (i.e., videos related to each other
through the motion in the scene) up to an integer alignment, we estab-
lish sub-frame video synchronization. While contemporary synchroniza-
tion algorithms implement a unidirectional alignment which biases the
results towards a single reference sequence, we adopt a bi-directional or
symmetrical alignment approach that results in a more optimal synchro-
nization. To this end, we propose a novel symmetric transfer error which
is dynamically minimized, and reduces the propagation of error from fea-
ture extraction and spatial mapping into temporal synchronization. The
advantages of our approach are validated by tests conducted on (publicly
available) real and synthetic sequences. We present qualitative and quan-
titative comparisons with another state-of-the-art algorithm. A unique
application of this work in generating high-resolution 4D MRI data from
multiple low-resolution MRI scans is described.

1 Introduction

Synchronization of video sequences plays a crucial role in applications such as
super-resolution imaging [1][2], 3D visualization [3], robust multi-view surveil-
lance [4] and mosaicking [5]. Most video synchronization algorithms deal with
video sequences of the same scene and hence assume that the temporal offset
between the video sequences does not change over time, i.e., a simple temporal
translation is assumed. Video synchronization, however, is not limited to align-
ing sequences of the same scene, and can be extended to find the spatio-temporal
alignment between related scenes, for applications such as video search, video
comparison and enhanced video generation. In such scenarios, the temporal offset
between the video sequences is dynamically changing, and cannot be estimated
by a translational offset. The closest related works in synchronization of video
sequences that are related by dynamically varying temporal offsets are limited
to integer frame alignment of video sequences [6][7].

Another drawback identified with contemporary works is the asymmetric or
unidirectional nature of the alignment, due to which error or uncertainty in
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feature extraction in the reference sequence propagates into the synchronization
result. Our contribution lies in formulating the synchronization problem as the
iterative minimization of a symmetric transfer error (STE), which allows us
to compute sub-frame accurate synchronization of video sequences that have
a dynamically varying temporal offset between them. In addition, the method
of minimizing STE allows us to reduce the occurrence of singularities1 in the
synchronization.

The rest of this paper is organized as follows. Section 2 outlines related work in
video synchronization, and justifies the necessity for this work. In Section 3, we
present the symmetric transfer error and an optimization strategy to minimize
it. In Section 4, we discuss our experimental setup and show comparative results
with a rank-constraint based approach. Application of our work in 4D MRI
visualization is presented in Section 5. Finally, summary and conclusions are
given in Section 6.

2 Review of Prior Research

Past literature in video synchronization and temporal registration can be broadly
classified into two categories — video sequences of the same scene or video
sequences of similar scenes; differing primarily on the assumptions made with
respect to the temporal offset between sequences. It can be seen from Table 1,
that our work addresses all three scenarios (view-invariance, dynamic time shifts
and sub-frame accuracy), while previous works have only addressed a subset of
these scenarios.

2.1 Video Synchronization of Same Scene

In synchronizing videos of the same scene, the temporal offset is considered to
be an affine transform [1], such as t′ = s.t + Δt, where s is the ratio of frame
rates and Δt is a fixed translational offset. Dai et al. [9] use 3D phase correlation
between video sequences, whereas Tuytelaars et al. [10] compute synchronization
by checking the rigidity of a set of five (or more) points. Tresadern et al. [11]
also follow a similar approach of computing a rank-constraint based rigidity
measure between four non-rigidly moving feature points. Lee et al. [4] derive
the spatial relationship between multiple surveillance cameras viewing the same
(or partially overlapping) scene by matching motion trajectories captured in the
video sequences to planar models. Caspi et al. [1] recover the spatial and temporal
relation between two sequences by minimizing the SSD error over extracted
trajectories that are visible in both of the sequences. Carceroni et al. [12] extend
[1] to align sequences based on scene points that need to be visible only in two
1 Singularities [8] occur when multiple frames in the target sequence map to the same

frame in the reference sequence. Such a situation can occur when the temporal speed
of an event in one sequence is significantly slower than another sequence. However,
in most cases this slowing down of the event should lead to a sub-frame mapping
and not singularities.
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Table 1. Review of related work. Legend: D.S.-Dynamic time shift, V.I.-View Invari-
ant, S.A.-Sub-frame Accuracy.

Author Scene D.S. V.I S.A. Author Scene D.S. V.I S.A.
Caspi et al. [2] [1] Same X

√ √
Tresadern et al. [11] Same X

√ √

Lei et al. [13] Same X
√

X Carceroni et al. [12] Same X
√ √

Wolf et al. [14] Same X
√

X Pooley et al. [15] Same X
√ √

Dai et al. [9] Same X
√ √

Tuytelaars et al. [10] Same X
√

X
Singh et al. [3] Same X X

√
Lee et al. [4] Same X

√
X

Perperidis et al. [16] Diff
√

X X Rao et al. [6] Diff
√ √

X
Proposed Diff

√ √ √
Giese et al. [17] Diff

√
X X

consecutive frames. Singh et al. [3] also build on [1] to develop parameterizable
event models of discrete trajectories and align the event models based on an
SSD measure for sub-frame synchronization. However, they do not address the
problem of view-invariance and dynamic temporal offsets.

2.2 Video Synchronization of Different Scenes

When aligning video sequences of different scenes, albeit sequences correlated via
motion, one has to factor in the dynamic temporal scale of activities in the video
sequences. Giese and Poggio [17] approach alignment of activities of different
people by computing a dynamic time warp between the feature trajectories.
They do not address the problem when the activity sequences are from varying
viewpoints and their approach is a one-to-one frame correspondence. Perperidis
et al. [16] attempt to locally warp cardiac MRI sequences, by extending Caspi’s
work [1] to incorporate spline based local alignment. Though their approach does
lead to good alignment of time-varying sequences, it has two main drawbacks: (i)
the computation space for spline based registration is quite large and the authors
need to compute points of inflexion in the cardiac volume change; and (ii) the
alignment is still a one-to-one frame correspondence and not sub-frame accurate.
Others, such as Rao et al. [6] use rank constraint as the distance measure in a
dynamic time warping algorithm to align multiple sequences; this is the first
work that can deal with video sequences of correlated activities, hence we will
present comparisons with their rank constraint based (RCB) algorithm.

3 Proposed Approach

In this work we assume that the frame rates of the cameras are identical and
fixed throughout the acquisition, the scene is planar and the backgrounds in
both the scenes have sufficient static points that can be extracted using view-
invariant feature detectors [18] to estimate the spatial relationship between the
two scenes. These assumptions are not restrictive since the synchronization algo-
rithm can be adapted to account for epipolar geometry of non-planar scenes and
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Fig. 1. Illustration of two distinct scenes acquired using two distinct cameras. The
projections (ghosts) of scenes onto the reciprocal cameras are also shown.

robust correspondence algorithms can be used for wide-baseline cameras [19].
Additionally, we assume that a single feature trajectory of interest is available
to us2 such that the beginning and end points of the activity are marked in the
trajectory, similar to the assumption made in [6].

Given that we have two cameras C1 and C2, as shown in Fig.1, that view two
independent scenes of similar activities; C1 views scene X1 and acquires video
I1, and C2 views scene X2 and acquires a video sequence I2. Features, F1 and
F2, are extracted and tracked in both the acquired video sequences. A single
feature trajectory is used to illustrate this in the figure. On their own these
feature trajectories are discrete representations of the event in the scene, and
we need to interpolate between these discrete representations. Most algorithms
use linear interpolation, however, we use the method proposed by Singh et al.
[3] to generate continuous models from discrete points. The continuous feature
trajectories are represented as F1 and F2. Note that we store these continuous
models as discrete matrices in computer memory, albeit the temporal resolution
of the continuous models is much higher than the discrete models. Hence, we
index into F using integer numbers.

The spatial relationship (homography H) between the two scenes is computed
by using the Direct Linear Transform (DLT) algorithm to initialize the non-linear
least squares (Levenberg-Marquardt) computation of the homography [20]. As
the feature trajectories are dynamically offset from each other (as illustrated
in Fig.1), we cannot directly optimize for both the homography and temporal
offset as proposed by Caspi et al. [1]. Instead, we project the trajectory from
Scene 1 to Scene 2, as if Camera C2 did view Scene 1 (and vice versa). Note that
the accuracy of this projection is subject to noise in the extracted trajectories
as well as error in the homography computation. We call these projections the
ghosts of the trajectories, represented as G.

2 In general videos, multiple object trajectories will be generated and an additional
task of the synchronization algorithm will be to find corresponding feature trajecto-
ries in the multiple video sequences. This is an open problem in vision research and
one that we will not address in this paper.
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G1 = H1→2 · F1

G2 = H2→1 · F2 (1)

The aim of the synchronization algorithm is to temporally align a trajectory
in Scene 1 with the ghost of the trajectory from Scene 2, and vice versa. Current
dynamic offset synchronization algorithms, e.g. [6] and [17], synchronize discrete
feature trajectories to a frame-by-frame correspondence by only computing a
unidirectional alignment. For example, they assume Trajectory 1 to be the refer-
ence, and warp Trajectory 2 towards it. This unidirectional alignment biases the
synchronization towards the reference sequence. Feature extraction and tracking
errors in the reference sequence now propagate unchecked into the synchroniza-
tion. We demonstrate that a more symmetric approach will not only mitigate
such an error propagation, but will also result in better sequence synchroniza-
tion. Next, we introduce our symmetric optimization approach.

3.1 Alignment as the Minimization of Symmetric Transfer Error

Feature trajectories and associated event models are computed independently
for each sequence; introducing a variability in the sequence alignment, such that
frame alignment from Sequence 1 to Sequence 2 is not identical to frame align-
ment from Sequence 2 to Sequence 1; i.e., if W1,2 is a mapping from F1 in
Sequence 1 to the ghost G2 of Sequence 2 and W2,1 is a mapping from F2 in
Sequence 2 to the ghost G1 of Sequence 1, then W1,2 �= W2,1. This asymmetry is
illustrated with a hypothetical example in Fig.2, where W1,2 and W2,1 are two
reciprocal alignments computed between the sequences. Asymmetry in mappings
for real video sequences is shown in Fig.9. If indexing function M(W1,2, i) in-
dexes the mapping W1,2 and returns the frame in Sequence 2 corresponding to
the ith frame in Sequence 1 (similarly M(W2,1, i) indexes mapping W2,1 and
returns the corresponding frame in this mapping), then the symmetric transfer
error (STE) for the ith frame (where i ∈ R) is defined as follows:

E(i) = |M(W1,2, i) − M(W2,1, i)| (2)

Let us illustrate (2) with an example. Suppose in Fig.2, for the ith frame
in Sequence 1, mapping W1,2 reports the corresponding frame in Sequence 2

Fig. 2. Computing symmetric transfer error for a single frame ‘i’ in Sequence 1
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to be the 7th frame, and mapping W2,1 reports the corresponding frame to be
the 10th frame. Then, STE for the ith frame is E(i) = 3. STE for the entire
sequence is then defined as the summation in (3), where N is the length of
F1 and G1 of Sequence 1 and M is the length of F2 and G2 of Sequence 2.
Intuitively, minimizing STE (3) for synchronization is akin to computing an
optimal compromise between the reciprocal mappings W1,2 and W2,1.

E =
∑

i=1..max(N,M)

|M(W1,2, i) − M(W2,1, i)| . (3)

The mapping functions W1,2 and W2,1 are computed using a regularized dy-
namic time warping (DTW) approach. The implementation of DTW via dynamic
programming, factors in boundary conditions, continuity and monotonicity of the
mapping function. An important distinction to be made here is that the STE is
not the same as a symmetric implementation of DTW (details on this distinction
are provided online at [21]). While (4)-(7) detail how W1,2 is computed; the same
apply to W2,1 with suitable substitutions made for F2 and G1. We build a cost
matrix D(n, m) ∀n ∈ [1..N ] and ∀m ∈ [1..M ], where N is the length of event
model F1 for Sequence 1 and M is the length of event model F2 for Sequence 2,
as follows:

D(n, m) = ‖(F1(n) − G2(m))‖2 + w(‖∂F1(n) − ∂G2(m)‖2) , (4)

∂F(k) =
F(k) − F(k − 1) + [F(k + 1) − F(k − 1)]/2

2
. (5)

In (4), w is the weight assigned to the regularization function. The motivation
behind regularization of the cost function is two fold: (i) it allows us to factor in
a smoothness constraint on the warping and (ii) it also reduces the occurrence of
singularities in the mapping. The mapping function W , is computed by traversing
the path of minimum cost in the cost matrix D (illustrated in Fig.3(a)), with n
and m initialized to N and M respectively, as follows:

W1,2(n, m) = D(n, m) + min(φ) , (6)

φ = [W1,2(n − 1, m), W1,2(n − 1, m − 1), W1,2(n, m − 1)] . (7)

In (7) we consider a neighborhood of three frames (similar to [6]), however,
this neighborhood can be extended. It can be seen from (3)-(6) that STE is
dependent on the regularization weight w, and minimization of the STE with
respect to w (8) optimizes the sequence synchronization. An example of STE
values computed for varying values of w for two synthetic trajectories are shown
in Fig.3(b).

Wopt = arg min
w

∑

i=1..max(N,M)

|M(W1,2, i) − M(W2,1, i)| (8)
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(a) (b)

Fig. 3. (a) Illustration of computing the mapping function W from the cost matrix
D. (b) Plot of STE E(w) versus regularization weight w for two synthetic sequences of
length 100 and 140 frames. min(E) is also indicated.

Equation (8) enforces the minimization of the difference between the two
mappings W1,2 and W2,1 in Fig.2. The advantage of optimizing a symmetric
measure, as opposed to an asymmetric measure, is validated experimentally on
real video sequences. The pseudocode of the proposed algorithm is given in
Table 2. For our experiments the variables in the pseudocode min w, max w,
and iter step, were empirically determined and set to 0, 300 and 25 respectively.

4 Experiments and Comparative Analysis

We tested our method on both synthetic and real image sequences. We also
implemented the rank-constraint based (RCB) algorithm as described in [6] that
deals with aligning videos of similar events. While the RCB method cannot
compute sequence alignment to sub-frame accuracy, we still compare our method
with it for integer alignment. Our test cases and results are presented next. All
experiments were run on a 3.2GHz Intel Pentium IV processor with 1GB RAM
using MATLAB 7.04. Excluding the preprocessing time, the STE algorithm took
1.79 seconds to run through all iterations, to compute the optimal alignment
between two synthetic sequences of length 100 and 140. The processing time for
real sequences of length 84 and 174 was 1.93 seconds.

4.1 Synthetic Sequences

In synthetic tests, we generate planar trajectories, 100 frames long, using a
pseudo-random number generator (modified version of Marsaglia’s subtract with
borrow algorithm). These trajectories are then projected onto two image planes
using user defined camera projection matrices. The camera matrices are designed
so that the acquisition emulates a homography, and are used only for generation
purpose and not thereafter. A time warp is then applied to a section of one of
the trajectory projections, such that its length now becomes 140 frames. Both
the RCB and the STE methods are then applied to the synthetic trajectories to
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Table 2. Pseudocode of the proposed algorithm

Pre-preprocessing
Extract feature trajectories F1 and F2

Compute Event models F1 and F2

Compute Homography H
Project Event models to derive ghosts G1 and G2

Set max w, min w, iter step
Iterate to minimize STE
For w=min w : iter step : max w
Compute regularized warp W1,2

1. Compute cost metric D(n, m) = ‖(F1(n) − G2(m))‖2 + w(‖∂F1(n) − ∂G2(m)‖2)
2. Compute mapping as the path of minimum cost W1,2(n, m) = D(n, m) + min(φ)
φ = [W1,2(n − 1, m), W1,2(n − 1, m − 1), W1,2(n, m − 1)]

Compute regularized warp W2,1

Follow step 1-2 above for F2, G1

Compute Symmetric Transfer Error E =
�

i=1..max(N,M)

|M(W1,2, i) − M(W2,1, i)|

M is a simple indexing function.
End
Find min E(w)
Report Wopt corresponding to min E(w)

compute the alignment between them. This process is repeated on 100 synthetic
trajectories. Fig. 4 shows some synchronization results with synthetic trajecto-
ries. Additional synchronization results are available online at [21], where it can
be seen that for simple trajectories, the STE and RCB methods result in compa-
rable synchronization, close to the correct alignment. However, as the complexity
of the synthetic trajectory begins to increase, the RCB method starts producing
erroneous alignments while the STE method continues to compute synchroniza-
tion that closely matches the actual synchronization. On average, the STE algo-
rithm made 34% less errors in computing the synchronization when compared
to the RCB method. To test for sub-frame alignment, we divided the projected
trajectories into two parts, such that F1 contains every even trajectory point and
F2 contains every odd trajectory point. The computed synchronization between
these two trajectories by the STE method accurately placed frames in Sequence
F2 at 0.5 frame intervals from F1.

Table 3. Synchronization Errors for RCB and STE methods for noisy trajectories

Noise σ2 STE RCB
0.0001 281 384
0.001 326 470
0.01 400 755
0.1 623 1199
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(a) (b)

Fig. 4. (a)-(b) Results of synchronization of synthetic trajectories using proposed ap-
proach and RCB approach

We also tested the effect of noisy trajectories on our synchronization approach.
Normally distributed and zero mean noise with various values of variance (σ2)
was added to the synthetic feature trajectories. The results of synchronization of
noisy trajectories with both the RCB and STE approach are shown in Table 3,
where the sum of absolute differences between the actual and computed frame
correspondence is reported as the synchronization error. The STE approach is
affected slightly by the addition of noise, however, the performance of the RCB
method degrades dramatically. Some representative alignment results are shown
in Fig.5.
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Fig. 5. Performance of the STE and RCB methods for noisy trajectories with noise
variance (a) 0.1 and (b) 0.01

4.2 Real Sequences

We used video sequences provided by Rao et al. at http://server.cs.ucf.edu/
vision/ and also acquired our own video sequences of activities similar to their
data. Feature trajectories were available for the UCF video files. For our test
video sequences, we provided an input template image of a coffee cup that was
tracked in the video sequences to generate feature trajectories. Both the proposed
and RCB synchronization methods were then applied to the real video data. In

 http://server.cs.ucf.edu/
vision/
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Fig. 6. Warping computed between Sequence 1 and Sequence 2 of realOUR.avi test
files. Point(1)-(3) are singularities marked on the warp.

the real data tests, ground truth information is not available. However, a tenta-
tive ground truth alignment is computed by visual judgement. The test videos
and results are available online at [21] as files *realUCF.avi, *realOUR.avi.

Figure 7 shows the synchronization computed using the RCB algorithm –
frames (a)-(d) of Sequence 1 are matched to frames (e)-(h) of Sequence 2. It can
be seen from the position of the hand holding the cup in Fig.7 that the computed
synchronization is clearly off by a few frames. Fig. 8 shows the synchronization
computed by the STE algorithm, and the alignment is a close temporal match.
The warping path computed between the two sequences by both the methods is
shown in Fig.6. Points (1)-(3) marked on Fig.6 highlight the regions in the warp
where multiple frames in Sequence 1 were warped to a single frame in Sequence 2
and vice versa —i.e., singularities. It can be seen from these highlighted regions
that the proposed method reduces the number and length of singularities.

Fig. 7. Results of synchronization using a rank-constraint based RCB method. (a)-(d)
Frames from Sequence 1, (e)-(h) Corresponding synchronized frames from Sequence 2.
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Fig. 8. Results of synchronization using proposed method. (a)-(d) Frames from Se-
quence 1, (e)-(h) Corresponding synchronized frames from Sequence 2.

Fig. 9. Symmetric vs. Asymmetric Synchronization of realUCF video files

4.3 Symmetric vs. Asymmetric Synchronization

In the previous section we compared our STE based synchronization against the
asymmetric synchronization proposed in [6]. The advantages of our approach
in terms of sub-frame synchronization capability and reduction in singularities
has been highlighted in the previously mentioned experiments. However, our ap-
proach and the RCB approach differ not only in the symmetry aspect, but also in
the dynamic aspect of the cost function (4). In order to highlight the advantage
of the dynamic optimization of the STE, we validate it against unidirectional
asymmetric synchronization using a fixed warping cost function. The mappings
computed using both the symmetric and asymmetric approach for realUCF.avi
test video are shown in Fig.9. The synchronized output video files using both
these approaches are available online at [21] as SymVsAsym realUCF.avi. From
the video files, the higher accuracy of a symmetric optimization over an asym-
metric measure can be clearly seen.
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5 Application – 4D MRI Registration

One of the motivations behind this work is to build a 4D (volume+time) repre-
sentation of functional events in the body using 2D planar acquisitions, specif-
ically swallowing disorders. In our experiments, a subject lies prone inside an
MRI scanner and is fed small measured quantities of water (bolus) via a system
of tubing (water is displayed as white in the MRI images because of the high
Hydrogen content in it). For each swallow, a time series of 2D images is acquired
on a fixed plane. The acquisition plane is then changed and another series of 2D
images is acquired. We acquire three such video sequences corresponding to left,
right and center MRI slice planes. The MRI video sequences are subjected to
dynamic temporal offsets in the motion of the bolus. Also, since the acquisitions
are at very low frame rates, limited by the technology to 4-7 fps, it is crucial to
align the sequences to sub-frame accuracy. An important note, with regards to
the repeatability of the swallowing motion, is that there are three stages in swal-
lowing; the second and third stages are involuntary and anatomical movements
are replicable, the first stage, when the tongue begins to push the bolus back
into the pharynx is the only voluntary stage where variation in deformation is
likely to take place. However, variability in the first stage can be satisfactorily
controlled by limiting the volume of the bolus delivered to the subject (we limit
it to 10cc) and by restricting the position of the subject (in our case - supine
position with no head rotation). Our approach shows promising results in align-
ing the MRI sequences to generate a 4D representation. Implementation details
of this application are discussed next.

The trailing and leading edges of the bolus are extracted from the MRI se-
quences using standard background separation techniques. The center of the
trailing bolus is extracted using horizontal and vertical profiles, and is used to
generate feature trajectories in the three sequences. After suitable event models
have been computed for the trajectories, both the RCB and the STE algorithms
are applied to the video sequences to compute synchronization. The results of
synchronization with the STE and RCB algorithms are shown in Fig.10(a)-(b)
and Fig.10(c) respectively. Fig.10(b) shows a few frames from the synchroniza-
tion computed between the center and right MRI slices that demonstrate sub-
frame alignment. Frame 7 of the right MRI sequence is mapped to frame 6.5 of
the center MRI sequence. Visually it can be seen that this sub-frame alignment
is quite accurate and the results are much better than those produced with the
RCB algorithm shown in Fig.10(c). Video sequences comparing the results of
both the algorithms are available online at [21] as files MRI sync*.avi. Once the
synchronization has been computed, 4D visualization of the MRI data is carried
out with a 4D model which can be viewed online at [21]. We have also imple-
mented an approach for registering multiple MRI video contours with 3D facial
structure for an integrated 4D structure-multiple video visualization. A video of
the implementation is also available online. Details on this part of the work will
not be discussed here because of space limitations.
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(a) (b) (c)

Fig. 10. (a)-(b) Synchronization computed between Center-Left and Center-Right MRI
sequences respectively by proposed algorithm, (c) Synchronization computed between
Center-Left MRI sequences by RCB algorithm

6 Summary and Conclusions

We proposed and successfully tested a novel method to synchronize video se-
quences that are related by varying temporal offsets. Our formulation of syn-
chronization as the minimization of a symmetric transfer error (STE) resulted
in synchronization that was not biased by the choice of the reference sequence.
The regularized nature of the STE significantly reduced the occurrence of sin-
gularities and resulted in sub-frame synchronization. Comparative analysis with
a rank-constraint based method demonstrated a marked improvement in video
synchronization with our method. An application of the proposed method in 4D
MRI visualization was also presented. In the future, we would like to incorporate
multiple feature trajectories and extend this work to more general scenes that
are not restricted by a homography relationship.
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