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Abstract. As richer models for stereo vision are constructed, there is
a growing interest in learning model parameters. To estimate parame-
ters in Markov Random Field (MRF) based stereo formulations, one
usually needs to perform approximate probabilistic inference. Message
passing algorithms based on variational methods and belief propagation
are widely used for approximate inference in MRFs. Conditional Ran-
dom Fields (CRFSs) are discriminative versions of traditional MRFs and
have recently been applied to the problem of stereo vision. However,
CRF parameter training typically requires expensive inference steps for
each iteration of optimization. Inference is particularly slow when there
are many discrete disparity levels, due to high state space cardinality.
We present a novel CRF for stereo matching with an explicit occlusion
model and propose sparse message passing to dramatically accelerate the
approximate inference needed for parameter optimization. We show that
sparse variational message passing iteratively minimizes the KL diver-
gence between the approximation and model distributions by optimizing
a lower bound on the partition function. Our experimental results show
reductions in inference time of one order of magnitude with no loss in ap-
proximation quality. Learning using sparse variational message passing
improves results over prior work using graph cuts.

1 Introduction

There has been growing interest in creating richer models for stereo vision in
which more parameters are introduced to create more accurate models. In par-
ticular, recent activity has focused on explicitly accounting for occlusions in
stereo vision models. For example, Kolmogorov and Zabih [I] have directly in-
corporated occlusion models in an energy function and graph cuts minimiza-
tion framework. Sun et al. [2] explored a symmetric stereo matching approach
whereby they: (1) infer the disparity map in one view considering the occlusion
map of the other view and (2) infer the occlusion map in one view given the
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disparity map of the other view. More recently, Yang et al. [3] have achieved
impressive results building on the dual image set-up and using color weighted
correlations for patch matching. They found that this approach made match
scores less sensitive to occlusion boundaries as occlusions often cause color dis-
continuities. As all of these methods involve creating richer models to obtain
greater disparity accuracy, there is a growing need to learn or estimate model
parameters in an efficient and principled way.

In contrast to previous work [I][3], we are interested in developing a completely
probabilistic formulation for stereo with occlusions modeled as additional states
of random variables in a conditional random field (CRF). As noted by Yang
et al. [3], more studies are needed to understand the behavior of algorithms
for optimizing parameters in stereo models. For example, they note that their
approach might be re-formulated in an expectation maximization framework.
One goal of this paper is to address these types of questions in a general way.
As we will show, when traditional stereo techniques are augmented with an
occlusion model and cast in a CRF framework, learning can be achieved via
maximum (conditional) likelihood estimation. However, learning becomes more
challenging as the stereo images and probabilistic models become more realistic.

Belief propagation (BP) [4] and variational methods [5] are widely used tech-
niques for inference in probabilistic graphical models. Both techniques have been
used for inference and learning in models with applications ranging from text
processing to computer vision [6lf7]. Winn and Bishop proposed Variational Mes-
sage Passing (VMP) [8] as a way to view many variational inference techniques,
and it represents a general purpose algorithm for approximate inference. The ap-
proach is similar in nature to BP in that messages propagate local information
throughout a graph, and the message computation is similar. However, VMP op-
timizes a lower bound on the log probability of observed variables in a generative
model.

Experimental and theoretical analysis of variational methods has shown that
while the asymptotic performance of other methods such as sampling [9] can
be superior, frequently variational methods are faster for approximate inference.
However, many real world problems require models with variables having very
large state spaces. Under these conditions, inference with variational methods
becomes very slow, diminishing any gains. We address this by proposing sparse
variational methods. These methods also provide theoretical guarantees that the
Kullback-Leibler (KL) divergence between approximate distributions and true
distributions are iteratively minimized. Previous work by Pal et al. [I0] explored
sparse methods for approximate inference using BP in chain-structured graphs.
Unlike varational inference, in loopy models BP does not have a direct connection
to the probability of data under a model. The method we propose here combines
the theoretical benefits of variational methods with the time-saving advantages
of sparse messages.

In this work, we use a lattice-structured CRF for stereo vision. This leads
to energy functions with a traditional form—single variable terms and pairwise
terms. Importantly, unlike purely energy-based formulations [I], since we cast
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the stereo problem as a probability distribution, we are able to view approximate
inference and learning in the model from the perspective of variational analysis.
While we focus upon approximate inference and learning in lattice-structured
conditional random fields [IT] applied to stereo vision, our theoretical results
and some experimental insights are applicable to CRFs, MRFs and Bayesian
Networks with arbitrary structures.

Many techniques have been used for parameter learning in CRFs used for
image labeling, such as pseudo-likelihood [12], tree-based reparameterization
(TRP) [13], and contrastive divergence [14]. Pseudo-likelihood is known to give
poor estimates of interaction parameters, especially in conditional models. TRP
is a variant of BP and has the same potential drawbacks. Contrastive divergence
uses MCMC but does not require convergence to equilibrium for approximating
the model likelihood gradients used for learning. However, models for image la-
beling usually only have a few states, whereas the state space in stereo models is
much larger, for the many possible disparities. Thus, we believe that the sparse
learning techniques we propose here will be an important contribution, providing
the additional theoretical guarantees of variational methods.

Previous efforts at learning parameters for stereo models have used graph cuts
to provide point estimates [I5]. While recent work has shown that sequential tree-
reweighted max-product message passing (TRW-S) has the ability to produce
even better minimum energy solutions than graph cuts [16], max-product TRW-
S also produces point estimates as opposed to approximate marginals.

The remainder of the paper is structured as follows. In section 2] we present a
canonical conditional random field for the stereo vision problem. The canonical
model is then augmented to explicitly account for occlusions. Next, we show
how approximate inference is used for learning and to infer depth in an image.
Section [Blshows how sparse variational message passing minimizes the KL diver-
gence between a variational approximation and a distribution of interest. Results
comparing sparse BP and VMP with graph cuts are given in section in section
[l Using variational distributions for learning improves results over the point
estimate given by graph cuts, and sparse message passing can lead to an order
of magnitude reduction in inference time. Furthermore, we show how learning
parameters with our technique allows us to improve the quality of occlusion
predictions in more richly structured CRFs.

2 Stereo Vision and CRFs

The stereo vision problem is to estimate the disparity (horizontal displacement)
at each pixel given a rectified pair of images. It is common in MRF-based stereo
vision methods to work with energy functions of the form

F(zy)=> Ulziy) + > V(zi,2;,y) (1)
i inj
where U is a data term that measures the compatibility between a disparity z;

and observed intensities y, and V' is a smoothness term between disparities at
neighboring locations i ~ j [17].
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We construct a formal CRF probability model for stereo by normalizing the
exponentiated F' over all values for X,

P(X|y) = exp(—F(X,y)) with Z(y)=)> exp(-F(z,y)). (2)

1
Z(y)
The normalizer Z (y) is typically referred to as the partition function.

2.1 A Canonical Stereo Model

The CRF of @) is a general form. Here we present the specific CRF used for
our experiments on stereo disparity estimation in section [ following the model
proposed by Scharstein and Pal [I5]. The data term U simply measures the
absolute intensity difference between corresponding pixels, summed over all color
bands. We use the measure of Birchfield and Tomasi [I8] for invariance to image
sampling. The smoothness term V is a gradient-modulated Potts model [I7/I5]
with K = 3 parameters:

o 0 if T, =Ty
V(x“aj]’y)_{ek lf.l‘l?é.l‘] and Gij € B (3)
Here g;; is the color gradient between neighboring pixels ¢ and j, and the
By, are three consecutive gradient bins with interval breakpoints from the set
{0,4,8,00}. Let ©, denote all the parameters.

2.2 Occlusion Modeling

To account for occlusion, we create a model with an explicit occlusion state for
the random variable associated with each pixel in the image. In our extended
model z; € {0,..., N —1} V “occluded”. The local data term U in our extended
model has the form:

‘ e (z;) if z; # “occluded”
Ulziy) = {90 if x; = “occluded”, (4)
where ¢; (x;) is the Birchfield and Tomasi cost for disparity x; at pixel ¢, as before.
The new parameter 6, is a local bias for predicting the pixel to be occluded.

We may also extend the gradient modulated smoothness terms to treat oc-
cluded states with a separate set of parameters such that:

0 if z; = x; and z; # “occluded”

9k if ZT; 7’5 Tj, Gij S Bk and both T, Tj 7’5 “occluded”
00,0 if ©; = x; and x; = “occluded”

Ooi if ¢3 # x5, gij € By, and x; or x; = “occluded”.

V(xi’xjvy) = (5)
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2.3 Parameter Learning

Since the function F (x,vy) is parameterized by © = (6,,6,), these parameters
may be learned in a maximum-likelihood framework with labeled training pairs.
The objective function and gradient for one training pair (x,y) is

O(O) =logP (x| y;0) (6)
= —F(x,y;0) —log Z (y) (7)
VO (0) = -VF (z,4;0) + (VF (z,4:0)) p x|y.0) - (8)

The particular factorization of F (x,y) in () allows the expectation in (&) to be
decomposed into a sum of expectations over gradients of each term U (z;,y) and
V (2, xj, y) using the corresponding marginals P(X; | y; ©) and P(X;, X; | y; 6),
respectively.

In previous work [I5], graph cuts was used to find the most likely configu-
ration of X. This was taken as a point estimate of P (X | y;6,) and used to
approximate the gradient. Such an approach is potentially problematic for learn-
ing when the marginals are multi-modal or diffuse and unlike a delta function.
Fortunately, a variational distribution @ (X') can provide more flexible approxi-
mate marginals that may be used to approximate the gradient. We show in our
experiments that using these marginals for learning is better than using a point
estimate in situations when there is greater uncertainty in the model.

3 CRFs and Sparse Mean Field

In this section we derive the equations for sparse mean field inference using a
variational message passing (VMP) perspective [8]. We show that sparse VMP
will iteratively minimize the KL divergence between an approximation ) and
the distribution P. Furthermore, we present sparse VMP in the context of CRF's
and show that the functional we optimize is an upper bound on the negative log
conditional partition function.

3.1 Mean Field

Here we briefly review the standard mean field approximation for a conditional
distribution like (2)). Let X; be a discrete random variable taking on values
x; from a finite alphabet X = {0,..., N — 1}. The concatenation of all random
variables X takes on values denoted by x, and the conditioning observation is y.
Variational techniques, such as mean field, minimize the KL divergence between
an approximate distribution @ (X) and the true distribution P (X | y). For the
conditional distribution (2)), the divergence is

KLQUO) | P (X 9) = Y Qtales ;07
_ Q@) 7 (y)
=2 Q@08 1 F(ay)
= (F (.9, ~ H (Q(X)) +logZ (y). (9)
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The energy of a configuration @ is F (x,y). We define a “free energy” of the
variational distribution to be

L(Q(X)) = (F(z,y))gx) — H(Q(X)). (10)

Thus, the free energy is the expected energy under the variational distribution
Q@ (X)), minus the entropy of ). The divergence then becomes

KL(Q(X) | P(X |y)) = L(Q (X)) +1og Z (y).- (11)
Since the KL divergence is always greater than or equal to zero, it holds that
L£(Q(X)) = —logZ(y), (12)

and the KL divergence is minimized at zero when the free energy equals the
negative log partition function. Since log Z(y) is constant for a given observation,
minimizing the free energy serves to minimize the KL divergence.

Mean field updates will minimize KL (Q (X) || P (X | y)) for a factored distri-
bution @ (X) =[], @ (X;). Using this factored @, we can express our objective as

LX) =3 JJe@)F@y+3 > Q@)logQ @) (13)

= ZQ () (F (mvy»Hi:i#jQ(Xi) - H(Q(Xj)) — Z H(Q(X;)),
x irit]

where we have factored out the approximating distribution @ (X)) for one vari-
able, X;. We form a new functional by adding Lagrange multipliers to constrain
the distribution to sum to unity. This yields an equation for iteratively calculat-
ing an updated approximating distribution Q* (z;) using the energy F' and the
distributions @ (X;) for other i:

@ (@)= 5 o (- (F @, o) (14

where Z; is a normalization constant computed for each update so that Q* (z;)
sums to one. See Weinman et al. [I9] for the complete derivation of ([I4). Itera-
tively updating @ (X;) in this manner for each variable X; will monotonically
decrease the free energy £ (Q (X)), thus minimizing the KL divergence.

3.2 Sparse Updates

Variational marginals can be more valuable than graph cuts-based point estimates
for accurate learning or other predictions. However, when the state space of the
X is large, calculating the expectations within the mean field update (I4)) can
be computationally burdensome. Here we show how to dramatically reduce the
computational load of calculating updates when many states have a very low (ap-
proximate) probability. The sparse methods presented here represent a middle way
between a fully-Bayesian approach and a simple point estimate. While the former
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KL(Q'(X )] 0'(X))

I

: KL(Q'(X,) ]| 0" (X,)) -
KL(O(X) | P) S

KL(Q'(X)|| P) const
........................ > KL(Q"(X) || P)

Fig. 1. Minimizing the global KL divergence via two different sparse local updates.
The global divergence KL(Q(X) || P) can be decomposed into a local update plus a
constant: KL(Q ( i) || @ (X;))4+ const. Consequently, at each step of sparse variational
message passing we may minimize different local divergences to within some € and when
updating different local s, we minimize the global KL divergence.

considers all possibilities with their corresponding (often small) probabilities, the
latter only considers the most likely possibility. Sparse updates provide a principled
method for retaining an arbitrary level of uncertainty in the approximation.

The idea behind the sparse variational update is to eliminate certain values
of ; from consideration by making their corresponding variational probabilities
Q (x;) equal to zero. Such zeros make calculating the expected energy for sub-
sequent updates substantially easier, since only a few states must be included in
the expectation. The eliminated states are those with low probabilities to begin
with. Next we show how to bound the KL divergence between the original and
sparse versions of @ (Xj).

Given (), (I4), and (M) we can express KL (Q (X) || P(X | y)) as a func-
tion of a sparse update Q' (X;), the original mean field update Q* (X;) and the
other @ (X;), where 7 # j:

KL(Q(X) | P(X | y)) = KL(Q" (X )IIQ*( i)

+log Z; +log Z (y Z H(Q . (15)
1]

Since the last three terms of (3] are constant with respect to our update Q' (X;),
KL(Q(X) | P(X | y)) is minimized when Q (X;) = Q* (X;). At each step of
sparse variational message passing, we will minimize KL(Q ( i) Q*(X,)) to
within some small e. As a result, each update to a different @ (X ;) yields further
minimization of the global KL divergence. These relationships are illustrated in
Figure [l

If each Xj is restricted to a subset of values z; € &; C X, we may define
sparse updates Q (X ;) in terms of the original update Q* (X;) and the charac-
eristic/indicator function 1y, (x;) for the restricted range:

]—Xj (1'])

Q' (x;) =, Q (@), (16)
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where the new normalization constant is

Zp=>"Q ()= Y Q" (). (17)

T EXj
Thus, the divergence between a sparse update and the original is

KL (Q"(X;) | @ (X;)) (18)

d 12(]-2(;5;‘)@* (z)log ( <1XjZ<J,_mj)Q* (%‘))/Q* (“”J’)>

1 *
:—logZJ’-Z{ Z Q" (x;)

T wex;

= —logZ]/». (19)

As a consequence, it is straightforward and efficient to compute a maximally
sparse Q' (X;) such that KL (Q' (X;) || Q* (X;)) < e by sorting the Q* (z;)
values and performing a sub-linear search to satisfy the inequality. For example,
if we wish to preserve 99% of the probability mass in the sparse approximation
we may set € = —1og0.99 ~ .01. Figure [ illustrates the way in which sparse
VMP iteratively minimizes the KL (Q (X) | P (X | y)) after each iteration of
message passing. In section F] we show how using sparse messages can yield a
dramatic increase in inference speed.

4 Experiments

In this section we present the results of two sets of experiments. The first com-
pares sparse and traditional mean field methods for approximate inference, show-
ing how sparse message passing can greatly accelerate free energy minimization.
The second compares the performance of models learned using approximate mar-
ginals from both sparse mean field and a point estimate of the posterior marginals
from graph cuts.

As training and test data we use 6 stereo pair images with ground-truth dis-
parities from the 2005 scenes of the Middlebury stereo databasd]. These images
are roughly 450 x 370 pixels and have discretized disparities with N = 80 states.
Thus, when there are more than 600,000 messages of length N to send in any
round of mean field updates for one image, shortening these to only a few states
for most messages can dramatically reduce computation time.

4.1 Inference

The variational distribution @ (X) provides approximate marginals @ (X;) that
may be used for computing an approximate likelihood and gradient for training.
These marginals are also used to calculate the mean field updates during free

! http://vision.middlebury.edu/stereo/data
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energy minimization. If these marginals have many states with very low proba-
bility, discarding them will have minimal effect on the update. First, we examine
the need for sparse updates by evaluating the amount of uncertainty in these
marginals. Then, we show how much time is saved by using sparse updates.

o Initial 8, Start . Initial 8, Converged . Learned 6, Start o Learned 6, Converged
10 10 10 10
L 5
210° 2107 210% 210
- X . X -
[ — o — o a 4q
£10° — £ 10 — c10°l € _
E} S S — P
z — z — z | — Z 10 .
210 - 210 - 210 — 2 —
3 3 3 — S0 —
107 10 107 —
0 2 4 6 0 2 4 6 0 2 4 0 2 4 6
Entropy Entropy Entropy Entropy

Fig. 2. Histograms of approximate marginal entropies H (Q (X;)) from the variational
distributions for each pixel at the start (after the first round) of mean field updates
and at their convergence; values using the initial and learned parameters @, of the
canonical model are shown

Our first set of experiments uses the simpler canonical stereo model having the
smoothness term V' of [@). Figure 2 shows histograms of the marginal entropies
H (Q(X;)) during free energy minimization with two sets of parameters, the
initial parameters, ©, = 1, and the learned ©,,. We initialize the variational dis-
tributions @ (X;) to uniform and perform one round of VMP updates. Although
most pixels have very low entropy, the initial model still has several variables
with 2-4 “nats” (about 3-6 bits) of uncertainty. Once the model parameters are
learned, the marginal entropies after one round of mean field updates are much
lower. By the time the mean field updates converge and free energy is mini-
mized, only a small percentage (less than three percent) have more than a half
nat (less than two bits) of uncertainty. However, if point estimates are used, the
uncertainty in these marginals will not be well represented. Sparse messages will
allow those variables with low entropy to use few states, even a point estimate,
while the handful of pixels with larger entropy may use more states.
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Fig. 3. Comparison of CPU time for free energy minimization with sparse and dense
mean field updates using parameters ©, learned in the canonical model with three
images (Art, Books, Dolls)
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Fig. 4. CPU time versus energy for graph cuts, sum-product belief propagation, and
mean field using parameters @, learned with three images (Art, Books, Dolls). Mazi-
mum posterior marginal (MPM) prediction is used with the approximate marginal at
each iteration.

The variational distribution has many states carrying low probability, even
at the outset of training. We may greatly accelerate the update calculations by
dropping these states according using ([[J]) and our criterion. Figure Blshows the
free energy after each round of updates for both sparse and dense mean field. In
all cases, sparse mean field has nearly reached the free energy minimum before
one round of dense mean field updates is done. Importantly, the minimum free
energy found with sparse updates is roughly the same as its dense counterpart.

As a comparison, we show in Figure [ the true energy F (x,y) on several
images during each iteration of several methods. It is important to note that
only graph cuts explicitly minimizes this energy, but it is demonstrative of the
relative speed and behavior of the methods.

4.2 Learning

As Figure @ shows, graph cuts does a very good job of finding a minimum
energy configuration. This is useful for making a prediction in a good model.
However, maximizing the log likelihood (@) for learning requires marginals on
the lattice. When the model is initialized, these marginals have higher entropy
(Figure [) representing the uncertainty in the model. At this stage of learning,
the point estimate resulting from an energy minimization may not be a good
approximation to the posterior marginals. In fact, using the graph cuts solution
as a point estimate distribution having zero entropy, sparse mean field finds a
lower free energy at the initial parameters @, = 1.

We compare the results of learning using two methods for calculating the
gradient: sparse mean field and graph cuts. As demonstrated earlier, the model
has the highest uncertainty at the beginning of learning. It is at this point when
sparse mean field has the greatest potential for improvement over graph cuts.

For learning, we use a small initial step size and a simple gradient descent
algorithm with an adaptive rate. For prediction evaluation, we use graph cuts
to find the most probable labeling, regardless of training method. We use leave-
one-out cross validation on the six images.
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b

Fig. 5. Test images comparing prediction (using graph cuts) after one round of learning
the canonical model with graph cuts (top) or sparse mean field (bottom). Occluded
areas are black. Images (I-r): Laundry, Moebius, Reindeer.

After just one iteration, the training and test error with sparse mean field is
markedly lower than that of the model trained with graph cuts for inference.
Figure Bl shows the corresponding depth images after one iteration.

In Table[d we compare the results of training using point estimates provided
by graph cuts, as in previous work [I5], and sparse mean field, the method pro-
posed in this paper. We do not present results based on BP or dense mean field

Table 1. Comparison of learning with graph cuts and sparse mean field. The disparity
error (percentage of incorrectly predicted pixels) given for the canonical stereo model
and the gradient-modulated occlusion model (with Egs. (@) and (Bl)). For the gradient-
modulated occlusion model we show the occlusion prediction error (percentage).

Metric Method Art Books Dolls Laundry Moebius Reindeer Average

Canonical Model - leave-one-out training & testing
Disparity Graph Cuts 20.83 23.64 10.69 30.04 15.80 14.13 19.17
Error  Sparse Mean Field 17.70 23.08 10.67 29.16 15.43 13.37 18.22

Gradient-Modulated Occlusion Model - leave-one-out training & testing
Disparity Graph Cuts 21.82 24.10 11.94 27.54 11.08 16.74 19.30
Error  Sparse Mean Field 21.05 23.14 11.62 27.37 11.45 16.44 18.93
Occlusion Graph Cuts 34.50 28.27 32.99 36.89 40.65 50.83 37.36
Error  Sparse Mean Field 31.19 27.84 31.51 35.37 38.68 48.39 35.50

Gradient-Modulated Occlusion Model - trained on all (for comparison)
Disparity Graph Cuts 10.61 19.2 5.98 20.95 7.15 5.53 12.78
Error Sparse Mean Field 8.29 13.41 4.72 19.22 5.11 4.76 10.15
Occlusion Graph Cuts 16.20 10.40 24.88 29.77  27.88 3297  21.83
Error Sparse Mean Field 10.47 8.10 19.43 23.04 21.10 27.31 16.43
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Fig. 6. Disparity error (each image held out in turn) using both graph cuts and mean
field for learing the canonical CRF stereo model. The error before learning is omitted
from the plots to better highlight performance differences.
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Fig. 7. Comparison of error predicting occluded pixel using graph cuts and sparse
mean field for learning in the gradient-modulated occlusion model (B

as training times are prohibitively long. For each experiment we leave out the
image indicated and train on all the others listed. The disparity error is reduced
by an average of 4.70 + 2.17%, and a paired sign test reveals the improvement
is significant (p < 0.05).

We also test the error of our models’ for occlusion predictions. We use the
extended smoothness term (B) to handle the interactions between occluded states



Efficiently Learning Random Fields for Stereo Vision 629

and the local terms of (@l). We show both leave-one-out training and test results
as well as the result of training on all the data (as a reference point). Models
trained using sparse mean field give more accurate occlusion predictions than
the model trained using graph cuts. In the gradient-modulated occlusion model
our leave-one-out experiments show that the error in predicting occluded pixels
is reduced an average of 4.94 + 1.10% and is also significant (p < 0.05).
Figure[0 shows that sparse mean field reduces the disparity error in the model
more quickly than graph cuts during learning on many images. Even when the
two methods approach each other as learning progresses, sparse mean field still
converges at parameters providing lower errors on both disparity and occlusions

(Figure [1).

5 Conclusions

In this paper, we have provided a framework for sparse variational message
passing (SVMP). Calculating sparse updates to the approximating variational
distribution can greatly reduce the time required for inference in models with
large state spaces. For high resolution imagery this reduction in time can be
essential for practical inference and learning scenarios. In addition, we have a
variational bound on the cost of our approximation. Furthermore, compare to
graph cuts, the resulting marginals of SVMP provide better parameter estimates
when used for learning in a maximimum likelihood framework. Graph cuts is
often the best at finding a low energy solution in a given model. However, for
model learning, a distribution over configurations is required. In models where
there is more uncertainty (as in the early stages of learning), we fond that sparse
mean field provides a lower free energy than graph cuts. As such, our analysis
indicates that SVMP can be used as an effective tool for approximating the
distributions necessary for accurate learning. Sparse mean field can be seen as
a method occupying a middle ground between producing point estimates and
creating fuller approximate distribution.

Finally, one of the most important advantages of the sparse mean field tech-
nique is that one no longer has strong constraints on the forms of allowable
potentials that are required for graph cuts. As such, we see sparse message
passing methods a being widely applicable for models where the constraints on
potentials imposed by graph cuts are too restrictive.

Acknowledgements: C.P. thanks Carestream and Kodak Research for helping
support this research.

References

1. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using
graph cuts. In: Proc. ICCV, pp. 508-515 (2001)

2. Sun, J., Li, Y., Kang, S.B., Shum, H.Y.: Symmetric stereo matching for occlusion
handling. In: Proc. CVPR, pp. 399-406 (2005)



630

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

J.J. Weinman, L. Tran, and C.J. Pal

Yang, Q., Wang, L., Yang, R., Stewenius, H., Nister, D.: Stereo matching with
color-weighted correlation, hierachical belief propagation and occlusion handling.
In: Proc. CVPR (2006)

Yedidia, J., Freeman, W., Weiss, Y.: Understanding belief propagation and its
generalizations. In: Exploring Artificial Intelligence in the New Millennium, pp.
236-239 (January 2003)

Jordan, M.I., Ghahramani, Z., Jaakkola, T., Saul, L.: Introduction to variational
methods for graphical models. Machine Learning 37, 183-233 (1999)

Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. J. of Machine Learning
Research 3, 993-1022 (2003)

Frey, B.J., Jojic, N.: A comparison of algorithms for inference and learning in
probabilistic graphical models. IEEE TPAMI 27(9) (September 2005)

Winn, J., Bishop, C.: Variational message passing. J. of Machine Learning Re-
search 6, 661-694 (2005)

. Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.: An introduction to MCMC

for machine learning. Machine Learning 50, 5-43 (2003)

Pal, C., Sutton, C., McCallum, A.: Sparse forward-backward using minimum di-
vergence beams for fast training of conditional random fields. In: Proc. ICASSP,
pp. 581-584 (2006)

Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proc. ICML, pp. 282-289
(2001)

Kumar, S., Hebert, M.: Discriminative random fields. IJCV 68(2), 179-201 (2006)
Weinman, J., Hanson, A., McCallum, A.: Sign detection in natural images with
conditional random fields. In: IEEE Intl. Workshop on Machine Learning for Signal
Processing, pp. 549-558 (2004)

He, Z., Zemel, R.S., Carreira-Perpin, M.: Multiscale conditional random fields for
image labeling. In: Proc. CVPR, pp. 695-702 (2004)

Scharstein, D., Pal, C.: Learning conditional random fields for stereo. In: Proc.
CVPR (2007)

Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimiza-
tion. IEEE TPAMI 28, 1568-1583 (2006)

Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE TPAMI 23(11), 1222-1239 (2001)

Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is insensitive to image
sampling. IEEE TPAMI 20(4), 401-406 (1998)

Weinman, J., Pal, C., Scharstein, D.: Sparse message passing and efficiently learn-
ing random fields for stereo vision. Technical Report UM-CS-2007-054, U. Massa-
chusetts Amherst (October 2007)



	Efficiently Learning Random Fields for Stereo Vision with Sparse Message Passing
	Introduction
	Stereo Vision and CRFs
	A Canonical Stereo Model
	Occlusion Modeling
	Parameter Learning

	CRFs and Sparse Mean Field
	Mean Field
	Sparse Updates

	Experiments
	Inference
	Learning

	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




