
Scale Invariant Action Recognition Using

Compound Features Mined from Dense
Spatio-temporal Corners

Andrew Gilbert, John Illingworth, and Richard Bowden

CVSSP, University of Surrey, Guildford,
GU2 7XH, England

Abstract. The use of sparse invariant features to recognise classes of ac-
tions or objects has become common in the literature. However, features
are often ”engineered” to be both sparse and invariant to transformation
and it is assumed that they provide the greatest discriminative informa-
tion. To tackle activity recognition, we propose learning compound fea-
tures that are assembled from simple 2D corners in both space and time.
Each corner is encoded in relation to its neighbours and from an over
complete set (in excess of 1 million possible features), compound fea-
tures are extracted using data mining. The final classifier, consisting of
sets of compound features, can then be applied to recognise and localise
an activity in real-time while providing superior performance to other
state-of-the-art approaches (including those based upon sparse feature
detectors). Furthermore, the approach requires only weak supervision
in the form of class labels for each training sequence. No ground truth
position or temporal alignment is required during training.

1 Introduction

The recognition of human activity within a video sequence is a popular problem.
It is a difficult as subjects can vary in size, appearance and pose. Furthermore,
cluttered backgrounds and occlusion can also cause methods to fail. Varying
illumination and incorrect temporal alignment of actions can cause large within
(intra) class variation. While inter-class variation can be low due to similarity in
motion and appearance. To illustrate, Figure 3(d), (e) & (f) show example frames
from the KTH [1] dataset for the categories ‘jogging’, ‘running’ and ‘walking’
respectively. Scaling issues aside, the similarity of these static frames illustrates
the need to use temporal information when identifying actions.

Within the object recognition community, learning strategies for feature selec-
tion have proven themselves successful at building classifiers from large sets of pos-
sible features e.g. Boosting [2]. Although similar approaches have been applied to
the spatio-temporal activity domain [3] [4], such approaches do not scale well due
to the number of features and also issues with time alignment/scaling. Therefore
sparse, but more complex, feature descriptors have been proposed [5] [1] [6]. The
sparsity of such features makes the problem of recognition tractable but such
sparsity also means potential information is lost to the recognition architecture.
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Our approach is based upon extracting very low-level features (corners in xy,
xt and yt) from videos and combining them locally to form high-level, compound,
spatio-temporal features. The method outlined in this paper takes advantage of
data mining to assemble the compound features using an association rule data
mining technique [7] which efficiently discovers frequently reoccurring combina-
tions/rules. The resulting rules are then used to form a classifier which provides
a likelihood of the occurrence and position of an action in a sequence.

Association rule data mining was recently employed by Quack et al. [8] to
group SIFT descriptors for object recognition. We use the algorithm in a similar
fashion but instead of using it to group high-level features, we use it to build
high-level compound features from a noisy and over-complete set of low-level
spatio and spatio-temporal features (corners). This is then applied to the task
of activity recognition. We compare encoding only relative spatial offsets, which
provides scale invariance, to the spatial grid proposed by Quack et al. and demon-
strate that, due to increased scale invariance, higher performance is achieved.
Learning is performed with only sequence class labels rather than full spatio-
temporal segmentation. The resulting classifier is capable of both recognising
and localising activities in video. Furthermore, we demonstrate that efficient
matching can be used to obtain real-time action recognition on video sequences.

2 Related Work

Within object recognition, the use of spatial information of local features has
shown considerable success [8] [9] [10]. Many action recognition methods also use
a sparse selection of local interest points. Schüldt et al. [1] and Dollar et al. [5]
employ sparse spatio-temporal features for the recognition of human (and mice)
actions. Schüldt takes a codebook and bag-of-words approach applied to single
images to produce a histogram of informative words or features for each action.
Niebles and Fei-Fei [11] use a hierarchical model that can be characterized as a
constellation of bags-of-words. Similarly Dollar take the bag-of-words approach
but argue for an even sparser sampling of the interest points. This improves the
performance on the same video sets. However, with such a sparse set of points,
the choice of feature used is important. Scovanner et al. [12] extended the 2D
SIFT descriptor [13] into three dimensions, by adding a further dimension to the
orientation histogram. This encodes temporal information and dramatically out-
performs the 2D version. To model motion between frames, optical flow [14] [15]
can be applied as was used by Laptev [6] in addition to a shape model to detect
drinking and smoking actions. Yang Song et al. [16] use a triangular lattice of
grouped point features to encode layout.

There are relatively few examples of mining applied to the imaging domain.
Tesic et al. [17] use a Data mining approach to find the spatial associations
between classes of texture from aerial photos. Similarly Ding et al. [18] derive
association rules on Remote Sensed Imagery data using a Peano Count Tree
(P-tree) structure with an extension of the more common APriori [7] algorithm.
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Chum et al. [19] used data mining to find near duplicate images within a database
of photographs. Our approach uses data mining as a feature selection process
for activity recognition.

3 Building Compound Features

3.1 Extracting Temporal Harris Interest Points

In contrast to very sparse feature detectors, we build our detection system upon
corner features. The rationale for using corners are they are simple to compute,
largely invariant to both lighting and geometric transformation, and provide an
over-complete feature set from which to build more complex compound features.
To identify and locate the interest points in images, the well known Harris cor-
ner detector [20] is applied in (x, y), (x, t) and (y, t) as a 3x3 patch. Unlike the
3D corners of [6], which are sparse, detecting 2D corners in 3 planes produces a
relatively large and over complete set of features, with typically 400 corners de-
tected per frame on the KTH data. Each corner feature has a dominant gradient
orientation, this orientation can be used to encode the feature type into one of a
set of discrete corner orientations. Figure 1 shows the example corner detections
on two frames. It shows that in 1(a), most features occur around the hands espe-

Fig. 1. Corner Detection on two Frames, (a) A Boxing Sequence, (b) A Running Se-
quence

cially in the (x,t) and (y,t) dimensions. A similar pattern occurs in 1(b) with a
large amount of features around the feet, hands and head. The large number of
features detected make clustering methods for code book construction unsuitable
but the simplicity of the features also makes such an approach redundant.

In order to overcome the effects of scale, the interest point detector was ap-
plied to the video sequences across scale space to detect corners at different
scales [21]. This was achieved by successively 2x2 block averaging the image
frames. Table 1 shows the scale, image size and effective interest point patch sizes.
Each feature is now encoded by a 3 digit vector (s, c, o). The encoding includes
the scale s ∈ {1, ..., 4} corresponding to the interest point size {3x3, ..., 48x48},
c ∈ {1, ..., 3} the channel the interest point was detected in {xy, xt, yt} and the
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Table 1. Table showing the image and relative interest point patch sizes

Scale 1 2 3 4

Image Size 160x120 80x60 40x30 20x15

Interest Point Size 3x3 6x6 24x24 48x48

gradient orientation of the interest point o ∈ {1, ..., n}. Orientation is quantised
into n discrete orientations. In our experiments n = 8 so orientation is quantised
into 45o bins aligned with a points of a compass. Figure 2(a) shows an example
of the vector encoding.

3.2 Spatial Grouping

The spatial configuration of features is key to object recognition and has been
demonstrated to significantly enhance action recognition when modelled inde-
pendently from temporal information [6]. Quack et al. [8] encoded the spatial
layout of features by quantising the space around a feature into a grid and
assigning features to one of those locations. Where, the size of the grid is depen-
dant on the scale of the detected SIFT feature to provide robustness to scale.
This approach is difficult to achieve for less descriptive interest points such as
corners, so our approach is to define neighbourhoods centred upon the feature
that encode the relative displacement in terms of angle rather than distance
hence achieving scale invariance. To do this, each detected interest point forms
the centre of a neighbourhood. The neighbourhood is divided into 8 quadrants
in the x, y, t domain which radiate from the centre of the neighbourhood out
to the borders of the image in x, y and one frame either side either t − 1 or
t, t+1 (see Figure2(b-c)). Each quadrant is given a label, all feature codes found

Fig. 2. (a) The three parts that make up a local feature descriptor. (b) shows a close-up
example of a 2x2x2 neighbourhood of an interest point, with five local features shown
as corners. (c) shows the spatial and temporal encoding applied to each local feature.
(d) Concatenating the local features into a transaction vector for this interest point.
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within a unique quadrant are appended with the quadrant label. A vector of
these elements is formed for every interest point found in the video sequence
and contains the relative spatial encoding to all other features on the frame.
For efficiency this is done by using a look-up to an integral histogram of the 3
digit feature codes. This newly formed set is called a transaction set, T , where
the spatially encoded features contained within it are items. To summarise,
Figure 2 shows the formation of a single transaction set, from five individual
local features.

For each interest point a transaction set is formed. These are collected together
to compute a transaction database for each action. For a typical example video
from the KTH dataset, this database contains around 500,000 transactions for
each action, where a single transaction contains around 400 items. To condense
or summarise this vast amount of information, data mining is employed.

4 Data Mining

Association rule [22] mining was originally developed for the analysis of cus-
tomers supermarket baskets. Its purpose, to find regularity in the shopping
behaviour of customers, by finding association rules within millions of trans-
actions. An association rule is a relationship of the form A ⇒ C, where A and
C are itemsets. A is called the antecedent and C the consequence. An example of
the rule can be, customers who purchase an item in A are very likely to purchase
another item in C at the same time. As there will be billions of transactions and
therefore millions of possible association rules, efficient algorithms have been
developed to quickly formulate the rules. One such algorithm is the popular
APriori algorithm developed by Agrawal [7].

4.1 Frequent Itemsets

It can be said that transaction T supports an itemset A if A ⊆ T . The algorithm
attempts to find subsets which are frequent to at least a minimum number
TConf ( confidence threshold) of the items. If {A,B} is a frequent itemset, both
subsets A and B must be frequent itemsets as well. This fact is exploited by the
algorithm to increase efficiency. APriori uses a ”bottom up” approach, where
frequent subsets are extended one item at a time, and groups of candidates
are tested against the confidence threshold.

4.2 Association Rules

The association rule is the expression {A,B} ⇒ C where given itemsets A and
B, the itemset C will frequently occur. The belief of each rule is measured by a
support and confidence value.

Support Rule. The support, sup({A,B} ⇒ C) of a rule, measures the statis-
tical significance of a rule, the probability that a transaction contains itemsets
A and B.
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Confidence Rule. The confidence rule is used to evaluate an association rule.
The confidence of a rule Conf({A,B} ⇒ C) is the support of the set of all items
that appear in the rule, divided by the support of the antecedent of the rule.
This means the confidence of a rule is the number of times in which the rule is
correct relative to the number of cases in which it is applicable. This measure is
used to select association rules, if it’s confidence exceeds a threshold TConf .

4.3 Mining for Frequent and Distinctive Itemsets

Once the local feature neighbourhoods are formed into transactions, the frequent
and distinctive itemsets that make up the transactions must be found. This is
achieved by running the APriori [7] algorithm on the transaction database, to
find the frequently occurring itemset configurations. It is important that the re-
sulting frequent itemsets are distinctive inter class. Therefore positive examples
of an action transaction were appended with a 1. While an equal sub set of all
other actions are appended with a 0 to provide the negative examples for train-
ing. This is used as it is important the resulting mined itemset configurations
are only frequent in assigning a feature to an action. Given an association rule
AS, its confidence is used to look for rules that have a high probability of being
correct. Meaning that a chosen frequent itemset must imply the specific action,
as shown in Equation 1.

Conf(AS ⇒ action) > TConf (1)

The mining algorithm allows for the efficient computation of frequent itemset
configurations. In our experiments, a transaction file consists of over 1 million
possible transactions with each individual transaction containing around 400
items. This size would prohibit many semi-unsupervised learning methods. How-
ever the efficient approach of the APriori algorithm, allows for the frequent item-
sets to be found within 1 hour, on standard desktop PC. Once completed, each
association rule, AS, which satisfies equation 1 is added to a Frequent Mined
Configuration vector M. Where M = {AS1, ...,ASN} for the N association
rules.

5 Classifying Actions

The Frequent Mined Configurations M for a specific action represents the fre-
quent and distinctive itemsets of the training action sequences. Given a new
query action sequence, the same feature extraction and spatial grouping of sec-
tion 3 is applied to the query video. This forms a new query set of transactions
Dquery = {T1, ..., Tn}. To classify the action, a global classifier is used. However,
in practice the extraction process is not required as the transaction rules can be
applied as a lookup to the integral histogram.

5.1 Global Classifier

As shown in equation 2, the global classifier exhaustively compares a specific
action (α) itemset Mα and the image feature combinations in the transaction set
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Dquery for a triplet of frames F = {ft−1, ft, ft+1} within a test sequence. It works
as a voting scheme by accumulating the occurrences of the mined compound
features.

Confα(F) =
1

Nα ∗ n

∑

∀Dquery

m(Ti,Mα) (2)

where Nα is the number of transaction sets mined from the training data, and
n is the number of transactions or neighbourhoods in the current time step.
m(Ti,Mα) describes if a transaction is present in the mined configuration.

m(Ti,Mα) =
{

Conf(Ti ⇒ α) Ti ∈ Mα

0 otherwise
(3)

This is repeated over the complete test sequence of an action with all the mined
action configurations to find the likelihood of the sequence. A correct match will
occur often in equation 3 as the mining will select frequently reoccurring items
that are distinct to other actions. The use of a codebook allows the classifier
to run at approximately 12fps on unoptimised C++ code on a standard pc.
Each video sequence is then classified as the action, α, for which the votes are
maximised.

5.2 Action Localisation

As each transaction encodes the relative location of features into one of eight
quadrants. Each transaction found can vote for which of the eight quadrants
other features should be located in. A comparison is made between the features
in the transaction set Dquery , with the Frequent Mined Configuration vector
features M. If a match is found, all pixels within a quadrant are incremented
by 1 on a likelihood image. This is repeated for all matched features, eventu-
ally causing the likelihood image to produce a peak around the centre of the
action. An example of this is shown in Figure 6(f), where Figure 6(e) shows the
thresholded centre of the action.

6 Experiments

To evaluate the approach, two sets of videos were used. The KTH human action
dataset of Schüldt et al. [1] is a popular dataset for action recognition, contain-
ing 6 different actions; boxing, hand-waving, hand-clapping, jogging, running
and walking. There are a total of 25 people performing each action 4 times, giv-
ing 599 videos, (1 is missing) totalling 2396 unique actions. The portion of data
for training and testing was identical to that proposed by Schüldt [1] to allow
direct comparison of results. In order to demonstrate localisation in the presence
of multiple subjects, a sequence consisting of a two people walking through the
scene, with one person stopping to perform a single hand wave was recorded.
Examples of the two sequences are shown in Figure 3. The sequences have dif-
ferent scales, and temporal speeds of actions, and some of the action classes
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Fig. 3. Example frames from the two datasets, (a-f) KTH, (g,h) multi-person dataset:
(a) boxing, (b) hand-clapping, (c) hand-waving, (d) jogging, (e) running, (f) walking,
(g) one person walking, (h) one person walking, one person hand-waving

have very similar appearances. The training sequences, were used to produce a
Frequent Mined Configuration vector M for each of the six actions containing
up to 10 compound features in length. These were then used to classify each of
the test sequences. Figure 4(a) shows the classification confusion matrix using
the scale invariant grid approach proposed within this paper, where good class
separability is exhibited. The results show relatively little confusion compared
to other approaches with minor confusion between boxing and clapping. Jogging
and running also causes some confusion but, this is consistent with previous
approaches. This confusion is due to the inherent similarity of the motion. In
Figure 4(b) the experiments were repeated using a fixed size 4x4 grid similar
to [8]. To investigate the importance of the spatial and temporal compounding
of individual features, Figure 5 shows the effect on overall accuracy (left axis)
as the minimum item size in the transaction sets is increased. It can be seen

Fig. 4. (a)The confusion matrix of the Data Mined corner descriptor on the KTH
dataset with Scale Invariance. (b) The confusion matrix of the Data Mined corner
descriptor on the KTH dataset with a fixed non scale invariant spatial grouping.
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Fig. 5. The classification accuracy as the itemset size is increased

that no drop in performance is found in discarding itemsets under fours features
in size. This confirms the importance of the grouping of the single features to-
gether. Disregarding these features gives an increase in frame rate from 9.5fps to
12fps, due to the reduced feature complexity. Therefore the small feature groups
can be discarded with no loss in accuracy to further increase speed.

Fig. 6. (a)Localised boxing action (b) Localised running action Likelihood image, (c)
Multiple localised waving and walking actions, (d) Multiple localised walking actions
(e) Thresholded localised action (f) Localisation likelihood image for image (e).
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The classification can also be used to localise and identify multiple actions in
frames. Figure 6 shows the localisation of four frames actions. Two are from the
KTH sequences (a) and (b), while (c) and (d) are from the multi-person outdoor
sequence, it contains two people, walking where one stops and waves. In addition
the wave action is much less exaggerated than the KTH version and only single
handed. Despite these constraints, as shown in Figure 6(c) and (d), the actions
are correctly localised and identified.

Table 2 shows results by a number of previous published works on the same
dataset, including Spat-Temp Dollar: The very sparse spatio-temporal de-
scriptor by Dollar [5] and Subseq Boost Nowozin: The boosted SVM classifier
by Nowozin [23]. As Table 6 shows, our proposed technique, Scale Invariant

Table 2. Comparison of Average precision compared to other techniques on KTH
action recognition Dataset

Method Average Precision

Nowozin et al. [23] Subseq Boost SVM 87.04%
Wong and Cipolla [24] Subspace SVM 86.60%

Niebles et al. [25] pLSA model 81.50%
Dollar et al. [5] Spat-Temp 81.20%
Schüldt et al. [1] SVM Split 71.71%

Ke et al. [3] Vol Boost 62.97%

Fixed Grid Mined Dense Corners 88.50%
Scale Invariant Mined Dense Corners 89.92%

Mined Dense Corners has a higher classification accuracy than other pub-
lished methods. This is because of the ability of the technique to select optimal
low level features for discrimative classification.

7 Conclusion

This paper has presented a method to efficiently learn informative and descrip-
tive local features of actions performed by humans at multiple scales and tem-
poral speeds. Very coarse corner descriptors are grouped spatially to form an
over complete set of feature sets that encode local feature layout. The frequently
reoccurring features are then learnt in a weakly-supervised approach where only
class labels are required using a data mining algorithm. When tested on the
popular KTH dataset, impressive results are obtained which outperform other
state-of-the-art approaches while maintaining real-time operation (12fps) in an
unoptimised implementation. Although no object segmentation is required dur-
ing training. The final classifiers can be used to perform activity localisation as
well as classification.
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