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Abstract. Medical ontologies have become the standard means of
recording and accessing conceptualized biological and medical knowl-
edge. The expressivity of these ontologies goes from simple concept lists
through taxonomies to formal logical theories. In the context of patient
information, their application is primarily annotation of medical (in-
stance) data. To exploit higher expressivity, we propose an architecture
which allows for reasoning on patient data using OWL DL ontologies.
The implementation is carried out as part of the Health-e-Child plat-
form prototype. We discuss the use case where ontologies establish a
hierarchical classification of patients which in turn is used to aid the vi-
sualization of patient data. We briefly discuss the treemap-based patient
viewer which has been evaluated in the Health-e-Child project.

1 Introduction

Digitized information management has greatly improved clinical practice during
the past decades. Much patient data from demographic information to lab results
to diagnostic images is now being stored in computerized form. Today, one of the
main challenges for clinical information systems is to find, select and present the
right information to the clinician from the vast amount of data that is available.
This is a daunting task unless effective filtering, classification and visual aids are
available. In this paper we consider an architecture for semantic navigation and
reasoning with patient data, and share our experiences obtained within the EU
FP6 project Health-e- Chil. The functionality of the architecture hinges on the
patient data stored in a database distributed over the Grid, a domain ontology
with the knowledge relevant for lexicographic classification of patients, and two
key data analysis components, for ontology-based reasoning and visualization.
The focus in this paper is on presenting the later two; reasoning with ontologies
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and ontology-based visualization, which form the backbone of the considered
architecture.

There has been lately much work on ontology visualization [TI2I3/4] that helps
the user display and navigate underlying ontological concepts, see [5] for an ex-
tensive survey. In contrast to the mainstream works in the area, the present
work proposes not the navigation of the ontology directly, but rather the vi-
sualization of instance data with the help of the knowledge that is represented
by the ontology, or the deduced knowledge, projecting the respective data onto
the ontology of interest. We employ two techniques suitable to ontology-based
visualization of projected instance data for that; facet browsing and treemaps
[6]. Each technique has its own benefits and limitations, which complement each
other for the two techniques.

Visualization is tightly coupled with the reasoning component. Reasoning
with ontologies is currently under active study in the semantic web field [7;
with biomedicine being one of the most popular application domains [8[9]. The
ability to reason, that is to draw inferences from the existing knowledge to derive
new knowledge is an important element for modern systems based on ontologies
[7]. In particular, as we demonstrate in this paper using DL reasoning, reasoning
with ontologies can help establish a hierarchical classification of patients for
their intuitive visualization. By aligning patient data with relevant (fragments
of) ontologies and inferring more descriptive patient ontology, improved patient
data visualization and comparison can be realized.

The work in our study has been performed as part of the Health-e-Child (HeC)
project. HeC is an EU-funded Framework Programme 6 (FP6) project, which
was started in 2006, and aims at improving personalized healthcare in selected
areas of paediatrics, particularly focusing on integrating medical data across
disciplines, modalities, and vertical levels such as molecular, organ, individual
and population. The project of 14 academic, industry, and clinical partners aims
at developing an integrated healthcare platform for European paediatrics while
focusing on some carefully selected representative diseases in three different cat-
egories; paediatric heart diseases, inflammatory diseases and brain tumours. The
material presented in this paper contributes to the development of decision sup-
port facilities within the platform prototype which provide the clinicians with
a tool to easily retrieve and navigate patient information and help visualizing
interesting patterns and dependencies that may lead, besides personalized de-
cision support concerning appropriate treatment, to establishing new clinical
hypotheses and ultimately discovering novel important knowledge.

The paper is organized as follows. In section B we look at the requirements
we have elicited from collaborating clinicians. In section Bl we review a few
medical ontologies which we found useful for our use-cases. Section H contains
the technical details of our approach of integrating patient data with exter-
nal knowledge, and section [ presents the architecture of our prototype plat-
form. In Section [B] we visualize the hierarchical classification using treemap
views.
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2 Visualization Requirements in Clinical Practice

Clearly arranged visualization of patient data, supports clinicians in their daily
tasks of clinical care and medical research. In order to navigate, analyze and
visualize the dataset, it is useful to structure information and impose automatic
annotation of patient records. In the following sections, we will illustrate how
we realized the ontology-based visualization of patient information establishing
the backbone of the introduced architecture. We will first describe the partic-
ular requirements for visualization of patient data in clinical practice. Bearing
in mind the clinical visualization requirements, we will then sketch how we se-
lected relevant medical knowledge sources and how treemaps in combination
with our inferred patient ontology can be used for discovering correlations in
patient records.

From extensive discussions with clinicians collaborating in Health-e-Child, we
have learnt that the clearly arranged presentation of similar patients with re-
spect to the complex and heterogeneous patient data becomes a key requirement
for clinical decision support systems. For clinicians, the comparison of similar
patients is a valuable source of information in the process of decision making.
Therefore clinicians and medical researchers show a particular interest in visual
means for comparing and analyzing the heterogeneous data of similar patients
that cover demographics, family history, lab results, echocardiograms, MRI, CT,
angiograms, ECG, genomic and proteomic samples, history of appointments,
and treatments. Our existing data captures for each patient record more than
100 attributes describing the patient history and status data and allows the
clinician to analyze patient records at a time. Our requirements elicitation has
revealed the following further requirements in aiming for improved patient data
visualization:

1. The discovery of patterns and dependencies in patient data. For example, es-
tablishing a correlation between the attributes “quality of life” and “tumour
location” of brain cancer patients, is a routine task for clinicians. Therefore,
the visualization of correlations between selected patient attributes becomes
crucial in the clinical decision making process. As patient data attributes are
provided in different levels of detail and precision, e.g. tumour location can
be specified as “Cerebral Hemisphere” or, more detailed, as “Frontal Left
Cerebral Hemisphere”, the computation and visualization of data attributes
for correlation needs to reflect the variety of detail and precision.

2. The comparison of similar patient records with regard to relevant patient
attributes should be supported by browsing facilities over the set of all pa-
tient records along context relevant features. Again, the browsing facilities
need to reflect the variety of data in detail and precision.

Within traditional applications, users may browse and visualize patient data
but little or no help is given when it comes to interpretation because the required
semantics are implicit and thus inaccessible to the system. Hence, aiming for
the means to enable the easy browsing of patient data and the visualization of
complex information e.g. correlations for the establishment of new hypotheses,
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we are integrating medical ontological knowledge to align patient data with the
imposed knowledge structure thereby inferring the correct classification patient
records.

3 Identified Medical Ontologies

For a beneficial integration of external semantics, one has to decide which ex-
ternal knowledge sources are appropriate for the purpose in mind, i.e. which
external knowledge source captures relevant and helpful knowledge for a par-
ticular context. In our case, we aim to provide experts in brain tumour diag-
nosis and treatment with an improved method for patient data visualization
and comparison. More precisely, we aim for the classification of patients with
respect to their diagnosed tumour location or WHO tumour classification. We
have chosen to use the Foundational Model of Anatomy (FMA) [I0] covering
the partitive hierarchy of brain regions as relevant and valuable medical knowl-
edge. The coverage of the FMA is very comprehensive, containing approximately
70 thousand distinct anatomical concepts with more than 1.5 million relation-
ships of 170 relationship types. We rely on fragments covering the concepts
and relationships relevant to a particular visualization use-case. In our scenario,
the established fragment encompasses all anatomical concepts describing pos-
sible brain tumour locations hierarchically structured by the regional part of
relationship.

As second medical knowledge source, we identified the WHO classification of
Tumours of the Nervous System establishing a classification and grading of hu-
man tumours that is accepted and used worldwide [I1]. Its constituted entities
establish a hierarchical structuring of histological typed tumours covering a mul-
tiplicity of factors, such as the immunohisto-chemistry aspects, genetic profiles,
epidemiology, clinical signs and symptoms, imaging, prognosis, and predictive
factors. The WHO classification of tumours refers to the ICD-O (International
Classification of diseases for oncology) code and includes a WHO-grading scheme
that is used for predicting response to therapy and outcome. For improved pa-
tient data visualization, we revert to its hierarchical structuring and its grading
scheme. Similar to the integration of FMA’s knowledge about tumour locations,
we use the WHO classification’s inherent hierarchical structuring for hierarchi-
cally representing patients’ data.

4 Patient Record Classification by Reasoning

The Health-e-Child demonstrator is an integrated system that is built on top
of a distributed platform, powered by grid technology, which hosts a distrib-
uted database and encompasses high-level enabling applications that exploit the
intergrated medical data. The medical data is stored according to the Health-e-
Child integrated data model and a service-oriented architecture provides access
to storage, management and querying of the hosted information.
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Sex Age at Diagnosis ... Tumour Site ...
patientl M 5 ... Cerebellum
patient2 F 7 ... Hypothalamus ...

Fig. 1. Simple view of patient data

For the richest possible interpretation, part of the medical data is annotated
[12] using selected medical ontologies which allows for integration with external
information and in some cases reasoning with expressive ontologies. In particular,
when the external knowledge is expressed in some description logic then we can
make use of available reasoners to provice enhanced, semantic query answering.

Our example use case is related to the visualization of the hierarchical classi-
fication of tumour patients. (Similar use cases have been discussed in [136].) We
start with a simplified view of the patient database in Fig.[I} the HeC integrated
data model is, of course, much more complex but the creation of such simple
views is trivial. This database view is “flat” in that all attributes are individual
(discrete) labels on the patient without explicitly defined semantics or structur-
ing. Some of the attributes are numeric, others are categorical, taking values in a
finite set of predefined concepts, for example tumour location, which refers to an
anatomical region of the human body. In order to get correct answers to queries
like “does patient x have a tumour in the Hindbrain”, the system must have
access to and be able to reason with the knowledge about the partitive anatomy
of the brain.

The Foundational Model of Anatomy in OWL. The tumour site in the HeC
database is annotated [I2] with concepts from the FMA which duly encodes the
meronomy of human anatomical structures. The FMA is an originally frame-
based ontology but there has been effort to convert it to OWL [I4/15]. DL
Reasoning, unfortunately, does not scale well with the size of ontologies thus
in practice one has to identify manageable fragments that are suited both to
the use-case and to the data at hand. We have experimented with locality-
based fragments [I6J/I7] which are natural choice for reasoning tasks as they
guarantee logical consistency but occasionally result in too large fragments and
the algorithm is slow. Graph-based fragments (e.g. [I8]) have the advantage of
performance in terms of speed and fragment size but there is no guarantee about
logical completeness. We acknowledge that the selection of such fragments to use
(semi-automatic or manual) and the segmentation of the ontology is a difficult
task on its own; for the purpose of the description of the architecture in this
paper, however, we assume that such fragments are already available. Back to
our example, we make use of the regional part of subontology rooted at the
concept Brain of [IZIE The first ingredient to our use-case is the FMA T-box:

% [14] is a stratified ontology with an OWL DL and an OWL full part. Although the
regional part of semantics is encoded in the OWL full part, the fragment we need
is purely DL.
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. frma:Left_superior_semilunar_lo
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@ fmaLeft_supracallosal_gyrus MECESSARY & SUFFICIENT
. fma:Lefi_supramarginal_gyrus MECESSARY
@ fmaLeft_temporal_lobe @ fmaAnatomical_structure
@ fmaLeft_temparal_lobe_proper ) fmaregional_part_of some fma:Left_cerebral_hemisphere
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Fig. 2. Brain anatomy as defined in the FMA

Tr(regional part of) (T'ransitive)
> 1 regional part of C Anatomical Structure (Domain)
T C Vregional part of.Anatomical Structure (Range)
Cerebellum C Anatomical Structure [N dregional part of.Metencephalon
Metencephalon C Anatomical Structure [N dregional part of.Hindbrain

Hindbrain T Anatomical Structure [N Jregional part of .Brain

This ontology is our external knowledge that is independent of the Health-e-
Child system. In order to make use of it, the information in our database has to
be aligned with this ontology. The alignment is in part provided by the Patient
T-box:

> 1 has tumour location L Patient (Domain)

T C Vhas tumour location.Anatomical Structure (Range)

This terminology establishes the semantics for the database records (Patients)
and provides the alignment with the external ontology through the range of the
has tumour location property. Finally, the relational instance data in Fig. [l
has to be mapped to conformant DL syntax, constituting the Patient A-box:

(patientl, Cerebellum ,...)
(patient2, Hypothalamus ,...)

I

(Patient M Jhas tumour location. Cerebellum )(patientl)
(Patient M Jhas tumour location. Hypothalamus )(patient2)

The queries for our use case are subclasses of the Patient class. When estab-
lishing the hierarchical classification of patients based on tumour location, these
queries make up our classification T-boxr whose defined concepts are the labels
for the patient classes:
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BrainTumourPatient = Patient I Jhas tumour location.
(Brain L/ Jregional part of.Brain)
CerebellumTumourPatient = Patient [l Jhas tumour location.

(Cerebellum Ll Iregional part of.Cerebellum)

In effect, reasoning with the anatomy ontology ensures that patients will be
classified/annotated as e.g. cerebellum tumour patients for every case that had
originally been annotated with cerebellum or with any known regional part of
the cerebellum as the tumour site.

To summarize, we consider the information at hand be represented in terms
of DL, where we isolate three parts of the T-Box, a Patient terminology, which
gives immediate semantics to the instances, an external knowledge base which
is used as annotation and a classification ontology which is simply a collection
of meaningful queries and is dictated by the use-case. In turn we arrive at the
appropriate semantic classification of patients.

5 Prototype Platform Architecture

Let us now turn to our proposed architecture and implementation. The three
core pillars of turning the above theory into a working infrastructure are: an on-
tology manager that can integrate the different knowledge components; a map-
ping mechanism between the database schema and the OWL DL A-box; and a
reasoner which answers DL queries. These are implemented as services in the
HeC platform service layer. Furthermore, these interact with additional compo-
nents which are dictated by the use case, like a visualization component in our
example.

Our implementation is based on the OWL AP and some of the design deci-
sions have been influenced by the conformance to it:

— The OWL-DL Integrator is a generalized OWLOntologyManager which is re-
sponsible for importing and managing all the ontology components and load-
ing the knowledge into a reasoner.

— The DB/OWL DL Mapping component creates simple views like that of Fig.
[ from the database and maps them to OWL-DL.

— The Reasoner uses the set of assertions and knowledge accumulated above
and answers semantic queries, in particular creates the inferred patient clas-
sification.

— An optional Ontology Transformation Component is used in the hierarchical
classification use-case to establish the set of queries or labels (e.g. “Cerebellum
Tumour Patients” ).

— The Interpretation & Visualization Component maps the inferred classifica-
tion from OWL to the appropriate representation of the user interface.

3 http://owlapi.sourceforge.net/
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Fig. 3. Prototype Architecture

We briefly discuss these components in turn. The DB/OWL DL Mapping
component uses the semantic annotations of the patients’ data to expose patients’
information as OWL DL ontology. First, a flat view is created from the relevant
relations which includes the entity identifiers (patient ID), the concept URIs
for the hierarchical classification (tumour location) and additional attributes
(e.g. status at the end of treatment in later examples) which are of interest but
don’t contribute to the reasoning. Second, the relevant columns of the relation
are translated into DL which is expressed in OWL. This is implemented using a
Mapper class which is governed by the Patient terminology and a set of mapping
descriptions which bridge the relational and DL schema. When browsing along
multiple axes is required, they are all included in the OWL view.

The OWL-DL Integrator is a generalized OWLOntologyManager. It imple-
ments (exposes) multiple ways of accumulating knowledge, including loading
OWL from external URI, loading instance data from the database using Map-
per instances and adding standalone axioms on the fly. It populates the reasoner
with the merged external, patient and classification ontologies and initializes the
reasoning.

The Reasoner creates the inferred hierarchical classification of patients. We
currently use the Pellet 1.5 reasoner engine in the Health-e-Child platform
prototype.

The transitive regional part of property on anatomical concepts induces the
subsumption relationship on patient classes (has t1 = has Tumour Location):

X C dregional part of.Y

!
Jhas tl.(dregional part of.X) C Jhas tl.(dregional part of.Y)

We can’t, however, directly exploit this inference because the classes are not
defined: the reasoner only creates inferred subsumption hierarchy for named
classes and the visualization also requires the definition of the classes for the
lexicographic hierarchy. In other words, we need to supply the set of queries
that govern the classification.
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To that end, the ontology transformation component creates the missing bit:
the definition of class names for the hierarchy. In our example this is a set of
name definitions based on the corresponding concept names. Creating this set is
trivial because we obviously don’t use any structure of the ontology.

The Interpretation & Visualization Component transforms the inferred OWL
into the format conformant to the API of the visualization software. It can also
add further attributes from the database which were not part of the reasoning
process.

6 Patient Data Visualization Using TreeMaps

The user requirements for visualization patient data revealed the importance
of means for discovering correlations in patient data. Therefore, we decided to
use treemaps as visualization component. Treemaps [19] are an efficient two-
dimensional technique to visualize hierarchical data structures. It is particularly
popular for disc storage view of hierarchical filesystems because file size is an ag-
gregate attribute of files. It is a space filling technique, i.e. one that uses the entire
screen area by dividing it up between leaf nodes which are subsequently grouped
into enclosing rectangles [5]. The image is effectively a rectangular Venn-diagram
of nonintersecting sets. Besides the set semantics, there are other attributes such
as colour, choice of font and label which can represent attributes of the data be-
yond that of the hierarchy.

To allow for improved patient visualization and discovery of patient corre-
lation, we represent patients as rectangles of equal size so that the cardinality
of patient classes can be easily seen. Figure Ml shows the user interface based
on the patient taxonomy that has been inferred from the anatomical meronomy.
The medical background information, in our example the hierarchical structured
brain tumour locations establishes enclosing and nested areas that are labelled
by regions of the brain. Colour may be used to visualize further attributes, in
our example the status at the end of treatment for each patient. It is meant to
show that space-filling hierarchies can be useful for visualizing correlation, in
this example one finds that patients with tumour in the Hindbrain tend to have
better prognosis than in other areas (especially the Left Temporal Lobe). In a
similar manner, we can correlate and visualize patient record with respect to the
“WHO tumour classification” and, for instance their “quality of life” parameter.

A further advantage of treemaps is capability for “binning” the data. An
example of Treemap with patient binning would show the patients grouped not
only by tumour location but by age as well. It follows visually in Fig. Bl that — in
this sample — the end of treatment status of younger patients is worse than that
of older patients: there is noticeable correlation which the user can discover by
visualizing the data the right way.

While ontology-based visualization using treemaps was already reported, for
example to visualize and navigate the Gene Ontology and microarray data [20],
we are unaware of its applications in clinical decision support, where patient
proximity is visualized by projecting patient data onto existing ontologies.
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Fig.4. A full Treemap view of the ontology assisted data representation
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Fig. 5. Binning: patients are grouped both by tumour site as well as age

6.1 Related Approaches in Knowledge Visualization

The work presented in this section relates to visualization for knowledge dis-
covery. The motivating example is that of the physician who believes that an
extensive set of patient data would reveal subtle patterns if only it could be
visualized in the right way. The right way is here taken to mean analyzed in
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terms of established or even tentative concepts. Thus the ontology carries what
may have already been accepted or adduced as a research hypothesis, and the
data is visualized on that basis, as a means of strengthening the evidence or as
a means of bolstering the new hypothesis.

There is a significant volume of work on visualization with (and without) on-
tologies. It may be differentiated from the work presented here on the basis of
various criteria, such as: what is visualized, why and how. Visualization may
be of data from a homogeneous database in order to display relative volume or
from a heterogeneous source to expose some other feature or for exploratory data
analysis [21]; it may be of the structure of the data (rather than the data itself)
in order to reveal class-level relationships [3]. Visualization has been used to fa-
cilitate query formulation or to order threads of data in some schematic way (e.g.
temporally); to display a data schema or to inform navigation through the data
[22]. In particular cases, ontology-based visualization has been used to support
queries based on temporal abstractions [23]; to enrich maps with additional geo-
graphic information [24]; to reveal multiple levels of abstraction in decision-tree
generation [25] and to assist in information mining [26]; very popularly, to map
social networks and communities of common interest [27], [28], [29]. Ontologies
have also been used for knowledge discovery without visualization, especially in
the integration of heterogeneous scientific repositories ([30]).

For an up to date survey of ontology visualization methods reference must
be made to [5]. This paper provides a near exhaustive discussion of methods
of classification, of visualization techniques (Euclidean, hyperbolic and spherical
space, node-and-link, and other less obviously geometric methods), of represen-
tation, overview and focus methods, but it is distinctive in offering no discussion
of content. There is a body of work dating back to the mid-"90s on database
visualization (see [21]) some of it devised to assist with data mining tasks.

Arguably the work closest to ours in spirit is [31], although their approach is
designed more to manage the heterogeneity of web sources in order to summarize
the information provided. Their visual method is based on node-and-link repre-
sentation and resembles mind-mapping. On the other hand, [32] use ’semantic
visualization’ to support the development process for database-oriented systems,
but in the process must tackle questions of data visualization.

7 Conclusions and Future Work

As the biomedical and clinical information available in digitized form is continu-
ally increasing, so is the demand for advanced data integration and visualization
tools to help clinicians and researchers to explore the information and knowledge
at their hands. In this paper we presented a system for patient data visualization
which combines reasoning about data using external knowledge with advanced
visualization that makes use of the inferred structure. Our approach makes use
of existing ontology visualization paradigms with a view to presenting the data
whose semantics is governed by the ontology.
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We have presented an architecture of a system implementing our framework
and demonstrated its functionality using paediatric brain cancer data acquired
in Health-e-Child together with anatomical knowledge from the Foundational
Model of Anatomy for the purpose of creating annotated treemap views of pa-
tient characteristics.

We presented a demonstrator of this framework to clinicians of the Health-e-
Child project to evaluate early user experience. We demonstrated the use case
of treemap visualization presented in this paper and facet browsing of [6]. In
both cases the response was positive: facet browsing helps the clinicians to lo-
cate follow-up patients based on incomplete information while the treemap was
appreciated for the easy visualization of correlation between clinical attributes.
The clinicians also noted that it has potential in education and training.

There are several challenges along the lines we presented. A number of ap-
proaches exist for visualizing hierarchies but to really exploit their power, end-
users have to be trained so that they can define the visualization which suits
their interest and then navigate it. Inferring the hierarchy of the data based on
its semantics requires suitable ontologies and alignment with them. In the med-
ical domain, annotation with the UMLS meta-thesaurus is a good choice because
it maps to many ontologies. A serious bottleneck is the reasoner as performance
scales very badly with the size of the ontologies. We compensated this with frag-
ment extraction but ontology segmentation is also difficult and, especially when
one aims for consistent fragment, it is slow and can only be done off-line.

Our future work includes a comparative analysis of how different ontology
fragments perform in this approach with real data and we are investigating how
this classification scales with the number of patients. We also want to explore
the means to give some control over the selection of ontology fragments and
definition of classification criteria to the end-users. This is a difficult problem
but could prove very interesting.
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