
Supporting Collaborative Ontology Development in
Protégé

Tania Tudorache, Natalya F. Noy, Samson Tu, and Mark A. Musen

Stanford University, Stanford, CA 94305, US
{tudorache,noy,tu,musen}@stanford.edu

Abstract. Ontologies are becoming so large in their coverage that no single
person or a small group of people can develop them effectively and ontology
development becomes a community-based enterprise. In this paper, we discuss
requirements for supporting collaborative ontology development and present Col-
laborative Protégé—a tool that supports many of these requirements, such as dis-
cussions integrated with ontology-editing process, chats, and annotations of
changes and ontology components. We have evaluated Collaborative Protégé in
the context of ontology development in an ongoing large-scale biomedical project
that actively uses ontologies at the VA Palo Alto Healthcare System. Users have
found the new tool effective as an environment for carrying out discussions and
for recording references for the information sources and design rationale.

1 Ontology Development Becomes Collaborative

Recent developments are dramatically changing the way that scientists are building
ontologies. First, as ontologies are becoming commonplace within many scientific do-
mains, such as biomedicine, they are being developed collaboratively by increasingly
large groups of scientists. Second, ontologies are becoming so large in their coverage
(e.g., NCI Thesaurus with 80K concepts) that no one user or small group of people can
develop them effectively. Hence, organizations such as the NCI Center for Bioinfor-
matics “outsource” some of their ontology development to the scientific community at
large. Third, in the last one or two years, many users have become quite familiar and
comfortable with the concept of user-contributed content, both in their personal and
professional lives (cf. Web 2.0). Thus, domain experts need tools that would support
collaborative ontology development and would include collaboration as an integral part
of the ontology development itself.

Researchers are only now beginning to develop such tools. Last year, tool devel-
opers were invited to contribute their tools for collaborative construction of structured
knowledge (which included not only ontologies, but also any structured data) to the
CKC Challenge, which brought together developers and users in order to examine the
state-of-the-art and to understand the requirements for new tools [10]. In general, the
participants in the CKC Challenge agreed on several key points. First, the notion of
collaborative development of ontologies and most of the tool support was in its in-
fancy. Second, the spectrum of tools even in the relatively small set of the challenge
participants (from tools to organize tags in a hierarchy to full-fledged ontology edi-
tors) demonstrated that no single tool is likely to fill the niche completely. Third, the

A. Sheth et al. (Eds.): ISWC 2008, LNCS 5318, pp. 17–32, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

18 T. Tudorache et al.

requirements for such tools to support collaborative development in any specific set-
ting were still poorly understood. The challenge participants started identifying these
requirements. Starting with the initial set of requirements identified as the result of the
CKC workshop, we continued the requirements-gathering phase in the context of ex-
tending the Protégé ontology editor to support collaborative ontology development. To
gather specific requirements, we conducted interviews with representatives of several
groups that currently use Protégé for ontology development and that were trying to
adopt a more formal process for development. These projects included the development
of the NCI Thesaurus [17], the ontologies for the ATHENA-DSS project at the VA Palo
Alto Healthcare System [7], the Ontology of Biomedical Investigations (OBI) [2], the
RadLex ontology for annotating radiological images [14], and many others. As the re-
sult of this process, we collected a set of requirements for an ontology editor supporting
collaboration. Note that we focused on the projects that need a full-fledged ontology
editor and where ontologies are fairly rich in structure and large in size. For exam-
ple, the NCI Thesaurus is an OWL DL ontology with more than 80K classes, several
thousand of which are defined classes. Both RadLex and ATHENA-DSS ontologies are
frame-based ontologies that use different types of constraints on properties extensively.
We then developed Collaborative Protégé by extending the Protégé tool with a set of
features to support these requirements. We have performed the formative evaluation of
Collaborative Protégé in several different projects in order to evaluate the usability of
the tool and to understand what users like and do not like about it, how they use it, and
what other features they need to support their work.

More specifically, this paper makes the following contributions:

– We identify a set of requirements for developing expressive ontologies and know-
ledge bases collaboratively (Section 2).

– We present Collaborative Protégé—an ontology editor that supports collaboration
through integration of features such as discussions, chats, and annotations in the
ontology editor (Sections 4, 5, and 6).

– We perform the formative evaluation of Collaborative Protégé in the context of rep-
resenting formally clinical practice guidelines in the ATHENA-DSS project (Sec-
tions 7, 8, and 9).

2 Requirements for Support of Collaborative Ontology
Development

We have identified our requirements for tool support for collaborative ontology devel-
opment through interviews with many institutional Protégé users. The requirements that
we identified significantly extend the set of requirements from the CKC workshop, and
focus on the requirements of ontology developers for domains such as biomedicine.
These developers are usually domain experts rather than knowledge engineers.

In most of these projects, users have already used Protégé in a client–server mode
that enabled distributed users to edit the ontology simultaneously, immediately seeing
the changes that others make. Thus, we focused on the features that would explicitly
support collaboration. Furthermore, by the nature of projects already having chosen

Supporting Collaborative Ontology Development in Protégé 19

Protégé for their ontology development, most of them had to work with expressive on-
tologies and knowledge bases. In some cases, users worked collaboratively to extend
the ontologies themselves (e.g., the NCI Thesaurus or OBI), and in others they addi-
tionally used an expressive ontology to create a knowledge base of classes and instances
(e.g., ATHENA-DSS). The overarching theme of these interviews was the disconnect
between the produced ontology on the one hand and all the thought and discussion that
went into producing this artifact on the other hand. The former was captured in Protégé,
but the latter was captured in myriads of email messages, forum posts, phone conver-
sations, and MS Access databases. When someone browsed the ontology, it was often
impossible to understand the rationale that went into the design decisions, to find which
references were relevant, to find the external resources that informed the modeling deci-
sions. Conversely, when developers read a mailing list post discussing a modeling issue,
they do not see the context for that post.

The specific requirements for supporting collaborative ontology development that
our users identified included the following:

Integration of discussions and annotations in ontology development. Almost by defini-
tion, an ontology is an artifact that requires its authors to reach consensus. At the same
time, our experience demonstrates that developing an ontology is not a straightforward
task and the developers can disagree on the best way to model concepts in the ontology
or, in fact, on which concepts to model. Thus, tools that support discussion, such as
forums and chats, are essential. However, these discussions happen in email messages
and similar venues and are completely separated from the resulting artifact. For exam-
ple, one of our collaborators (the OBI developers) reported recently that they found
themselves in a heated discussion on the definition of a specific term (namely, analyte),
something they thought they have resolved several months before. However, that dis-
cussion was not captured in the class definition and was not available when the question
arose again. In fact, linking interactions among users and their comments and annota-
tions directly to the artifacts they are producing, carries several advantages. First, when
browsing the ontology later, developers and users can understand better why certain de-
sign decisions were made, what alternatives were considered, which group advocated a
certain position, and so on. Second, when carrying out the discussion itself, if it is inte-
grated in the development tool, the participants can immediately see the context for the
components being discussed, they can examine the corresponding definitions and rela-
tions. Thus, the requirement for integrating discussion tools into ontology development
environment is two-fold: Make the discussions accessible from the ontology compo-
nents that are being discussed and make the ontology components accessible when one
examines or writes a discussion message.

Support for various levels of expressiveness. The projects that use Protégé for collab-
orative development have rather expressive ontologies. For instance, one often comes
across defined classes, complex restrictions, with intersections, in class definitions for
the NCI Thesaurus. Thus, in the settings of these biomedical projects that heavily rely
on ontologies, the collaborative version of the tools must ultimately have the same ex-
pressive power as a stand-alone ontology editor. It must support editing both ontology
classes and instances.

20 T. Tudorache et al.

User management and provenance of information. With multiple authors contributing
to the ontology and the corresponding discussion, it is critical for users to understand
where information is coming from. Thus, users must be able to see who makes specific
changes and when, who creates a new proposal for change, who votes on it, and so
on. This information must also be searchable. One must be able to find all changes or
comments made by a specific user, or all recent changes and comments.

Scalability, reliability, and robustness. The traditional requirements of using tools in
production systems include scalability (both in the size of ontologies and in the number
of users), reliability (domain experts cannot afford to loose their data), and robustness
(ontology-development tools should be no less robust than other tools that domain ex-
perts use). While several prototypes of collaborative tools have appeared recently, our
experience shows that domain experts are usually reluctant to try a new tool until they
are convinced the tools is ready to be used in production environment. Ontology devel-
opment is not their primary task and they need tools that would help them perform this
task quickly and reliably.

Access control. We often hear from our users who develop ontologies collaboratively
that one of the features that all ontology-development tools largely lack today is access
control. Today, for the most part, any user with writing privileges can edit anything in an
ontology. However, users need to have more fine-grained control, particularly in the de-
velopment of large ontologies. For example, users with expertise in an area represented
by some part of an ontology should be able to edit that part, but may be able only to
browse other parts or link to them. In fact, many ontology-development projects today
maintain separation between what different users can do: For instance, some users can
make proposals for changes but not make the changes themselves; others can comment
on these proposal, but not create new ones; another group of users can affect the changes
in the ontology based on the discussion; yet others can perform quality control by re-
viewing and approving the changes. We need to extend access-control policies with a
more detailed model of user roles and privileges [4]. Because in ontologies concept de-
finitions are often intertwined and a change in one part can affect definitions in another
part, making such separation is far from trivial.

Workflow support. Many collaborative development projects have specific workflows
associated with making changes. For example, there is a formal workflow for devel-
opment of ontologies for the Food and Agriculture Organization (FAO) of the United
Nations in the NeOn project [9]. The DILIGENT methodology for collaborative devel-
opment [19], which focuses on formalizing the argumentation process, has been used
in several European projects. A workflow specification may include different tasks that
editors are charged with; the process for proposing a change and reaching consensus;
roles that different users play, and so on. We are only beginning to understand different
workflow models that collaborative ontology development requires [5]. Flexible support
for these workflows must be an integral part of tools for collaborative development.

Synchronous and asynchronous access to shared ontologies. Depending on the size
of the group and the complexity of the ontology, users might prefer synchronous or
asynchronous editing [16]. In some of the projects we studied, users wanted to have

Supporting Collaborative Ontology Development in Protégé 21

their changes seen by everyone as soon as they make them, without the additional step of
“checking in” their changes. In other cases, users preferred to have their own “sandbox”
to test out the changes they are proposing before sharing them with everyone.

The core Protégé system supports some of the requirements listed here. Specifically,
Protégé provides support for various levels of expressiveness, user management and
provenance information, access control, and synchronous access to ontologies. It also
addresses the requirement for scalability, reliability, and robustness. We describe work-
flow support elsewhere [15]. In this paper, we focus on the support for integration of
discussion and annotations with ontology-development environment.

3 Related Work

A number of ontology editors support some aspects of collaborative development. For
instance, OntoWiki [1] is a web-based ontology and instance editor that provides such
capabilities as history of changes and ratings of ontology components. OntoWiki pro-
vides different views on instance data (e.g., a map view for geographical data or a
calendar view for data containing dates). OntoWiki focuses on instance acquisition
and provides only rudimentary capabilities for ontology editing. The Hozo ontology
editor [18] enables asynchronous development of ontologies that are subdivided into
multiple inter-connected modules. A developer checks out and locks a specific module,
edits it locally, and then checks it back in. If the ontology is not modularized, however,
a developer must lock the whole ontology preventing others from editing it while he
makes his change—an approach that may not be practical in many circumstances.

Several wiki-based environments support editing ontologies and instance data. The
adaptation of the wiki environments that are particularly suited for ontology editing usu-
ally support a specific editing workflow. For example, a LexWiki platform developed
at the Mayo Clinic, which is based on Semantic MediaWiki, currently is at the core of
community-based development of BiomedGT.1 BiomedGT is a terminology from the
NCI Center for Bioinformatics (the same group that develops the NCI Thesaurus). The
goal of BiomedGT is to enable the wider biomedical research community to participate
directly and collaboratively in extending and refining the terminology. LexWiki en-
ables users to browse an ontology, to make comments or to propose changes to (usually
text-based) definitions. The BiomedGT curators with the privileges to make changes
then open this annotated ontology in Protégé and perform the actual edits there. Wikis
provide a natural forum for discussions, and the provenance information for suggested
changes is easy to archive. Wikis, however, are not intended for ontology development
and users cannot easily edit class definitions using this kind of framework. For example,
in BiomedGT, curators must switch to Protégé to make the actual changes.

The coefficientMakna and Cicero tools (also based on wikis) implement the DILI-
GENT methodology for collaborative development [3, 19]. The DILIGENT workflow
focuses on the process of argumentation. The users discuss issues, which are usually
specified at the ontology level (e.g., how should a particular classification be structured).
The users present their arguments, suggest alternatives, agree and disagree with one an-
other, and vote on the resolution. The editing environment explicitly supports these steps.

1 http://biomedgt.org

http://biomedgt.org

22 T. Tudorache et al.

Tools such as BiomedGT, Cicero, and coefficientMakna are designed to support spe-
cific workflows and could potentially work very well in the projects that use that specific
workflow. The wiki-based tools have a simple interface that is best suited for making
simple changes to the ontology. Wikis provide a natural forum for discussions, and the
provenance information for suggested changes is easy to archive. However, these tools
inherently cannot address the requirement of supporting ontology editing that conforms
to a different workflow than the one for which they were designed. In the development
of Collaborative Protégé, one of our goals is to make as few assumptions as possible
about the editorial workflow that users will have and to develop mechanisms to make
the tools customizable for different workflows.2 Furthermore, these implementations do
not provide structured access-control mechanisms.

4 Architecture of Collaborative Protégé

Our laboratory has developed Protégé—a widely used open-source ontology and know-
ledge base editor [6, 13]. At the time of this writing, Protégé has more than 100,000
registered users. Users can build ontologies in Protégé using different representation
formalism ranging from Frames, to RDF(S) and OWL, and store them in file or database
backends. Protégé is both robust and scalable and is being used in production environ-
ment by many government and industrial groups. The ontology and knowledge base
API and the plugin architecture – one of the most successful features of Protégé, allow
other developers to implement their own custom extensions that can be used either in
the Protégé user interface or as part of other applications.

Protégé can be run as a standalone application, or in a client–server setting. In the
client–server mode, ontologies are stored on a central Protégé server. Users access the
ontologies on the server to browse and edit them through desktop or web Protégé clients.
The client–server mode uses the Remote Method Invocation (RMI) mechanism of Java.

We have developed Collaborative Protégé as an extension to the client–server Protégé.
Collaborative Protégé enables users who develop an ontology collaboratively to hold
discussions, chat, annotate ontology components and changes—all as an integral part
of the ontology-development process. The key feature of Collaborative Protégé is the
ability to create annotations. In this context, annotations are typed comments (e.g. ex-
ample, proposal, question, etc.) attached to ontology components, or to the descriptions
of ontology changes, or to other annotations. We define the structure of the annotations
in the Changes and Annotations ontology (ChAO), which we describe in Section 5.

Figure 1 gives an overview of the main components of Collaborative Protégé. The
Protégé server has an ontology repository that contains all the ontologies that Protégé
clients can edit in the collaborative mode. The repository has ChAO knowledge bases
(instances of the ChAO classes) for each of the domain ontologies in the repository.
These instances represent the changes and the annotations for the corresponding ontol-
ogy. Several related domain ontologies can share the same ChAO knowledge base. For
example, in Figure 1, the ATHENA-DSS and the Guideline ontologies share the same
ChAO knowledge base, while the NCI Thesaurus has its own ChAO knowledge base.

2 We are currently working on adding customizable workflow support for Collaborative Protégé,
but this work is outside of the scope of this paper.

Supporting Collaborative Ontology Development in Protégé 23

Fig. 1. The client–server architecture of Collaborative Protégé. The users work in Protégé
clients or in other Protégé-based applications. All the changes made by a user in a client are sent
to the server, and are immediately propagated to all other clients. The server has an ontology
repository and several APIs to support the collaborative functionalities. Each domain ontology
in the server repository has a Changes and Annotations knowledge base (ChAO KB) associated
with it. This knowledge base contains instances of the ChAO ontology that describe the changes
and annotations for the specific domain ontology.

When a user edits the domain ontology in the Protégé client, each change that the
user performs, is sent to the server. The server then performs several actions: (a) up-
dates the central (server-side) ontology; (b) pushes the change to the other clients so
that other Protégé users can see them immediately; and (c) creates one or several ChAO
instances that represent the change [11]. The server also pushes the changes in the
ChAO knowledge bases to the Protégé clients. When users create an annotation in the
Protégé client, the Protégé server adds the corresponding instances to the ChAO know-
ledge base.

The server also provides several layered Java APIs for accessing the collaborative
features. The Changes API provides methods for getting the structured log of ontology
changes, to get detailed information about a change (like author and date of the change),
and transactions – changes that are composed of several atomic changes, which are
executed together as one single change. The Annotations API provides methods for
adding annotations to ontology components and changes, for accessing the meta-data
of an annotation (e.g. provenance information), to get the discussion threads, and so
on. The Ontology Components API has common methods for both the Changes and
the Annotations API and supports the access to the ontology components (e.g. classes,
properties, individuals) stored as instances in the ChAO knowledge bases. The Ontol-
ogy API has methods for accessing and changing the content of the ontologies and
knowledge bases. It also provides support for transactions, caching, for multiple back-
ends and support for the client-server architecture. The layered APIs can be used by
other applications to access all domain ontologies as well as the collaborative informa-
tion from the ChAO knowledge bases stored on the server side.

24 T. Tudorache et al.

Annotations

Ontology components/axioms

Changes

Workflows

Roles

create
proposal

for

approveis about

is about

applies to has
privilige

Fig. 2. Representation modules for collaborative ontology development. The Ontology com-
ponents module represents the ontology elements. The Changes module captures declarative rep-
resentations of changes to these elements. The Annotations module represents different types of
annotations users can make about ontology elements and changes. The Workflows module repre-
sents activities and tasks in collaborative ontology development. The arrows in the diagram are
labeled with sample relationships that may exist between classes in one ontology and another.

5 Ontologies for Supporting the Collaborative Development

Collaborative Protégé uses a set of ontology modules to drive the collaborative devel-
opment process (Figure 2) .

The Roles module describes the users, roles, operations and policies that apply to a
certain ontology. The Protégé server uses the Roles module for checking the users cre-
dentials at login time, and for determining whether a user is allowed to perform a certain
operation based on the policies attached to an ontology instance. A user is represented
as an instance of the User class and can play several roles (instances of Group class).
For example, a user Ricardo can play the role of software developer and of editor. New
roles can be easily added by creating new instances of Role, if a certain project requires
them. To each ontology instance we associate a set of policies that define what opera-
tions are allowed for a role. For example, the NCI Thesaurus would be a represented
as an instance of the Project class and would have associated to it a set of policy
instances. One of the policies would allow editors to change the ontology. Because Ri-
cardo is an editor, he will be allowed to write to the ontology, while for non-editor users
the write access will be denied.

The Workflows module provides a formal language for describing workflows for col-
laborative ontology development. The Workflow class represents the workflow object.
Each instance of this class describes a workflow (e.g., an approval workflow or a vot-
ing workflow). Each workflow is associated with a set of initialization parameters, a
workflow target, a partially ordered set of activities or states. For example, a workflow
for a change proposal can be attached to a particular class in an ontology and would
guide the flow of operations in the collaborative platform (e.g. first, start a proposal,
then users votes, then count votes, then take a decision, etc.). We envision that future
versions of Collaborative Protégé will provide flexible workflow support that would al-
low us just by changing a workflow description in the Workflow module to regenerate
the collaborative platform to use the new workflow description.

The Ontology Components module provides a meta-language for describing represen-
tational entities in different ontology languages. For example, it contains classes such

Supporting Collaborative Ontology Development in Protégé 25

as Class, Property, and Instance. An instance of a Class represents a reified
object for a real class in an ontology (e.g. in the ATHENA-DSS ontology, we would
have an instance of Class, called Guideline). The Ontology Components module
provides classes for representing entities in OWL, RDF(S) and Frames. Collaborative
Protégé uses this ontology, when users add comments to ontology components and
also for change tracking. For example, if the user adds a comment to the Guideline
class, the annotation instance will be attached to the corresponding Class instance
(Guideline) in the Ontology Components module. This instance also references all
the changes made to that class, and all other comments and annotations that users have
attached to the class. For future versions, we are considering integrating the Ontology
Metadata Vocabulary (OMV) [12] for the representation of OWL language constructs.

The Annotations module represents the different types of annotations that users make.
The annotation types are extensions of the Annotea [8] annotations and contain concepts
such as Comment, Question, Advice, Example, and so on. Each comment or annotation
is linked to one or several ontology elements, or changes, which are represented in the
ontologies describing Ontology components and Ontology changes [11]. If
users need a new annotation type, they can simply extend this ontology by creating a
new subclass of the Annotation class. In fact, users in our evaluation (Section 7)
found this feature critical.

The Changes module contains classes representing different types of changes that can
occur in an ontology. For example, an instance of the class Class Created will
represent a class creation event that references the Class instance from the Ontology
Components module corresponding to the new class in the domain ontology. One of
the challenges that we are facing is that each ontology language has its own types of
changes. For example, in a Frames ontology, changing the domain of a slot will be
recorded as a domain change event, while in OWL, the real change would actually be a
remove and add domain axiom for a certain property. We plan to address this issue by
defining a common layer for changes such as creating a class or adding a subclass and
then creating subontologies for changes that are unique to each of the languages.

These service ontologies reference the components in the domain ontology. However,
note that the domain ontology does not have references to the annotations, changes, and
so on. Thus, the developers have the choice of whether or not to make their annotations
public when they publish the ontology itself.

6 User Interface

The user interface of Collaborative Protégé (Figure 3) is implemented as a graphical ex-
tension of Protégé. Panel A in Figure 3 shows the class tree, Panel B shows the selected
class information (in this case Gene Product)—just like in the original Protégé user
interface, while panel C displays the collaborative tabs. Each of the collaborative tabs
supports one of the several collaboration features. For example, in the Annotations tab,
the user can add comments to ontology components; in the Changes tab, the user may
see the change history of the selected class and comment on a change; in the Search tab,

26 T. Tudorache et al.

Fig. 3. The Protégé user interface, with the Collaborative Protégé plug-in. This screen cap-
ture shows the OWL Classes tab, in which the user edits and browses the classes that describe
a domain ontology – here the NCI Thesaurus. Panel A shows the class tree; panel B displays
the form for entering and viewing the description of the selected class Gene Product, as a
collection of attributes; and panel C shows the discussion among users about this class.

the user can search all annotations on different criteria; in the Chat tab, the user may
discuss with other online users, and so on.

The Annotations tab is the default tab that users see when logging into Collab-
orative Protégé. The Annotations tab shows the annotations that are attached to the
selected class in the tree (it also works for properties and individuals). The small call-
out icon shown in the class tree (Figure 3) next to the class name, indicates that the
class has annotations. The lower part of the Annotations Tab shows the details of the
selected annotation (e.g. the author, creation date, annotated entity, etc.). The annota-
tions shown in the user interface are instances of the Annotation class. The user can
create annotations of specific type (for example, Comment, Question, Example,
Proposal, etc.). These types are defined in the Annotations ontology as subclasses of
the Annotation class. Users can also reply to existing comments or notes—creating
discussion threads related to a specific entity (Figure 3). The user may filter the dis-
played annotations by using one of the filtering criteria available at the top of the An-
notations Tab. For example, she can filter by author, date, type and body of annotation.

Because the user interface takes the annotation types from the Annotations ontol-
ogy—they are subclasses of the Annotation class—users can create their own types
of annotation. To create a new annotation type, the user can edit the Annotations on-
tology itself, add the new type as the subclass of the Annotation class, define any
additional properties that this custom-tailored annotation type should have, and the new
annotation type will be available for use in Collaborative Protégé. In fact, in our evalu-
ation (Section 7) users have defined their custom annotation type.

Supporting Collaborative Ontology Development in Protégé 27

Fig. 4. Two of the collaborative tabs. The left screenshot shows the Discussions Thread tab
where users can add comments on the ontology. The right screenshot is the Chat Tab, which
allows users to chat and exchange internal and external links.

The Discussion Thread tab has a similar user interface and features as the Anno-
tation tab (Figure 4). However, the annotations from the Discussion Thread tab are not
attached to a particular ontology component, as the other annotations, but refer to the
ontology itself. For example, users may discuss modeling patterns, or naming conven-
tions that are broader in scope and that should apply to the whole ontology, rather than
to individual ontology components.

The Changes Tab shows a chronological list of all the changes for the selected
ontology component. For each change, the tab shows the change details (e.g. author,
date, sub-changes, etc.). Users may also comment and have discussion threads related
to a certain change as also shown in our example.

Users may also search all annotations based on different criteria in the Search Tab.
For example, a user can search for all annotations of type Comment that have been
made by an author eldh between 05/14/2007 and 05/14/2008. The search result
will show all the annotations that satisfy the criteria and will provide direct access to
the annotated ontology elements or changes.

One of the popular features of Collaborative Protégé is the Chat Tab (Figure 4).
Users connected to the Protégé server can exchange live messages. The chat panel sup-
ports HTML formatting of the message, such as bold, italics, highlight. One feature
that sets the Collaborative Protégé chat functionality apart from other chat clients is the
support for sending internal and external links. An internal link points to an ontology
component. In the example in Figure 4, one of the users sends an internal link to the
Gene class. The other user who is receiving the message can click on the internal link

28 T. Tudorache et al.

and see the definition for the class mentioned in the chat. Thus, users can see the full
context of the discussion in the chat.

7 Evaluation

We have performed the formative evaluation of Collaborative Protégé in the context
of the ATHENA-DSS project. ATHENA (Assessment and Treatment for Healthcare:
EvideNcebased Automation) [7] is a clinical decision-support system that generates
guideline-based recommendations for the management of patients suffering from some
clinical conditions. The system, developed as a collaboration between VA Palo Alto
Healthcare System and Stanford University since 1998, is integrated with the VA’s
Computerized Patient Record System for a clinical demonstration, evaluation, and use.
Initially developed for the management of hypertension, developers are extending it to
include the management of chronic pain and diabetes, and the screening of chronic kid-
ney disease. The end-users of the system are clinicians who are making decisions on
the management of care for patients.

ATHENA-DSS developers use Protégé to build and maintain their knowledge base.
The team of clinicians and knowledge engineers start with the narrative of a clinical
guideline and distill this narrative into a set of related Protégé classes and instances that
represent the guideline formally. Currently, the developers use an MS Access database
to save the recommendation text and the associated annotations that they create. Thus,
the information is spread across different tools and it is not linked. As the developers
formalize medical concepts, such as diseases and drugs, and instantiate guideline rec-
ommendations as parts of flow-chart-like clinical algorithms, they have to work closely
with one another, making sure that they do not overwrite one another’s work. As the
knowledge bases evolve, the developers have to ensure that the recommendations and
annotations in the MS Access databases and Protégé knowledge bases are in synch.

As Collaborative Protégé became available, the team of one clinician and two know-
ledge engineers evaluated it over the period of one month. The three users actively used
the tool during the evaluation period. They had access to the web pages that briefly de-
scribe the tool3 but they did not have any training on how to use Collaborative Protégé.
They were experienced users of the regular Protégé tool.

After the evaluation period, we conducted extensive interviews with the users to
gauge their level of satisfaction with the tool, to understand how they used the it, to
learn which features they liked and did not like, and to get new feature requests from
them. In addition, we examined the annotations and the changes that the developers
produced during the evaluation period to determine how they used the annotation and
discussion feature, what was the nature of their posts, and how much of their time spent
with the system was spent on collaboration activities compared to modeling activities.

8 Results

During the evaluation period, the developers entered 22 comments. All comments were
comments on instances. There were three short discussion threads. We observed two

3 http://protege.stanford.edu/doc/collab-protege/

http://protege.stanford.edu/doc/collab-protege/

Supporting Collaborative Ontology Development in Protégé 29

main uses for the comments in this project. First, the developers used the discussion
feature to ask each other questions. For instance, the clinicians described some model-
ing problems and asked the knowledge engineers for the best ways to model the situa-
tion. Conversely, the knowledge engineers asked about some clinical concepts that they
needed to represent.

Each clinical guideline has a narrative description and a set of qualitative parameters.
The ATHENA-DSS developers represent each guideline as classes and instances in the
ATHENA-DSS knowledge base. The developers found that annotations provided a good
way to record the narrative and the parameters of the original guideline and to link them
to the ontology components that represent the guideline. In a sense, the information
about the original guideline provided the background information for ontology compo-
nents, and annotations were a natural way to represent this link. The ATHENA-DSS
developers currently store the information on the original guidelines in an MS Access
database and they wanted this information to be accessible during ontology browsing.
Because the reference guideline contains not only text, but a number of additional fields,
we used the flexible design of Collaborative Protégé to produce a custom-tailored an-
notation type for ATHENA-DSS. We created a subclass of the Annotatation class,
a GuidelineComment class. This subclass contained the fields specific to that type
of annotation, such as quality of evidence and recommendation code. Because the Col-
laborative Protégé implementation simply displays the subclasses of the Annotation
class as its available annotation types, we did not need to change any code to display
the custom-tailored annotation. The ATHENA-DSS developers found this flexibility to
be a particularly useful feature. They reported that they are now considering porting all
the annotations from the MS Access databases to Collaborative Protégé as annotations.
They cited several advantages of this approach in our interviews: First, they will be able
to stay within one environment and not have to maintain the synchronization between
the two sources. Second, they can see the reference source immediately as they browse
the instances and can understand why the guideline was modeled the way it was. After
we provided them with the new annotation type, about 25% of their comments were of
this type.

In general, the members of the ATHENA-DSS team found Collaborative Protégé
“very useful.” They appreciated that the knowledge engineers could see the questions
from the clinician in context of where the question was asked (rather than in an email,
detached from the ontology). As one of the participants told us “It’s just there, at the
point where the problem is.”

The ATHENA-DSS developers did not use the chat feature, mainly because they
were never on-line at the same time. Another group that is currently evaluating Col-
laborative Protégé (the editors of the the NCI Thesaurus) found the chat to be one of
the more useful features. The main difference between the two groups is that the sec-
ond group is much larger and ontology development is their primary task. Thus, most
editors are on-line editing the ontology during their workday.

In our interviews, the ATHENA-DSS developers indicated other potential uses that
they see for the annotation features. These uses included recording detailed design ra-
tionale, having one developer explain to the others how he is approaching a specific

30 T. Tudorache et al.

modeling problem in the context of the ontology, and having developers educate new
users on the structure and intricacies of the ontology.

9 Discussion and Future Work

The analysis of the results, even from this fairly small evaluation period, points to sev-
eral issues. First, users found Collaborative Protégé useful and did not require any spe-
cial training to use it. We know that they did not find or use all the features that were
available, and we expect that they would use the collaboration features even more ex-
tensively after a short training session (or with better documentation).

Second, the innovative use of Collaborative Protégé features points to the versatility
of the tool. In fact, some of these use prompted us to consider new features. For exam-
ple, we might link the tool to an issue-tracker system, to enable users to see which task
assignments have been made as part of the discussion, and to track their progress.

Third, the flexibility of the tool and the ease of extending it with new annotation
types proved crucial in the ATHENA-DSS project. We envision that other users will
create their own annotation types, with properties that are relevant in their settings.

One of the surprising findings for us (which we also observed in other settings) was
that users do not add annotations to changes, but annotate only ontology components (in
this case, instances). Even the rationale for changes themselves is recorded at the level
of the ontology component, not the change or a group of changes. This observation
suggests that users think in terms of ontology components rather than changes, even as
they are closely involved in ontology editing.

In Collaborative Protégé, facilities for reaching consensus, recording design ratio-
nale, and noting outstanding issues are an integral part of the process of ontology brows-
ing and editing. As users examine, say, a class in the ontology, they can immediately
see all the discussion and questions pertaining to this class, whether there was any con-
tention in its definition, alternatives that the authors considered. An editor, when coming
upon a class that, he feels, must be changed, can post a request immediately, in the con-
text of this class. This dual advantage of context-sensitivity and archival character of
annotations adds the greatest value to Collaborative Protégé compared to discussion
lists and issue trackers that are not integrated with an ontology environment.

Our infrastructure and the use of ontologies to represent many of the components that
drive our software, enables other developers to reuse these components easily. Specifi-
cally, while Collaborative Protégé uses all the service ontologies described in Section 5,
the service ontologies themselves are not specific to Protégé. We expect that other de-
velopers will reuse the ontologies in their tools, thus providing interoperability between
the tools. For instance, different tools can implement their own mechanism for support-
ing or displaying discussions. If they use the same annotation ontology, then annotations
created in one of the tools can be visible in the other tool.

There are many outstanding issues, however, that we must address in order to support
truly collaborative ontology development.

In our original model, each annotation annotates a single object: a single class in
the ontology, a single instances, a single other annotation. However, in the ATHENA-
DSS use case a single guideline description could refer to different concepts such as
hypertension and diabetes. Thus, there must be a way of associating an annotation to

Supporting Collaborative Ontology Development in Protégé 31

several different objects. We do not currently have such support in the user interface.
However, because annotations are simply instances, the annotates property can have
more than one value and thus reference more than one object.

While we have a set of annotation types for proposals and voting, we do not have
any workflow support for it. Our users (in ATHENA-DSS, and other projects) indicated
that the proposals feature would be much more useful with such workflow support.
For instance, when someone initiates a new round of voting, a workflow engine might
inform other users that they are expected to vote, can tally the votes or wait for a certain
period of time to elapse, and can produce the voting result.

Currently, Collaborative Protégé has only simple support for different user roles. In
the future, we plan to adopt a policy mechanism that would enable us to describe privi-
leges of users with different roles at different levels of granularity. For example, not all
users in a project may have the privileges to create change proposals or to comment on
the propsals. Some users may be able to edit only a part of the ontology. We plan to an-
alyze the different scenarios and workflows that the biomedical ontology-development
projects employ and add flexible support for roles and policies in future versions.

Finally, as we studied the different workflows that the projects described in the intro-
duction to this paper used, one thing became clear: Developers of biomedical ontolo-
gies need tools that are flexible enough to work with different workflows. For instance,
a group of users working together on developing an ontology in the context of a specific
project will have different requirements compared to an open community developing a
lightweight taxonomy that anyone can edit. In some cases, tools should support spe-
cific protocols for making changes, where some users can propose changes, others can
discuss and vote on them, and only users with special status can actually perform the
changes. At the other end of the spectrum are settings where anyone can make any
changes immediately. Thus, tools need to support different mechanisms for building
consensus, depending on whether the environment is more open or more controlled.

We are currently evaluating Collaborative Protégé in several other settings: the de-
velopment of the NCI Thesaurus, the development of the Software Resource Ontology
to be used by the NIH Roadmap’s NCBCs, the development of the 11th revision of the
International Classification of Diseases (ICD-11) at the World Health Organization, and
other projects. These projects are all active ongoing projects and have different scope,
workflow, the number of contributors, and so on. We expect to these evaluation to pro-
duce additional requirements for the tools and also to demonstrate innovative uses of
the capabilities that we described here.

Acknowledgments

This work was supported in part by a contract from the U.S. National Cancer Institute.
Protégé is a national resource supported by grant LM007885 from the United States
National Library of Medicine. Initial development of ATHENA-DSS for diabetes mel-
litus is supported by the Palo Alto Institute for Research and Education at VA Palo
Alto Health Care System. Views expressed are those of the authors and not necessarily
those of the Department of Veterans Affairs. We are indebted to Susana Martins, Martha
Michel, and Mary Goldstein of the VA Palo Alto Healthcare System for their help with
the evaluation and for their insightful feedback on the tool.

32 T. Tudorache et al.

References

1. Auer, S., Dietzold, S., Riechert, T.: OntoWiki–a tool for social, semantic collaboration. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)

2. OBI Consortium, http://obi.sourceforge.net/
3. Dellschaft, K., Engelbrecht, H., Barreto, J.M., Rutenbeck, S., Staab, S.: Cicero: Tracking

design rationale in collaborative ontology engineering (2008)
4. Finin, T., Joshi, A., Kagal, L., Niu, J., Sandhu, R., Winsborough, W., Thuraisingham, B.:

Rowlbac: Role based access control in owl. In: ACM Symposium on Access Control Models
and Technologies (SACMAT 2008), Colorado, US (2008)

5. Gangemi, A., Lehmann, J., Presutti, V., Nissim, M., Catenacci, C.: C-ODO: an OWL meta-
model for collaborative ontology design. In: Workshop on Social and Collaborative Con-
struction of Structured Knowledge at WWW 2007, Banff, Canada (2007)

6. Gennari, J., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriksson, H., Noy,
N.F., Tu, S.W.: The evolution of Protégé: An environment for knowledge-based systems
development. International Journal of Human-Computer Interaction 58(1) (2003)

7. Goldstein, M.K., et al.: Translating research into practice: organizational issues in imple-
menting automated decision support for hypertension in three medical centers. Journal of
the American Medical Informatics Association 11(5), 368–376 (2004)

8. Kahan, J., Koivunen, M.-R.: Annotea: an open RDF infrastructure for shared web annota-
tions. In: The 10th International World Wide Web Conference, pp. 623–632 (2001)

9. Muñoz Garcı́a, O., Gómez-Pérez, A., Iglesias-Sucasas, M., Kim, S.: A Workflow for the
Networked Ontologies Lifecycle: A Case Study in FAO of the UN. In: Borrajo, D., Castillo,
L., Corchado, J.M. (eds.) CAEPIA 2007. LNCS (LNAI), vol. 4788, pp. 200–209. Springer,
Heidelberg (2007)

10. Noy, N.F., Chugh, A., Alani, H.: The CKC Challenge: Exploring tools for collaborative
knowledge construction. IEEE Intelligent Systems 23(1), 64–68 (2008)

11. Noy, N.F., Chugh, A., Liu, W., Musen, M.A.: A framework for ontology evolution in collab-
orative environments. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg
(2006)

12. Palma, R., Hartmann, J., Haase, P.: OMV: Ontology Metadata Vocabulary for the Semantic
Web. Technical report (2008), http://ontoware.org/projects/omv/

13. Protégé, http://protege.stanford.edu/
14. Rubin, D.L., Noy, N.F., Musen, M.A.: Protégé: A tool for managing and using terminology

in radiology applications. Journal of Digital Imaging (2007)
15. Sebastian, A., Noy, N.F., Tudorache, T., Musen, M.A.: A generic ontology for collaborative

ontology-development workflows. In: The 16th International Conference on Knowledge En-
gineering and Knowledge Management (EKAW 2008), Catania, Italy. Springer, Heidelberg
(2008)

16. Seidenberg, J., Rector, A.: The state of multi-user ontology engineering. In: The 2nd Inter-
national Workshop on Modular Ontologies at KCAP 2007, Whistler, BC, Canada (2007)

17. Sioutos, N., de Coronado, S., Haber, M., Hartel, F., Shaiu, W., Wright, L.: NCI Thesaurus:
A semantic model integrating cancer-related clinical and molecular information. Journal of
Biomedical Informatics 40(1), 30–43 (2007)

18. Sunagawa, E., Kozaki, K., Kitamura, Y., Mizoguchi, R.: An environment for distributed on-
tology development based on dependency management. In: Fensel, D., Sycara, K.P., My-
lopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870. Springer, Heidelberg (2003)

19. Tempich, C., Simperl, E., Luczak, M., Studer, R., Pinto, H.S.: Argumentation-based ontology
engineering. IEEE Intelligent Systems 22(6), 52–59 (2007)

http://obi.sourceforge.net/
http://ontoware.org/projects/omv/
http://protege.stanford.edu/

	Supporting Collaborative Ontology Development in Prot$\' {e}$g$\' {e}$
	Ontology Development Becomes Collaborative
	Requirements for Support of Collaborative Ontology Development
	Related Work
	Architecture of Collaborative Prot$\'{e}$g$\'{e}$
	Ontologies for Supporting the Collaborative Development
	User Interface
	Evaluation
	Results
	Discussion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

