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Abstact. The concept of multi-scale glide zoom window was proposed and a 
novel approach of multi-scale glide zoom window feature extraction was used 
for predicting protein homo-oligomers. Based on the concept of multi-scale 
glide zoom window, we choose two scale glide zoom window: whole protein 
sequence glide zoom window and  kin amino acid  glide zoom window, and for 
every scale glide zoom window,  three feature vectors of amino acids distance 
sum, amino acids mean distance and amino acids distribution, were extracted. A 
series of feature sets were constructed by combining these feature vectors with 
amino acids composition to form pseudo amino acid compositions (PseAAC). 
The support vector machine (SVM) was used as base classifier. The 75.37% to-
tal accuracy is arrived in jackknife test in the weighted factor conditions, which 
is 10.05% higher than that of conventional amino acid composition method in 
same condition. The results show that multi-scale glide zoom window method 
of extracting feature vectors from protein sequence is effective and feasible, and 
the feature vectors of multi-scale glide zoom window may contain more protein 
structure information.  

Keywords: Multi-scale glide zoom window, feature extraction, pseudo amino 
acid compositions, homo-oligomer. 

1   Introduction  

In the protein universe, there are many different classes of oligomer, such as mono-
mer, dimer, trimer, tetramer, and so forth. These quaternary structures are closely 
related to the functions of the proteins [1, 2]. Some special functions are realized only 
when protein molecules are formed in oligomers; e.g., GFAT, a molecular therapeutic 
target for type-2 diabetes, performs its special function when it is a dimer [3], some 
ion channels are formed by a tetramer [4], and some functionally very important 
membrane proteins are of pentamer [5,6,7]. It is generally accepted that the amino 
acid sequence of most, not all, proteins contains all the information needed to fold the 
protein into its correct three-dimension structure structure [8,9]. So, predicting oli-
gomers types from given protein sequences is important. 
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Garian [10], Chou and Cai [11], Zhang [12] predicted homodimer and non-
homodimer using decision-tree models and a feature extraction method (simple 
binning function), pseudo-amino acid composition feature extraction method, amino 
acid index auto-correlation functions respectively. Zhang [13] also predicted protein 
homo-oligomer types by pseudo amino acid composition. They found that protein 
sequences contain quaternary structure information. 

The concept of multi-scale glide zoom window based on the protein sequence was 
proposed in this paper. Three kinds of feature vector incorporating sequence order 
effect, that is,  amino acids distance sum, amino acids mean distance and amino acids 
distribution , were extracted from whole protein sequence glide zoom window and  
kin amino acid  glide zoom window of protein sequence. This new feature extraction 
method is combined felicitously with a support vector machine [14, 15] to predict 
homodimers, homotrimers, homotetramers and homohexamers.  

2   Materials and Methods  

2.1   Database 

The dataset1283 consists of 1283 homo-oligomeric protein sequences, 759 of which 
are homodimers (2EM), 105 homotrimers (3EM), 327 homotetramers (4EM) and 92 
homohexamers (6EM). This dataset was obtained from SWISS-PROT database [16] 
and limited to the prokaryotic, cytosolic subset of homo-oligomers in order to elimi-
nate membrane proteins and other specialized proteins. 

2.2   The Concept of Multi-scale Glide Zoom Window 

Multi-scale glide zoom window of every nature amino acid can be described as multi-
scale segment sequence (or, whole sequence) of one protein sequence, that is, the 
every scale glide zoom window of one nature amino acid can be decided by three 
factors: constructing rule of xth scale glide zoom window, kth protein sequence and 
ith amino acid. So, for one protein sequence, we can obtain many glide zoom win-
dows and extract feature vectors from every glide zoom window. This novel multi-
scale glide zoom window feature extraction method is very depends on constructing 
rule of every scale glide zoom window. In this paper, we extract feature vectors of 
one protein sequence from 2-scale glide zoom window. The first scale glide zoom 
windows of every nature amino acid are all the whole protein sequence, which pro-
vide panorama of a protein sequence. The second scale glide zoom window of every 
nature amino acid are kin amino acid glide zoom window, which begins from the 
position where every kin amino acid appears firstly and ends at the position where 
this kin amino acid appears lastly among the whole protein sequence, which focuses 
on corresponding local of every nature amino acid in a protein sequence. There are 
one first scale glide zoom window and twenty second scale glide zoom windows for 
every protein sequence. For example, for the protein sequence ‘MITRM-
SELFLRTLRDDP’, the first scale glide zoom windows of every nature amino acid 
are all the whole protein sequence itself ‘MITRMSELFLRTLRDDP’. The second 
scale glide zoom window of nature amino acid M is ‘MITRM’, the second scale glide 
zoom window of nature amino acid T is ‘TRMSELFLRT’, the second scale glide 
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zoom window of nature amino acid D is ‘DD’, and so on. If one nature amino acid 
does not appear in the protein sequence, the second scale glide zoom window of this 
nature amino acid is empty. The position and the width of every second scale glide 
zoom window are variable. Apparently, the second scale glide zoom window contains 
some sequence order information. The width of first scale glide zoom window is 
equal to the length of the protein sequence.  

2.3   The Multi-scale Glide Zoom Window Feature Extraction Methods 

Suppose the dataset consists of N homo-oligomeric protein sequences. kp  represents 

the kth protein sequence. iα  represents the ith amino acid of the nature amino acid set 
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Here, position indicator vector k
iv  shows where iα  locates in the kp . 

In order to extract various feature vectors of ,x k
iz  with k

iv , we defined a coordi-

nate axis vector ,x k
iw . 
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To integrate more sequence order information, according to the concept of multi-
scale glide zoom window, three kinds of feature vector of every scale glide zoom 
window are extracted to predict homo-oligomers. The three kinds of feature vector of 
every scale glide zoom window are defined as follows: 

1)  Amino Acids Distance Sum Feature Vector 

The amino acids distance sum feature vector of kp  is expressed as the following 20-

D feature vector: 

 , , , ,
1 20[ ,..., ,...,  ]   1, ,x k x k x k x k

iS k Nη η η= = L                                      (6) 

Here,  

  , , ( )    1, ,x k x k k T
i i iw v k Nη = × = L                                         (7) 

Conveniently, S1and S2 are respectively used to present the amino acids distance sum 
feature sets of first and second scale glide zoom windows. 

2)  Amino Acids Mean Distance Feature Vector  

The amino acids mean distance feature vector of kp is expressed as the following 20-

D feature vector: 
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Conveniently, M1 and M2 are respectively used to present the amino acids mean dis-
tance feature sets of first and second scale glide zoom windows.                                         
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3)  Amino Acids Distribution Feature Vector  

The amino Acids distribution feature vector of kp is expressed as the following 20-D  

feature vector: 
, , , ,
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Conveniently, D1 and D2 are respectively used to present the amino acids distribution 
feature sets of first and second scale glide zoom windows. It is easy to certified that 
D1 is equal to D2, so, we can marked D1 and D2 as D. 

2.4   Assessment of the Prediction System 

The prediction quality can be examined using the jackknife test. The cross-validation 
by jackknifing is thought the most objective and rigorous way in comparison with 
sub-sampling test or independent dataset test [17, 18]. During the process of jackknife 
analysis, the datasets are actually open, and a protein will in turn move from each to 
the other. The total prediction accuracy (Q), Sensitivity (Q(class(k))) and Matthew’s 
Correlation Coefficient (MCC) [19] for each class of homo-oligomers calculated for 
assessment of the prediction system are given by: 

1
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Here, M is the total number of classes, kp  is the number of correctly predicted se-

quences of k class protein homo-oligomers, ku  is the number of under-predicted 

sequences of k class protein homo-oligomers, kn is the number of correctly predicted 

sequences not of k class protein homo-oligomers, ko  is the number of over-predicted 

sequences of k class protein homo-oligomers. According to The dataset1283 used in 
this paper, M=4, class(1), class(2),class(3) and class(4) are 2,3,4 and 6 respectively. 2, 
3, 4 and 6 represent 2EM, 3EM, 4EM and 6EM respectively. 
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3   Results and Discussion 

3.1   The Results of Different Pseudo Amino Acids Composition Feature Sets 

C presents the feature set based on the amino acid composition approach [20]. 
Twenty-seven feature sets of pseudo amino acid composition (PseAAC) are con-
structed by feature sets D, M1, M2, S1, S2 of glide zoom window and C. The results of 
these twenty-seven PseAAC feature sets and feature set C with RBF SVM and one-
versus-one strategy in jackknife test are shown in table 1.  

From Table 1, we can see that the result of CDM1M2S2 is the best in all the feature 
sets, and the total accuracy is 75.53%, which is 6.71% higher than that of C. The 
accuracies of feature sets which include M1, M2 or both of them are higher than that 
of other feature sets which do not include M1, M2 or both of them. These results sug-
gest that, in every scale glide zoom window, the feature set of amino acids mean dis-
tance is more effective and robust than other feature sets. In addition, the accuracies 
of feature sets which include D, S1, S2 except M1 and M2 are near that of feature set C. 
The reasons are that there may be some redundancy and conflict information between 
these feature sets, or the unbalance of sample numbers among the four classes. 

Table 1. Results of 28 Feature sets with RBF SVM and one-versus-one strategy in jackknife 
test 

2EM 3EM 4EM 6EM Feature sets 
Q(2) % MCC(2) Q(3) % MCC(3) Q(4) % MCC(4) Q(6) % MCC(6) 

Q% 

C
CD
CM1

CM2

CS1

CS2

CDM1

CDM2

CDS1

CDS2

CM1M2

CM1S1

CM1S2

CM2S1

CM2S2

CS1S2

CDM1S1

CDM2S2

CDS1S2

CM1M2S1

CM1M2S2

CM1S1S2

CM2S1S2

CDM1M2S1

CDM1M2S2

CDM2S1S2

CM1M2S1S2

CDM1M2S1S2

91.57 
95.39 
92.23 
91.17 
95.12 
94.33 
92.89 
91.04 
94.60 
95.92 
92.36 
91.44 
91.96 
91.30 
91.17 
95.65 
92.23 
90.78 
94.07 
92.49 
92.36 
92.89 
91.04 
92.75 
92.89 
91.57 
92.23 
92.36 

0.3582 
0.6630 
0.5152 
0.7497 
0.3341 
0.6813 
0.5051 
0.7495 
0.3325 
0.6612 
0.5013 
0.5105 
0.5113 
0.5025 
0.7514 
0.3347 
0.5133 
0.7481 
0.3429 
0.5085 
0.5065 
0.5137 
0.4985 
0.5125 
0.5145 
0.4965 
0.5072 
0.5065 

42.86
32.38
50.48
53.33
32.38
36.19
50.48
53.33
32.38
28.57
53.33
53.33
53.33
53.33
53.33
30.48
53.33
53.33
32.38
53.33
53.33
52.38
53.33
53.33
53.33
53.33
53.33
53.33

0.5726
0.5276
0.6621
0.6511
0.5188
0.5150
0.6690
0.6511
0.5188
0.4922
0.6898
0.6765
0.6765
0.6573
0.6572
0.5102
0.6765
0.6634
0.5190
0.6899
0.6899
0.6831
0.6573
0.6900
0.6900
0.6635
0.6831
0.6831

38.53
33.03
57.49
55.35
33.95
37.61
55.35
55.05
35.17
32.11
55.66
57.49
56.57
55.66
55.05
33.33
56.27
55.35
37.61
56.27
56.27
56.27
55.96
56.27
56.27
54.43
56.57
56.27

0.3568
0.3611
0.5258
0.5053
0.3627
0.3753
0.5155
0.4989
0.3696
0.3569
0.5178
0.5183
0.5201
0.5065
0.4973
0.3641
0.5235
0.4995
0.3679
0.5233
0.5213
0.5235
0.5070
0.5273
0.5294
0.5019
0.5218
0.5250

18.48
1.09

29.35
30.43

2.17
3.26

26.09
30.43

3.26
1.09

25.00
30.43
29.35
32.61
31.52

1.01
30.43
31.52

3.26
26.09
26.09
26.09
32.61
26.09
26.09
32.61
26.09
26.09

0.3088 
0.0992 
0.4412 
0.4373 
0.1403 
0.1439 
0.4318 
0.4373 
0.1720 
0.0992 
0.3955 
0.4447 
0.4267 
0.4587 
0.4480 
0.0992 
0.4447 
0.4480 
0.1720 
0.4151 
0.4151 
0.4319 
0.4657 
0.4152 
0.4152 
0.4657 
0.4151 
0.4073 

68.82 
67.58 
75.45 
74.59 
67.73 
68.59 
75.06 
74.43 
67.81 
67.34 
74.98 
75.29 
75.29 
74.90 
74.59 
67.65 
75.45 
74.43 
68.12 
75.29 
75.21 
75.45 
74.82 
75.45 
75.53 
74.75 
75.21 
75.21  
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3.2   The Influence of the Unbalance of Sample Numbers among the Four  
Classes  

We used the weighted factor approach to investigate the influence of the sample un-
balance among the four classes. According to the number of four types of protein 
homo-oligomer, the weighted factor values of 2EM,  3EM, 4EM and 6EM are calcu-
lated as follow: 759/759, 759/105, 759/327, 759/92. The results of twenty-eight fea-
ture sets using weighted factor approach are shown in table 2. 

From table 2, we can see that, in the weighted factor conditions, the total accura-
cies of all feature sets except CS1S2 based on the two scale glide zoom window are 
higher than that of C. The result of CDM1M2S1 is the best, and the total accuracy are 
75.37%, which are 10.05 higher than that of feature set C. These results suggest that 
weighted factor approach can weaken influence of the unbalance of sample numbers 
among the four classes. 

Table 2. Results of 28 feature sets with RBF SVM and one-versus-one strategy in jackknife test 
using weighted factor approach 

2EM 3EM 4EM 6EM Feature sets 
Q(2)% MCC(2) Q(3) % MCC(3) Q(4) % MCC(4) Q(6) % MCC(6) 

Q% 

C
CD
CM1

CM2

CS1

CS2

CDM1

CDM2

CDS1

CDS2

CM1M2

CM1S1

CM1S2

CM2S1

CM2S2

CS1S2

CDM1S1

CDM2S2

CDS1S2

CM1M2S1

CM1M2S2

CM1S1S2

CM2S1S2

CDM1M2S1

CDM1M2S2

CDM2S1S2

CM1M2S1S2

CDM1M2S1S2

70.36 
76.02 
78.79 
78.00 
74.31 
76.81 
78.92 
78.79 
75.89 
75.76 
82.35 
78.52 
80.24 
78.52 
78.39 
65.88 
80.37 
80.24 
77.47 
82.48 
82.21 
79.18 
76.68 
83.27 
83.16 
80.50 
83.14 
83.53 

0.3577 
0.4105 
0.4881 
0.4647 
0.4163 
0.4363 
0.4838 
0.4723 
0.4327 
0.4271 
0.5150 
0.4833 
0.4931 
0.4763 
0.4735 
0.3722 
0.4797 
0.4837 
0.4424 
0.5172 
0.5085 
0.4843 
0.4546 
0.5246 
0.5255 
0.4830 
0.5176 
0.5223 

49.52 
53.33
59.05
59.05
57.14
55.24
60.00
60.00
58.10
57.14
60.95
59.05
57.14
60.00
59.05
62.86
56.19
60.00
58.10
61.90
61.90
57.14
62.86
61.90
61.90
60.95
61.90
61.90

0.4772
0.5213
0.5911
0.5532
0.5196
0.5371
0.5981
0.5677
0.5375
0.5300
0.6450
0.5991
0.5811
0.5713
0.5604
0.4681
0.5736
0.5866
0.5450
0.6520
0.6519
0.5848
0.5643
0.6522
0.6522
0.5899
0.6521
0.6568

63.91 
64.83
69.72
67.58
65.75
66.36
68.50
66.97
65.44
64.83
68.50
69.42
69.72
68.20
67.89
64.53
67.58
66.36
64.83
68.20
67.28
69.42
66.67
67.89
68.20
65.44
66.97
66.97

0.3859
0.4383
0.5127
0.5035
0.4571
0.4665
0.5041
0.5039
0.4609
0.4537
0.5279
0.5031
0.5265
0.5054
0.5025
0.4211
0.5117
0.5077
0.4686
0.5258
0.5164
0.5103
0.4823
0.5328
0.5322
0.5019
0.5236
0.5269

46.74
42.39
51.09
53.26
48.91
45.65
51.09
54.35
47.83
46.74
51.09
51.09
51.09
53.26
53.26
51.09
53.26
54.35
47.83
52.17
52.17
51.09
53.26
52.17
51.09
54.35
52.17
52.17

0.3752 
0.4092 
0.4983 
0.5188 
0.4237 
0.4305 
0.4982 
0.5356 
0.4312 
0.4127 
0.5463 
0.5020 
0.5275 
0.5355 
0.5270 
0.3296 
0.5533 
0.5443 
0.4485 
0.5646 
0.5595 
0.5102 
0.5264 
0.5648 
0.5513 
0.5529 
0.5646 
0.5647 

65.32 
68.90 
72.88 
72.02 
68.90 
70.15 
72.72 
72.49 
69.76 
69.37 
74.82 
72.64 
73.58 
72.56 
72.33 
64.22 
73.19 
73.19 
70.54 
74.98 
74.59 
72.88 
71.32 
75.37 
75.29 
73.19 
75.06 
75.29  

4   Conclusion  

A novel concept of multi-scale glide zoom window was proposed in this paper. Based 
on the concept of multi-scale glide zoom window, a protein sequence can be investi-
gated from two scale glide zoom windows (whole protein sequence glide zoom  
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window and kin amino acid glide zoom window). Twenty-seven feature sets were 
constructed by combining five kinds of feature sets of the two scale glide zoom win-
dows with amino acids composition to form pseudo amino acid compositions (Pse-
AAC). The results show that the twenty-six feature sets based on the two scale glide 
zoom windows are better than feature set C in the weighted factor conditions, and 
weighted factor approach can weaken influence of the unbalance of sample numbers 
among the four classes. In the three kinds of feature sets of the two scale glide zoom 
window, amino acids mean distance feature set is most effective and robust. It is 
demonstrated that the concept of multi-scale glide zoom window provide a new scope 
to investigate primary protein sequence, the feature sets extracted from multi-scale 
glide zoom window may contain more protein structure information. 
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