Massively Parallelized DNA Motif Search on the
Reconfigurable Hardware Platform
COPACOBANA

Jan Schroder, Lars Wienbrandt, Gerd Pfeiffer, and Manfred Schimmler

Department of Computer Science, Christian-Albrechts-University of Kiel,
Germany
{jasc,1lvi, gp,masch}@informatik.uni-kiel.de

Abstract. An enhanced version of an existing motif search algorithm
BMA is presented. Motif searching is a computationally expensive task
which is frequently performed in DNA sequence analysis. The algorithm
has been tailored to fit on the COPACOBANA architecture, which is a
massively parallel machine consisting of 120 FPGA chips. The perfor-
mance gained exceeds that of a standard PC by a factor of over 1,650
and speeds up the time intensive search for motifs in DNA sequences. In
terms of energy consumption COPACOBANA needs 1/400 of the energy
of a PC implementation.

Keywords: Motif finding, DNA sequence analysis, FPGA, High Perfor-
mance Reconfigurable Computing (HPRC).

1 Introduction

The discovery of regulatory sequences in DNA - called motif-finding - is one of the
most challenging problems in the field of bioinformatics. In fact there are problem
instances of motif-finding which are unsolvable by current techniques. There are
two reasons that make this problem so difficult: firstly, the parameters of a given
problem instance (like sequence length, motif length, grade of mutation) can
make it impossible to identify motifs due to background noise. Secondly, it is
computationally expensive. So a precise algorithm can fail to discover a motif in
a given sequence because its execution time exceeds rational means. We address
both problems with a new approach to motif searching making use of a novel
massively parallel architecture to speed up the execution time.

Motif searching has been an issue in many publications of the last ten years. As
the most popular approaches to this topic we reference MEME [T16] [T7] [I8] and
the similar Gibbs sampler [14] [I5] which iteratively develops matrices represent-
ing motifs of the input sequence using the expectation maximization technique;
the projection algorithm [I3] [20] which creates a representation of the highly
conserved region over all motif instances; and CONSENSUS [21] - a greedy ap-
proach which constructs likely motif candidates by aligning only small parts of
the genome at a time.

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 436-{447, [2008.
© Springer-Verlag Berlin Heidelberg 2008

Massively Parallelized DNA Motif Search on COPACOBANA 437

The algorithm IGOM (Tterative Generation of position frequency matrices)
has been published in [22]. This method iteratively develops a set of strings
which are likely to be instances of an underlying motif by featuring two new
ideas. It makes use of the structure of position frequency matrices of already
known motifs which imply a distribution on only one or two nucleotides in each
position rather than all four of them [19]. The sp-model has been introduced
in [22] to describe this restriction. This observation is utilized to develop a very
precise description of a kernel of the motif in the first few iterations of the
algorithm. This has the advantage that the likelihood of false positives which fit
to this description although not belonging to the motif is minimized. Regulatory
sequences that match the observations of the sp-model (for example the SigmaB
regulator in Bacillus subtilis [24]) are discovered easier and more accurately by
this algorithm compared to the other methods of motif searching.

The second key feature of IGOM is the surveillance of the expected false
positives which could arise from loosening the description of the motif. The
algorithm will only make those changes to the matrix where the quotient of valid
new candidates divided by the expected number of random strings which fit this
change - and appear in any sequence of the given length without relevance - is
maximal. The authors describe this quotient with the term signal to noise ratio
(SNR) because of its correlation to signal theory where one tries to maximize
the signal opposing to the background noise of the medium.

Further improvements of the algorithm has been published in [23]. The main
idea of this publication is a Boolean representation of motif kernels. Instead of
position frequency/weight matrices we use Boolean matrices to describe a motif.
A value of “1” in a Boolean matrix (BM) considers the nucleotide to be a valid
representation for a motif instance in the corresponding position [23]. It leads to
a huge improvement of the complexity and makes this method highly applicable
for special purpose architectures. Most of the methods in Bioinformatics gain
performance when applied to special hardware because of the small alphabet
sizes when dealing with DNA or protein sequences and simple operations on
the input data. We chose to implement the IGOM/BMA algorithm in hardware
because of its ideal qualifications:

1. The input data can be represented in a very efficient way with only two bits
per nucleotide

2. The algorithm can be parallelized in an ideal way because of the independent
search operations on the data.

3. The Boolean matrices used to represent motifs can be stored very efficiently
in hardware allowing many processes working on a single FPGA chip simul-
taneously.

The amount of biological sequence information is increasing more rapidly [I]
than the exponential performance growth of general purpose microprocessor-
based computers. Due to this observation highly optimized special-purpose com-
puters have been developed. Today, the technology of Field Programmable Gate
Arrays (FPGAs) exhibit impressive performance compared to microprocessor-
based machines, among other things in the field of bioinformatics. Successful

438 J. Schroder et al.

special purpose hardware are for example SPLASH 2 [2], JBits [3], BEE2 [4],
XD1000 [5], RASC RC100 [6], and DeCypher [7]. The recent massively parallel
FPGA-based architecture COPACOBANA [§] from SCIENGINES [9] is chosen
as target for the proposed motif search algorithm. Taking advantage of the hard-
ware architecture and the highly parallel nature of the algorithm we can acceler-
ate this method with huge efficiency. Implementing the iterative development of
motif kernels on the COPACOBANA we outperform a single desktop PC by a
factor of over 1,650. Taking into account the higher cost of the COPACOBANA,
a cost performance ratio would be fairer for comparison. This leads to a perfor-
mance per cost ratio up to five times higher compared to desktop PCs and of
course accordingly faster execution time. Additionally the power consumption
of PCs for the same task is much higher than that of COPACOBANA. We reach
an energy efficiency more than 420 times better than standard PCs.

This paper is organized as follows. In chapter 2lthe COPACOBANA hardware
is specified, in chapter [3 the implemented algorithm is described. Chapter [will
discuss the details concerning the implementation of the algorithm in hardware.
Performance analysis, conclusion and outlook will follow in chapters [l and Gl

2 COPACOBANA

The massively parallel computer COPACOBANA consists of 120 low cost FP-
GAs which are connected to a controller module by a bus system. It can be
integrated in any standard Local Area Network (LAN) environment and is fully
remotely controlled. Originally COPACOBANA has been developed as Cost-
Optimized PArallel COde Breaker in 2006. The goal was to break the 56-bit
Data Encryption Standard (DES) in 10 days for production and material cost
of less than $10,000. [I0] Actually it breaks DES in 7 days [8] in the mean. Due
to the universality of FPGA-chips [11] this machine is suited for all kinds of fine
grained parallel applications with low communication and memory requirements,
and with special attention to the cost/performance ratio.

The FPGAs are of the type Xilinz Spartan-3 1000 [12] (XC851000, speed
grade —4, FTG256 packaging). Each comes with 1 million system gates, 17,280
equivalent logic cells, 1,920 Configurable Logic Blocks (CLBs) equivalent to
7,680 slices, 120 kbit distributed RAM, 432 kbit Block RAM (BRAM), 24 dedi-
cated 18218 multipliers, and 4 digital clock managers (DCMs). Figure [I] depicts
the data path of COPACOBANA. Pluggable cards in DIMM format are hold-
ing 6 FPGAs each. Twenty of these cards are plugged into slots of a common
backplane together with a controller card. The latter is the interface to a host
computer via Ethernet LAN. It is transferring data and controlling the single
master bus system which is currently operating at up to 1 Mbit/s. The host com-
puter is executing a front-end software which uses an Application Programming
Interface (API) for accessing COPACOBANA. Additionally some parts of the
target algorithm are implemented here which for instance are sequential, per-
form a post- or preprocessing, or access a hard drive. This software represents the
highest control instance, because it initiates any action of the controller, hence

Massively Parallelized DNA Motif Search on COPACOBANA 439

Card 1 Card 2 Cand 3 Card 20
]
2 Spartan-3 Spartan-3 Spartan-3 Spartan-3
E ! il [“™1 | ® ® ® FPGAG ™
8 1000 1000 1000 1000
%
g
2
\“ Spartan-3 Spartan-3 Spartan-3 Spartan-3
| o] o]
® o o fPGA3
Controller 1000 1000 1000 1000
card — p— p— —
Spartan-3 Spartan-3 Spartan-3 Spartan-3
|
Ethemet 1000 1000 1000 00 0O ez 1000
— p— p— —
Virtex-4 Spartan-3 Spartan-3 Spartan-3 Spartan-3
| | .
12 1000 1000 1000 O 0O e 1000
1 o o o o
i i i i \ i
Data Bus 6

Fig. 1. COPACOBANA Data Path

it controls the entire machine. In other words, communication can not be initial-
ized by one of the 120 slave FPGAs because COPACOBANA does not support
interrupts. Therefore a static communication scheduling has to be considered for
the host software.

The controller provides the following addressing modes. A single FPGA can
be selected for writing and reading data. Any set of FPGAs on one card up to all
6 can be written to from the controller, and finally via broadcast the controller
can write data to all 120 FPGAs. Each of the FPGAS can be configured to suit
its purpose exactly: small processing units can be implemented on the chip that
are designed only for one specific task.

3 Algorithm

In this section a description of the BMA algorithm is given. Since we aim for
a massively parallel implementation (see section H) it will be slightly modified
with respect to the scoring function given in [22] and [23]. Given the input data
- a whole genome or a particular set of sequences - and a fixed motif length 2
the algorithm will develop motif kernels in increasing order by the likelihood
of their occurrence in a randomly distributed sequence. So assuming a normal
distribution of the input data we are interested in the least likely occurrence of
motif candidates in terms of over-representation. We will analyze the signal to
noise ratio (SNR) to find those candidates:

1. The algorithm starts with a single string of the motif length and specifies
the Boolean matrix.

2. Each iteration it will modify one column of the matrix so that two nucleotides
will represent the given position of the motif - following the conclusions of
the sp-model. The algorithm chooses the position in the matrix by analyzing

440 J. Schroder et al.

the SNR so it minimizes the probability of false positives and finds the best
representation of the motif.

3. Beneath all the matrices generated each round (one for every start string)
the best in terms of SNR are chosen and analyzed further if they are likely
to represent a real motif in the organism represented by the input data. We
will not discuss this third step in this paper since only the development of
motif kernels is the time consuming part of the method which we apply to
hardware.

For the sake of an efficient implementation we will restrict the algorithm in
the following way. In each iteration there will be one change of the matrix -
whether it is good or not in terms of SNR - and every change will add a “1”
to a column of the matrix where there was exactly one “1” before. This has the
great benefit that every matrix in the same round of the algorithm has exactly
the same value for the expected noise. So SNR can be compared easily only by
analyzing the number of candidates from the input data matching the describing
matrices. We can take great advantage of this restriction in the implementation
because it allows much simpler and smaller units processing the matrices.

3.1 Example

To illustrate how the algorithm works, we show a short example. Let the BM
look like the first matrix illustrated in figure Pl after the first iteration of the algo-
rithm. So the strings “GAAGT” and “GCAGT” match the matrix. In the second
iteration all strings that match all but one position of the BM will contribute
to a scoring matrix. For example, the string “GCAAT” would score for an “A”
in the fourth column, whereas the string “AAAAT” would not contribute at all
because it has too many mismatches in this iteration. After scoring all substrings
of the genome in this manner a scoring matrix like the second matrix in figure
could arise. With the identified maximum of the scoring matrix (marked in the
figure) the two strings “GAAAT” and “GCAAT” will be taken into the motif
kernel forming a new BM, which is depicted as the third matrix in figure 2

A01100 AO0xx41 A01110
C01000 Clx102 C01000
G10010 Gx13x2 G10010
TOO0O0OO1 TO0O100x T0OO0O0OO1

Fig. 2. Example: Boolean matrix at the beginning of an iteration, matching the strings
“GAAGT” and “GCAGT”, and a possible scoring matrix with the resulting new
boolean matrix after the iteration.

4 Hardware Implementation

4.1 Parallel Processing Scheme

Since we are starting without any knowledge about possible motif candidates, the
algorithm requires to analyze any possible position frequency matrix (PFM). For

Massively Parallelized DNA Motif Search on COPACOBANA 441

a motif length of 12 nucleotides there are 4'? = 16, 777,216 such PFMs. There
is no data dependency between any two of them. So, we can use a trivial par-
allelization scheme where a maximum number of PFMs is computed in parallel.
COPACOBANA contains 120 FPGA chips. Each of them can be configured to
provide 32 independent search entities. This accumulates to 3, 840 search entities
to work concurrently.

The DNA is viewed as a sequence over the alphabet {A, C, G, T}. Every char-
acter can be represented with two bits. The restricted size of the local memory of
the Spartan-3 chips does not allow to store the complete DNA sequence in every
search entity. Instead, it is provided by globally broadcasting it to all search en-
tities character by character. Each entity continuously accumulates the relevant
information to update its particular PFM using the globally broadcasted data
stream.

Since 4'? is greater than 3,840 it is necessary to compute the complete prob-
lem in 4'2/3,840 = 4,370 subsequent identical computation runs. Each run
requires a fixed number of iterations for updating the PFMs. It has turned out
that more than six iterations do not provide useful results anymore. Therefore,
the complete DNA sequence has to be broadcast to all processors a total number
of 4,370-6 = 26,220 times. In our implementation, the DNA sequence is locally
stored in the controller of COPACOBANA in order to reduce the traffic on the
TCP/IP connection.

The PFM analysis is done in four steps:

1. The host application sends a command to initialize the search entities on
the FPGAs. This command also provides the initialization matrix in form of
an index. The index is in the range from 0 to 16, 777,215, each identifying a
unique PFM.

The following steps will be repeated six times:

2. Each search entity scores all subsequences of the broadcasted DNA sequence
against its own PFM.

3. The local results are read from the search entities. The best scores are stored
in sorted lists on the host. There is one list for each iteration after initializa-
tion, so there will finally be six lists in this case. The number of best results
saved is user defined.

4. Finally the host sends an update command to alter the position frequency
matrices in the search entities.

After all six iterations have finished the next initialization is done with new
indices, i.e. with new PFMs. The algorithm starts again with step 1. When the
application has finished the lists with the user defined amount of best results for
each of the six iterations are ready for further analysis.

4.2 FPGA Design

The main processing unit is the search entity which provides the core function-
ality of the algorithm. 32 search entities fit on a single FPGA chip and thus can
work in parallel. In the following one of those is described in detail.

442 J. Schroder et al.

Every search entity has a unique identifier for individualization. The iden-
tifier is a natural number starting with zero. One search entity consists of an
implementation of the boolean position frequency matrix and its matching func-
tionality, a score counter and a counter for differing sequences, further called
“difference counter”.

Initially, the search entity receives an index which corresponds to a gene se-
quence of length 12, the expected motif size. By adding the identifier of the
search entity to the incoming index every entity generates its individual initial-
ization sequence. Hence, an FPGA has to be provided only one time with an
initialization index to initialize 32 search entities at once. The initialization se-
quence is easily converted to the matrix structure by using lookup tables. “A”
is “1000”, “C” is “0100” etc.

An incoming gene sequence is matched with the position frequency matrix. If
the sequence matches the score counter increments a locally stored score value.
For every matrix position a counter is provided which is increased whenever the
string under consideration has a mismatch in this position and it is the only
mismatch with the PFM. This implicates that with a motif size of 12 we need 48
counters for each search entity. Given the fact that only one counter per search
entity has to be accessed at maximum in one clock cycle, the counters can easily
be stored in the local block RAM which is available in every Spartan-3 FPGA.

The only data locally stored by the difference counter is the maximum counter
value and a corresponding gene sequence which causes this counter to increment.
This makes a matrix update fast and easy. The update command converts the
sequence to the matrix structure like for the initialization followed by a simple or-
operation on the old matrix. Every search entity provides its position frequency
matrix and score as result.

The control of the motif search operation is realized by the search control
entity. It manages the incoming control instructions and user data from the host
application. The user data is read from the bus in 64 bit blocks which equals
32 characters. It is then provided to a FIFO buffer as a data stream. The buffer
always provides a window of 12 characters as data input to the search entities.
The search control entity also provides the best result of the search entities to
the host application. Therefore the results are compared by their score. The
comparison is made by comparators which are aligned to each search entity
in a chain. Every comparator compares the result of its predecessor and one
search entity. If the best result is fetched by the host application its score is
cleared on the corresponding search entity. Hence, the second best result will be
automatically provided to the host.

Figure Bl shows a simplified overview of the FPGA design.

4.3 Data and Control Flow on the FPGA

The search entities are organized on the FPGA in two chains due to the two
rows of block RAM on the Spartan-3. All user and control data is buffered by
one entity and provided to the successor in its chain in the next clock cycle. This
keeps data paths short and permits higher frequencies. Except for the command

Massively Parallelized DNA Motif Search on COPACOBANA 443

Search Entities ——[|
Block RAMs with <
Access Managers L

Comparators <]

Search Control Entity ——

COPACOBANA Bus \

Fig. 3. FPGA design overview

— 4 | counter

s)|nsal ajeipawsiul
S)|NsaJ ajeIpaw.lul

DNA Sequence
DNA Sequence

a1 |
=
Ik final result

Fig. 4. FPGA dataflow overview

to read a result, all control instructions plus the user data from the host are
provided by the search control entity directly to the first two search entities in
the chains.

The comparators for the results are organized in two chains along the search
entities as well. Every comparator compares the result of its predecessor and
one search entity in one clock cycle. At the beginning of the chain the first
comparators compare the results of the last two search entities. So the data flow
of the results is contrary to the data flow of the sequence data. This again keeps
data paths short because the maximum result of both chains is provided back
to the search control entity after a final comparison. The signal to clear the best
results score after being fetched by the host is routed through the comparator
chain as well.

The overview of the design flow is shown in figure [l

444 J. Schroder et al.

5 Performance Analysis and Conclusion

5.1 C++ Implementation

For comparison the DNA motif search algorithm has been implemented in C++.
It has been compiled with the GNU Compiler Collection (GCC) v4.0.2 and
the “-03”-flag for highest optimization. Additionally the “-march=...”-flag and
other optimization flags like “-msse3” were set for the corresponding target
architecture. The testing systems were a standard PC with an Intel Pentium IV
at 2.8 GHz and a PC with an AMD Thurion64 X2 dual core at 1.9 GHz running
a Linux operating system, and a Macintosh Pro with two Intel Xeon 5150 dual
cores at 2.6 GHz running Mac OS X. The implementation uses static memory
for the gene sequence, the score and the counter values for the missed matches.
So no new memory is allocated dynamically at runtime except for new results in
the lists. Since we store only 100 results for each iteration the allocations are very
scarce and do not significantly delay the process. Actually the host application
using COPACOBANA does the same. For the dual core architectures the task
was equally divided into two processes.

Because the algorithm can not be parallelized for one processing core the ap-
plication takes one initial position frequency matrix at a time. But we made one
significant improvement which could not be applied to the parallelized solution.
This application does not always perform six iterations per initialization index.
It does a further iteration only if the position frequency matrix was updated in
the preceding one. This causes a significant speedup for the iterative solution.

5.2 Performance

The applications were configured to analyze the DNA sequences of Cowpoz Virus
(280k bases), Rickettsia canadensis str. McKiel (1.2M bases) and Bacillus sub-
tilis (5.9M bases) as an example. The desired motif size is 12 and the number
of iterations is set to 6. Table [0l shows the duration of the computation and
the speedup of COPACOBANA vs. the specified architectures. Figure [shows

300

250+ M 100 parallel Pentium IV (2.8 Ghz)
W 100 parallel Turion64 X2 (1.9 Ghz)
O 100 parallel Xeon 5150 (2.6 GHz)
2007 O COPACOBANA

150

Computation time (h)

1

Cowpox Virus (230k bp) Rickettsia canadensis (1.2M bp) Bacillus subtilis (5.9M bp)

Fig. 5. Computation times for Cowpox Virus, Rickettsia canadensis and Bacillus sub-
tilis

Massively Parallelized DNA Motif Search on COPACOBANA 445

Table 1. computation times and speedups of the DNA motif search algorithm

Xeon 5150 Thurion64 X2 Pentium IV
COPACOBANA 2.6 GHz 1.9 GHz 2.8 GHz

dual core dual core single core
Cowpox time 1h40m 144h (6 d.) 167h (7 d.) 355h (14.8 d.)
Virus speedup 1 > 86 > 100 > 210
Rickettsia time 4h10m 2,575 (107.3 d.)T[2,987h (124.5 d.)'[6,350h (264.6 d.)"
canadensis speedup 1 > 615 > 715 > 1,520
Bacillus time 16h45m 11,236h (1.3 y.)' | 13,031h (1.5 y.)* [27,700% (3.2 y.)"
subtilis speedup 1 > 670 > 775 > 1,650

1800

16001+— B COPACOBANA vs. Xeon 5150 —
B COPACOBANA vs. Turion64 X2
14007— @ COPACOBANA vs. Pentium IV

1200 —

1000 —

Speedup

800

600

400

200

Cowpox Virus (230k bp) Rickettsia canadensis (1.2M bp) Bacillus subtilis (5.9M bp)

Fig. 6. COPACOBANA speedups vs. several processors

a graphical presentation of these computation times. To make the results more
reasonable the computation times for the PCs are adapted to match 100 ide-
ally parallelized PCs of each type in this figure. Figure [6] shows the speedups of
COPACOBANA vs. one PC of the specified architecture.

5.3 Conclusion

Although significant improvements have been made to the iterative algorithm
the parallel solution generates the same results in much shorter time. Previ-
ously nearly unreachable results due to the length of the computation time
could now be afforded in less than one day. Unfortunately the drawback is the
need of the special purpose hardware, but with the cost of €60, 000 for a CO-
PACOBANA and €200 for a standard PC the cost/performance ratio is only
(€60,000/€200)/1,650 = 0.18. This means COPACOBANA is more than 5
times more cost effective than a standard PC. Another advantage of COPA-
COBANA is energy efficiency. Due to the short computation time and only
600W power consumption it consumes about 10.5 kWh to calculate the motif
candidates for Bacillus subtilis. In contrast standard PCs consume about 4, 155

! This value is computed by measuring a small part and extrapolating the duration.

446 J. Schroder et al.

kWh for the same task at 150 per PC. Assuming energy costs of €0.20/kWh
this would be €831.00 against €2.10. This is about 400 times the energy costs
of COPACOBANA. Easy calculation shows that the hardware price of COPA-
COBANA would be payed for energy costs of a PC cluster solving only 100
problems of the size of calculating motif candidates of Bacillus subtilis. Addi-
tionally the costs to build a cluster out of several PCs to reach the performance
of one COPACOBANA are not considered. These are costs for connection cables,
switches and the place to deposit these components. Furthermore the knowledge
to get such a PC cluster working with this application has to be paid for as well.

6 Outlook

The performance analysis for COPACOBANA is made with a slow controller
having a very little bandwidth of approximately 1 Mbit/s. There is already a
new controller module under development which reaches a bandwidth of about
100 Mbit/s. First tests with this application reached 5 to 7 times the speed of the
slow controller. Hence the controller is still the bottleneck of this application and
even greater speedups could be reached easily. This leads to another improvement
of the cost performance ratio and energy efficiency.

With the speedup gained by the COPACOBANA implementation we can
intensify motif searching on real datasets. We will put it to use by analyzing
motifs in virus datasets in close collaboration with the medical institute of the
Free University of Berlin.

References

1. Meyer, F.: Genome Sequencing vs. Moore’s Law. In Cyber Challenges for the Next
Decade. CTWatch Quarterly 2, 1-2 (2006)

2. Hoang, D.T.: Searching Genetic Databases on SPLASH 2. In: Proc. Workshop on
FPGAs for Custom Computing Machines (1993)

3. Guccione, S.A., Keller, E.: Gene Matching Using JBits. In: Proc. 12th Field Pro-
grammable Logic and Applications. Springer, Berlin (2002)

4. Herbordt, M.C., Model, J., Sukhwani, B., Gu, Y., Van Court, T.: Single pass
streaming BLAST on FPGAs. In: Parallel Computing. Special issue on High-
Performance Computing Using Accelerators, vol. 33, pp. 741-756 (2007)

. XtremeData, Inc., http://www.xtremedatainc.com/

. Silicon Graphics, Inc., http://www.sgi.com/products/rasc/

Time Logic Corp., http://wuw.timelogic.com/

. COPACOBANA Research Project, http://www.COPACOBANA.org/

. SCIENGINES Corp., http://www.sciengines.com/

. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Rupp, A., Schimmler, M.: How to Break
DES for € 8,980. In: 2nd Workshop on Special-purpose Hardware for Attacking
Cryptographic Systems - SHARCS, April 3-4, Cologne, Germany (2006)

11. DeHon, A.: The Density Advantage of Configurable Computing. IEEE Com-

puter 33(4), 41-49 (2000)
12. Xilinx Inc., http://www.xilinx.com/

O ©®o W

http://www.xtremedatainc.com/
http://www.sgi.com/products/rasc/
http://www.timelogic.com/
http://www.COPACOBANA.org/
http://www.sciengines.com/
http://www.xilinx.com/

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

Massively Parallelized DNA Motif Search on COPACOBANA 447

Buhler, J., Tompa, M.: Finding motifs using random projections. J. Comput.
Biol. 9, 225-242 (2002)

Lawrence, C.E., Reilly, A.A.: An expectation maximization (EM) algorithm for
the identification and characterization of common sites in unaligned biopolymer
sequences. Proteins 7, 41-51 (1990)

Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F., Wootton,
J.C.: Detecting subtle sequence signals: a Gibbs sampling strategy for multiple
alignment. Science 262, 208-214 (1993)

Bailey, T.L., Elkan, C.: Fitting a mixture model by expectation maximization to
discover motifs in biopolymers, UCSD Technical Report, CS94-351. University of
California at San Diego (March 1994)

Bailey, T.L., Elkan, C.: Unsupervised Learning of Multiple Motifs in Biopolymers
using EM. Machine Learning 21(1-2), 51-80 (1995)

Redhead, E., Bailey, T.L.: Discriminative motif discovery in DNA and protein
sequences using the DEME Algorithm. BMC Bioinformatics 8, 385 (2007)
RegTransBase, http://regtransbase.1bl.gov/

Varghese, G., Raphael, B., Lung-Tien Liu, A.: Uniform Projection Method for
Motif Discovery in DNA Sequences. IEEE Transactions On Computational Biology
And Bioinformatics 1(2) (April-June 2004)

Hertz, G., Stormo, G.: Identifying DNA and protein patterns with statistically sig-
nificant alignments of multiple sequences. Bioinformatics 15(7-8), 563-577 (1999)
Schroder, J., Schimmler, M., Tischer, K., Schroder, H.: IGOM - Iterative Genera-
tion of Position Frequency Matrices (submitted, 2008),
http://www.informatik.uni-kiel.de/fileadmin/

arbeitsgruppen/technical cs/Files-Jan/IGOM paper.pdf

Schroder, J., Schimmler, M., Tischer, K., Schroder, H.: BMA - Boolean Matri-
ces as Model for Motif Kernels. In: 2008 International Conference on Bioinfor-
matics, Computational Biology, Genomics, and Chemoinformatics (BCBGC 2008)
(July 2008), http://www.informatik.uni-kiel.de/fileadmin/arbeitsgruppen/
technical cs/Files-Jan/paper bcbgcl25.pdf

Petersohn, A., Brigulla, M., Haas, A., Hoheisel, J., Volker, U., Hecker, M.: Global
Analysis of the General Stress Response of Bacillus subtilis. Journal Of Bacteriol-
ogy, 5617-5631(October 2001)

http://regtransbase.lbl.gov/
http://www.informatik.uni-kiel.de/fileadmin/arbeitsgruppen/technical_cs/Files-Jan/IGOM_paper.pdf
http://www.informatik.uni-kiel.de/fileadmin/arbeitsgruppen/technical_cs/Files-Jan/IGOM_paper.pdf
http://www.informatik.uni-kiel.de/fileadmin/arbeitsgruppen/technical_cs/Files-Jan/paper_bcbgc125.pdf
http://www.informatik.uni-kiel.de/fileadmin/arbeitsgruppen/technical_cs/Files-Jan/paper_bcbgc125.pdf

	Massively Parallelized DNA Motif Search on the Reconfigurable Hardware Platform COPACOBANA
	Introduction
	COPACOBANA
	Algorithm
	Example

	Hardware Implementation
	Parallel Processing Scheme
	FPGA Design
	Data and Control Flow on the FPGA

	Performance Analysis and Conclusion
	C$++$ Implementation
	Performance
	Conclusion

	Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

