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Abstract. Gene selection and expression profiles classification are im-
portant for diagnosing the disease using microarray technology and reveal-
ing the underlying biological processes. This paper proposes a weighted
top scoring pair (WTSP) method which is a generalization of the current
top scoring pair (TSP) method. By considering the proportions of samples
from different classes, the WTSP method aims to minimize the error or
misclassification rate. Results from several experimental microarray data
have shown the improved performance of classification using the WTSP
method.
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1 Introduction

By measuring the expression levels of thousands of genes, microarray techniques
have been used to diagnose and explore the biologically relevant genes related to
a disease. The obtained microarray data normally contains several thousands of
genes and tens to hundreds of samples. The analysis of this data is challenged by
the “small N, large P” problem, that is, the number of genes (P) is greatly larger
than the number of samples (N ). In order to deal with this high dimensional data
and make the analysis feasible, dimension reduction (or gene selection) meth-
ods are used to choose the most informative genes by comparing the expression
levels between the cancer tissue and normal ones, or between different tumor
types. The purpose of the gene selection is to discard those genes which are
least interesting to the classification and select the relevant genes which could
provide the best ability to distinguish the samples from different classes and
hence reveal the biomarkers or molecular signature for the disease. This purpose
can be achieved by ranking the genes according to some relevance measurement
and select those genes with the highest relevance scores. The commonly used
genes selection methods can be categorized into three categories: i) choosing

� This author is the co-first author.
�� Corresponding author.

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 323–333, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



324 H. Luo et al.

single differentially expressed genes; ii) choosing gene pairs which co-regulate;
and iii) choosing a set of genes or gene network. To discover the differentially
expressed genes, t-statistic could be calculated for each gene and the genes with
significantly different expression levels are chosen [1]. This single gene selection
method considers the genes independently and may miss the functional rela-
tionships among genes due to the interaction/co-regulation of the genes. Some
methods are proposed to investigate the information provided by the gene pairs.
In [2], two-sample t -statistics are calculated for each gene pairs projected to
the diagonal linear discriminant (DLD) axis in order to find the pairs with the
highest score that together could discriminate the samples from different classes.
In [3], a correlation-based method is developed to discover the gene pairs whose
functional relationship changes across different conditions. This method is based
on the assumption that gene pairs with largest differential correlation are more
likely to be involved in the mechanisms of the disease. In [4], a feature construc-
tion method is proposed to find the synergic gene pairs which could enhance the
accuracy of the classification. In this method, the mutual information contained
in the interaction of the gene pairs is explored for the gene selection and these
gene pairs are assumed to have biological significance for the underlying cellular
processes. In addition to investigate the information contained in pairs of genes,
the microarray data analysis can also be carried out with a list of genes (or gene
networks). The information buried in this gene network could reveal the biolog-
ical function or pathways of these genes related to the disease. In [5], the gene
expression data is analyzed by integrating a priori the knowledge of the gene net-
work to achieve a better classification. The hypothesis underlying this approach
is that the genes close to the network are more likely to be co-expressed. In [6],
a friendly neighbors (FNs) method for time-course microarray data analysis is
proposed to find the genes whose induction-repression pattern are shared with
other genes more often and these genes are considered to be the most informa-
tive for a certain cellular function. Based on this method, a differential friendly
neighbors (DiffFNs) method is proposed to choose the genes in which the gain
or loss of the relationships with other genes are most significant [7]. These genes
could provide the biomarkers to distinguish the tumor from the healthy ones
and signify the underlying pathways.

Besides the above methods, the common dimension reduction methods are
also used to represent the information of the large number of genes with a set of
gene components which could capture as much information of the original gene
expression data as possible. These methods include: Q-mode Principle Compo-
nent Analysis (PCA) which retain most of the variation [8]; Partial Least Squares
(PLS) which constructs the components that maximize the covariance between
classes and genes [9]; Sliced Inverse Regression (SIR) which regresses the gene
expression data on the classes [9].

Having selected the most informative genes, the samples from different classes
could be successfully identified. Many algorithms have been proposed to achieve
this goal, such as Support Vector Machine (SVM) [10], nearest and k-nearest
neighbors (kNN) [11][12], linear discriminant analysis (LDA) [11], Decision Trees
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(DT) [13], naive Bayes (NB) [11], Prediction Analysis of Microarrays (PAM) [14]
and so on.

Among these gene selection and classification methods, one of the simple and
effective methods is Top Scoring Pair (TSP) based methods [15][16][17]. This
method integrates the gene selection and classification based on a simple rule.
It aims to find pairs of genes such that the expression level of gene A is greater
than that of gene B in class 1, but smaller in class 2; and this rule is also used
for the classification. Being a rank-based method, the TSP is invariant to the
preprocessing steps such as normalization since it does not change the rank of a
specified gene. Compared to the traditional methods which use more genes and
a complex decision procedure, the TSP method is shown to have the ability to
achieve comparably high accuracy of classification by using very few genes [18].

In this paper, a weighted TSP (WTSP) method is proposed as a generaliza-
tion of the classical TSP method. Different from the TSP, the proposed WTSP
method adjusts the scores of gene pairs by incorporating the information of
the proportion of the samples belonging to different classes and/or the cost
of misclassification. This weighted TSP method aims to minimize the cost of
misclassifications and hence could achieve better performance compared to the
classical TSP. This paper is organized as follows. In Section 2, the method of
weighted TSP will be developed. Some implementation issues will also be given
in this part. Section 3 presents the results of the proposed method as well as its
comparison with the TSP classifier. This is followed by Section 4 where some
discussion about the proposed method will be given.

2 Method

The gene expression data can be represented as a matrix X with dimension
P ×N , where P is the number of genes and N is the number of samples (or gene
expression profiles). Each column in X is an expression profile of P genes from
a sample either in class 1 (Y = 1) or in class 2 (Y = 2). Normally, the number
of genes is greatly larger than the number of samples (P � N) and this causes
the problem of curse of dimensionality.

The TSP method aims to find the gene pairs whose relative relationship of
expression levels change from one class to the other. That is, the marker gene
pairs should be the ones that the expression level of gene A is greater than
that of gene B in class 1, but smaller in class 2. Suppose there are N1 samples
from class 1 and N2 samples from class 2 (N1 + N2 = N), and for a gene pair
(i, j), there are respectively aij and bij samples from class 1 and class 2 with
the expression level of gene i less than that of gene j (i.e., Xi < Xj). The TSP
scheme order the gene pairs according to their scores defined as:

Δij = |P (Xi < Xj |Y = 1) − P (Xi < Xj |Y = 2)|
= |pij(C1) − pij(C2)|
≈ ∣

∣
aij

N1
− bij

N2

∣
∣ (1)
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By choosing the gene pairs which achieve the top scores in the training data, a
new gene expression profile x′ could be classified according to the relation of the
expression level X ′

i of gene i and X ′
j of gene j (or the rank of these two genes)

according to the following rule:
If pij(C1) > pij(C2),

Y ′ =
{

1, if X ′
i < X ′

j

2, o.w. , (2)

else if pij(C1) ≤ pij(C2),

Y ′ =
{

2, if X ′
i < X ′

j

1, o.w.
(3)

2.1 Weighted TSP Method

The proposed weighted TSP method is based on the classical TSP with the
incorporation of the probabilities of the samples belonging to each class and the
cost of misclassification. It aims to minimize the cost of misclassification, that
is, to minimize the following equation:

Cost = P (error|Y = 1)P1λ1 + P (error|Y = 2)P2λ2, (4)

where, P1 = P (Y = 1) and P2 = P (Y = 2) are respectively the probability of
the samples coming from class 1 and class 2; λ1 and λ2 represent the cost it may
induce if a sample is misclassified.

If we specify the classification rule as: if Xi < Xj , the sample is classified
to class 1 (Y = 1); else if Xi > Xj , it is classified to class 2 (Y = 2); and if
Xi = Xj , the sample is assigned to the class with higher probability. Let aij

be the number of samples correctly assigned to class 1 under this classification
rule (i.e., either Xi < Xj or Xi = Xj with P1 > P2) and bij be the number of
samples incorrectly assigned to class 2, Eq. (4) could be reduced to:

Cost =
N1 − aij

N1
P1λ1 +

bij

N2
P2λ2 (5)

= P1λ1 − (
aij

N1
P1λ1 − bij

N2
P2λ2) (6)

It can be easily observed from the above equation that the minimization of the
cost of misclassification is actually equivalent to the maximization of the quantity
aij

N1
P1λ1 − bij

N2
P2λ2. Therefore, for each gene pair, a weighted score is calculated

according to:

Δ′
ij =

aij

N1
P1λ1 − bij

N2
P2λ2. (7)

Compared to the original score, the weighted score Δ′
ij is a generalization of

the original score Δij by considering the proportion of the samples in each class
as well as the cost of misclassification. Here, we consider two special cases of this
weighted score.
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1. If P1λ1 = P2λ2, Δ′
ij is reduced to a scaled version of the score Δij calculated

in the classical TSP as shown in Eq. (1). It can also be seen that the original
score does not consider the proportions of samples from each class and hence
the maximization of the original score is equivalent to minimizing the sum
of misclassification probabilities over two classes instead of the probability
of total misclassification.

2. If λ1 = λ2, minimization of the cost of misclassification in Eq. (4) is actually
the minimization of the probability of total misclassification (or the error
rate).

By ordering the scores of each pair, the gene pair with the largest score is
chosen as the marker gene pair to classify the samples. And for a new expression
profile x′, the classification rule now is:

Y ′ =
{

1, if X ′
i < X ′

j ; or X ′
i = X ′

j and P1 > P2
2, o.w.

. (8)

It is to be noted that in the proposed WTSP method, the absolute sign is
discarded compared to the original method and the classification rule is also
accordingly simplified. This is because that in the weighted score Δ′

ij , the order
of the genes in the pair is considered. That is, the scores of both the pair (i, j)
and (j, i) are calculated and only the one which can achieve higher score is kept
for further analysis. While in the original TSP, the order of the genes in the pair
is not considered and hence the absolute sign is used and the classification rule
depends on the relative value of pij(C1) and pij(C2).

In practice, several gene pairs may achieve the same top score. The original
TSP method uses two schemes to deal with this situation: i) use all the top score
gene pairs and a majority voting scheme to classify the test samples [17]; ii) find
the rank of the genes in the pair and choose the pair whose rank difference of the
two genes is largest as the marker gene pair for classification [15]. In the WTSP
method, a different scheme is used. We treat the gene pairs whose scores are close
to the top score as having the same power to classify the samples. This is because
that the relative relationship of Xi and Xj may reverse due to noise and this
may cause that the measured aij and bij are slightly different from the real ones
(especially when the Xi and Xj are close to each other). Therefore, it is desirable
to treat these gene pairs as potential pairs to be chosen for classifying the test
samples. Among these gene pairs, the marker gene pair should have the property
that their expression levels are most negatively correlated. And this marker gene
pair is the one used in the proposed WTSP (w/ corr.) for classifying the test
samples.

2.2 Cross-Validation

In this paper, leave-one-out cross-validation (LOOCV) is used to estimate the
error or misclassification rate. For each sample in the available training data with
known class, we select the gene pair and build the classifier from the remaining
samples. The sample which is left out is treated as the test sample and the
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classification is made according to the classifier established from the remaining
training samples. The classification accuracy is then calculated as the correct
classification divided by the number of samples.

Due to large number of genes, an efficient algorithm to perform the cross-
validation is desired. To achieve this, an accelerated cross-validation scheme is
utilized based on the idea that the gene pairs which possess very low scores can
be ignored since they never have the chance to be chosen as the top scoring pair
(or top two scoring pairs in the proposed WTSP (w/ corr.) method) no matter
which sample is left out in the process of cross-validation. This can be realized
by calculating the lower bound and upper bound of the weighted scores based
on all samples for each gene pair. The following steps describe this procedure.

1. For each gene pair (i, j), first calculate the weighted scores Δ′
ij according to

Eq. (7) by using all the samples, note down respectively the aij and bij .
2. Calculate the lower and upper bound of the weighted score of gene pair (i, j)

when one sample is left out. This can be done by calculating the following
four terms:

Δ1
ij =

aij

N1 − 1
P1λ1 − bij

N2
P2λ2, if the sample is from class 1 and Xi > Xj

Δ2
ij =

aij − 1
N1 − 1

P1λ1 − bij

N2
P2λ2, if the sample is from class 1 and Xi < Xj

Δ3
ij =

aij

N1
P1λ1 − bij

N2 − 1
P2λ2, if the sample is from class 2 and Xi > Xj

Δ4
ij =

aij

N1
P1λ1 − bij − 1

N2 − 1
P2λ2, if the sample is from class 2 and Xi < Xj

It can be easily observed that Δ2
ij < Δ1

ij and Δ3
ij < Δ4

ij .
So the lower bound is then:

ΔL
ij = min(Δ2

ij , Δ
3
ij), (9)

and the upper bound is:

ΔU
ij = max(Δ1

ij , Δ
4
ij). (10)

3. Find the lower bound of the top score pair based on all the samples, and
discard those gene pairs whose upper bound is less than the lower bound
of the top score pair since for these gene pairs, their weighted score cannot
become the top one no matter which sample is left out.

By using this scheme, a list of gene pairs L is obtained. In each LOOCV loop,
only the gene pairs in the list L are investigated and the weighted scores are
updated as well. This procedure greatly reduces the number of gene pairs that
we need to investigate and hence largely increases the time and space efficiency
of the cross-validation.
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3 Evaluation and Results

The proposed weighted TSP method was then tested on the data available from
the public database as well as from our own side. These data sets are respec-
tively Leukemia [19], Colon [20], Lung [21], DLBCL [22], GCM [23], CNS [24],
Prostate [25], p53 [26]. Table 1 gives a summary of these data sets, such as the
number of genes measured (P ), total number of samples (N) and the number of
samples in each class.

Table 2 shows the comparison of the performance of the proposed weighted
TSP and the original TSP. The classification accuracy is estimated using the
LOOCV. For the WTSP method, we choose λ1 = λ2 to calculate the weighted
scores. In this table, “WTSP (w/o corr.)” means that all the gene pairs with
the same top weighted scores are used to classify the samples and the classifica-
tion result is based on the majority voting strategy. “WTSP (w/ corr.)” means
weighted TSP with the consideration of the cross-correlation of the expression
levels of the gene pair. The gene pairs with the weighted score at least second
to the top ones are chosen as the potential gene pairs for classification and only

Table 1. Description of the Data Sets

Data sets # genes (P ) # total samples (N) # samples by class (N1/N2)

Leukemia 7129 72 47 ALL / 25 AML
Colon 2000 62 40 Tumor / 22 Normal
Lung 12533 181 150 ADCA / 31 MPM
DLBCL 7129 77 58 DLBCL / 19 FL
GCM 16063 280 190 Tumor / 90 Normal
CNS 7129 34 25 Classic / 9 Desmoplastic
Prostate 12625 88 50 Normal / 38 Tumor
p53 44928 257 59 p53+ / 198 p53-

Table 2. Classification Accuracy for 8 Data Sets

Data Sets WTSP (w/o corr.) WTSP (w/ corr.) TSP (w/o rank) TSP (w/ rank)

Leukemia 95.83% 97.22% 93.80% 94.44%
Colon 91.13% 90.32% 91.13% 91.94%

Lung 99.17% 95.58% 99.17% 98.30%
DLBCL 97.40% 94.80% 98.05% 97.40%
GCM 77.5% 84.64% 75.40% 75.40%
CNS 83.82% 79.41% 83.82% 79.41%
Prostate 65.34% 75.00% 55.68% 54.55%
p53 79.76% 79.00% 76.65% 76.65%

Average 86.24% 87.00% 84.21% 83.51%
Std 11.76 % 8.63% 14.66% 14.98%
Min 65.34% 75.00% 55.68% 54.55%
Max 99.17% 97.22% 99.17% 98.30%
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the one which is most negatively correlated is chosen as the marker gene pair to
classify the samples. Similarly, “TSP (w/o rank)” and “TSP (w/ rank)” repre-
sent the original TSP method respectively either using all the gene pairs having
the same original top scores with majority voting strategy, or choosing the one
whose average rank difference is largest [15].

From this table, it is clearly seen that on average, the WTSP-based methods
work better than the original TSP-based methods. For 4 out of 8 cases, both
WTSP (w/o corr.) and WTSP (w/ corr.) outperform either the TSP with or
without rank (respectively Leukemia, GCM, Prostate and p53). For the data
sets of Lung and CNS, the WTSP (w/o corr.) performs as well as the best of the
TSP-based methods. Only in the DLBCL and Colon case, the WTSP method
works slightly worse than the TSP method, but the difference is not significant
(respectively, 0.65% and 0.81% difference). An obvious observation is that when
the classification accuracies of TSP-based methods are high, the performance of
the WTSP-based methods are comparable to the TSP-based methods. However,
when the classification accuracies of TSP-based methods are low (such as in

Fig. 1. Performance Comparison of WTSP and TSP methods. Each method is repre-
sented as a point in this figure with the coordinates composed of average classification
accuracy and its standard deviation. The performance of WTSP (w/ corr.) is the best
among these methods with highest average accuracy (87.00%) and smallest standard
deviation (8.63%). The WTSP (w/o corr.) takes the second place with average ac-
curacy (86.24%) and standard deviation (11.76%). The TSP-based methods perform
worse compared to WTSP-based methods with lower average accuracies (84.21% for
TSP without rank and 83.51% for TSP with rank) and relatively larger standard de-
viation (respectively, 14.66% and 14.98%).
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GCM, Prostate and p53 data), the proposed WTSP-based methods significantly
improve the performance. The increase of the accuracy are respectively 9.24%
for GCM data, 19.32% for Prostate data and 3.11% for p53 data.

Figure 1 shows the performance comparison between the TSP-based and
WTSP-based methods. The average accuracies of classification and their stan-
dard deviations for each method are calculated. The method which could achieve
higher classification accuracy with lower standard deviation is desired (Ideally,
a method with 100% accuracy and 0 standard deviation is the best). If the
standard deviation of the accuracy is plotted against its average classification
accuracy for each method as shown in this figure, it can be seen that when a
method represented by a point in this figure is closer to the bottom-right corner,
its performance will be better.

From this figure, it is clearly seen that the WTSP (w/ corr.) works best
with the highest average accuracy of 87.00% and smallest standard deviation
of 8.63%, followed by WTSP (w/o corr.), TSP (w/o rank) and TSP (w/ rank).
The improvement of WTSP method comes from the fact that it minimizes the
probability of total misclassification and hence it may choose different gene pairs
than the ones chosen by the original TSP method for classification.

4 Discussion and Conclusion

Based on the classical TSP method, we proposed a weighted TSP (WTSP)
method for the supervised gene selection and classification scheme. This WTSP
method is a generalization of the original TSP method. Different from the TSP
method which actually minimizes the sum of misclassification probabilities over
two classes, the WTSP minimizes the cost of misclassification or the probabil-
ity of total misclassification by incorporating the probability of each class in
the data. The results obtained from experimental microarray data sets suggest
that the WTSP could achieve higher classification accuracy compared to the
TSP method. In addition, the WTSP method also simplifies the classification
rule by considering the order of the genes in the gene pair. Besides that, the
WTSP method possesses the advantages of TSP method such as achieving high
classification accuracy with few genes and invariant to the preprocessing.

At this stage, it is difficult to arrive at a conclusion about at what specific
conditions the proposed WTSP method can always work significantly better
than the original TSP method. The proposed WTSP method aims to handle
the problem of the unbalanced sample size in each class. This problem exists in
all the 8 data sets we tested. However, for some data sets, the TSP still works
comparatively as well as the WTSP. The possible reason is as follows. If the
gene pair which achieves the top score in WTSP have aij ≈ N1 and bij ≈ 0 (see
Eq. (7)), the same gene pair is likely to be chosen in the TSP method. Thus,
for those data sets, both methods can achieve a high classification accuracy
as shown in the Table 2 for the cases of Leukemia, Colon, Lung and DLBCL.
Whereas, if this scenario does not hold, that is, the TSP method works poorly,
the proposed WTSP method should improve the performance more significantly.
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This is consistent with the results from the GCM, CNS, Prostate and p53 data.
Therefore, although it is difficult to pinpoint the exact situation at which the
proposed WTSP works significantly better than TSP, a general conclusion is:
the WTSP method performs significantly better than TSP method when the
sample size in each class is unbalanced and TSP performs poorly.

Future work may include the investigation of other information contained in
the gene-gene interaction. The methods based on TSP exploit one pattern of
gene-gene interaction, that is, the relative expression levels of the gene pair re-
vert from one class to another class. There may exist other possible gene-gene
interaction patterns, such as the coexpression of two genes. By exploring these
possible patterns contained in the microarray data, a more accurate classifica-
tion method could be developed and the functional biological processes may be
revealed.
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