
New Considerations about the Correct Design of
Turbo Fingerprinting Codes

Joan Tomàs-Buliart1, Marcel Fernández1, and Miguel Soriano1,2,�

1 Department of Telematics Engineering. Universitat Politècnica de Catalunya.
C/ Jordi Girona 1 i 3. Campus Nord, Mod C3, UPC. 08034 Barcelona. Spain

2 CTTC: Centre Tecnològic de Telecomunicacions de Catalunya
Parc Mediterrani de la Tecnologia (PMT), Av. Canal Oĺımpic S/N, 08860 -

Castelldefels, Barcelona (Spain)
{jtomas,marcel,soriano}@entel.upc.edu

Abstract. Since the introduction of turbo codes in 1993, many new
applications for this family of codes have been proposed. One of the lat-
est, in the context of digital fingerprinting, is called turbo fingerprinting
codes and was proposed by Zhang et al.. The main idea is a new finger-
printing code composed of an outer turbo code and an inner code based
on the Boneh-Shaw model. The major contribution of this paper is a
new analysis of this new family of codes that shows its drawbacks. These
drawbacks must be considered in order to perform a correct design of
a turbo fingerprinting scheme otherwise the scheme cannot retrieve the
traitor users which is the main goal of digital fingerprinting scheme.
Moreover, the identification of these drawbacks allows to discuss an en-
tirely new construction of fingerprinting codes based on turbo codes.

Keywords: digital fingerprinting, collusion security, tracing traitor,
turbo code.

1 Introduction

The distribution and playback of digital images and other multimedia products
is an easy task due to the digital nature of the content. Achieving satisfactory
copyright protection has become a challenging problem for the research com-
munity. Encrypting the data only offers protection as long as the data remains
encrypted, since once an authorized but fraudulent user decrypts it, nothing
stops him from redistributing the data without having to worry about being
caught.

The concept of fingerprinting was introduced by Wagner in [1] as a method
to protect intellectual property in multimedia contents. The fingerprinting tech-
nique consists in making the copies of a digital object unique by embedding a
� This work has been supported partially by the Spanish Research Council (CICYT)

Project TSI2005-07293-C02-01 (SECONNET), by the Spanish Ministry of Science
and Education with CONSOLIDER CSD2007-00004 (ARES) and by Generalitat de
Catalunya with the grant 2005 SGR 01015 to consolidated research groups.

S. Jajodia, and J. Lopez (Eds.): ESORICS 2008, LNCS 5283, pp. 501–516, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

502 J. Tomàs-Buliart, M. Fernández, and M. Soriano

different set of marks in each copy. Having unique copies of an object clearly
rules out plain redistribution, but still a coalition of dishonest users can collude.
A collusion attack consist in comparing the copies of the coalition members and
by changing the marks where their copies differ, they create a pirate copy that
tries to disguise their identities. Observe that in this situation it is possible for
the attackers to frame an innocent user. Thus, the fingerprinting problem con-
sists in finding, for each copy of the object, the right set of marks that help to
prevent collusion attacks.

The construction of collusion secure codes was first addressed in [2]. In that pa-
per, Boneh and Shaw obtain (c > 1)-secure codes, which are capable of identifying
a guilty user in a coalition of at most c users with a probability ε of failing to do
so. The construction composes an inner binary code with an outer random code.
Therefore, the identification algorithm involves the decoding of a random code,
that is known to be a NP -hard problem [3]. Moreover, the length of the code is
considerably large for small error probabilities and a large number of users.

To reduce the decoding complexity, Barg, Blakley and Kabatiansky in [3]
used algebraic-geometric codes to construct fingerprinting codes. In this way,
their system reduces the decoding complexity to O(poly(n)) for a code length
n and only 2 traitors. In [4], Fernandez and Soriano constructed a 2-secure
fingerprinting code by concatenating an inner (2, 2)-separating codes with an
outer IPP code (a code with the Identifiable Parent Property), and also with
decoding complexity O(poly(n)).

The Collusion Secure Convolutional Fingerprinting Information Codes pre-
sented in [5] have shorter information encoding length and achieve optimal trai-
tor searching in scenarios with a large number of buyers. Unfortunately, these
codes suffer from an important drawback in the form of false positives, in other
words, an innocent user can be tagged as guilty with very high probability. In
[6] we analysed in depth the work in [5] and quantified the probability of false
positives. Turbo fingerprinting codes analyzed in this paper are presented in
[7] by Zhang et al. and are based in the same idea that Collusion Secure Con-
volutional Fingerprinting Information Codes but using turbo codes instead of
Convolutional codes. In a practical implementation of these codes, the turbo
code must have some restrictions, which the authors did not take into account,
to obtain the desired performance. In this paper, the problem of false positives
in [7] is discussed.

The paper is organized as follows. In section 2 we provide some definitions
on fingerprinting and error correcting codes. Section 3 presents the well known
Boneh-Shaw fingerprinting codes and, in section 4, turbo codes are introduced.
Section 5 discusses the turbo fingerprinting codes presented by Zhang et al.
and carefully explains the encoding and decoding mechanisms. In section 6, new
considerations about Turbo Fingerprinting Codes (TFC) and the errors that can
be produced as a consequence of not taking into account these considerations are
explained and justified. In the same way a numerical example of this problem
is given. Section 7 proposes two improvements to the performance of the TFC

New Considerations about the Correct Design 503

using the likelihood provided by the turbo decoder. Finally, some conclusions
are given in Section 8.

2 Definitions

We begin by defining some concepts that will be needed throughout the paper.

Definition 1. (Error Correcting Code) A set C of N words of length L over
an alphabet of p letters is said to be an (L, N, D)p-Error-Correcting Code or in
short, an (L, N, D)p-ECC, if the Hamming distance1 between every pair of words
in C is at least D.

Definition 2. (Codebook [2]) A set Γ = {w(1), w(2), · · · , w(n)} ⊆ Σl, where Σ
will denote some alphabet of size s, will be called an (l, n)-code. The codeword
w(ui) will be assigned to user ui, for 1 ≤ i ≤ n. We refer to the set of words in
Γ as the codebook

Definition 3. (Undetectable Position) Let Γ = {w(1), w(2), · · · , w(n)} be an
(l,n)-code and C = {u1, u2, · · · , uc} be a coalition of c-traitors. Let position i
be undetectable for C, i.e. the words assigned to users in C match in i’th po-
sition, that is w

(u1)
i = · · · = w

(uc)
i .

Definition 4. (Feasible set) Let Γ = {w(1), w(2), · · · , w(n)} be an (l,n)-code and
C = {u1, u2, · · · , uc} be a coalition of c-traitors. We define the feasible set Γ
of C as

Γ (C) = {x = (x1, · · · , xl) ∈ Σl | xj ∈ wj , 1 ≤ j ≤ l}
where

wj =

{
{w

(u1)
j } w

(u1)
j = · · · = w

(uc)
j

{w
(ui)
j | 1 ≤ i ≤ c} ∪ {?} otherwise

where ? denotes an erased position.

Now we are in position to define the Marking Assumption that establishes the
rules that the attacking coalition is subjected to. This definition sets the work
environment of many of the actual fingerprinting schemes.

Definition 5. (Marking Assumption) Let Γ = {w(1), w(2), · · · , w(n)} be an (l,n)
-code, C = {u1, u2, · · · , uc} a coalition of c-traitors and Γ (C) the feasible set of
C. The coalition C is only capable of creating an object whose fingerprinting lies
in Γ (C).

The main idea of this definition is that a coalition of c-traitors can not detect
the positions in the document in which their marks hold the same value. Many
of the fingerprinting schemes in the literature base their tracing algorithms in
trying to estimate the positions that are changed by the attackers.
1 The Hamming distance dH(y, x) [8] between two sequences of equal length can be

defined as the number of positions in which the two sequences differ.

504 J. Tomàs-Buliart, M. Fernández, and M. Soriano

3 Boneh-Shaw Fingerprinting Model

In 1995, Dan Boneh and James Shaw presented in [2] a seminal paper about the
collusion secure fingerprinting problem. First of all, we need to define what a
fingerprinting scheme is.

Definition 6. (Fingerprinting scheme [2])A (l, n)-fingerprinting scheme is a
function Γ (u, r) which maps a user identifier 1 ≥ u ≥ n and a string of random
bits r ∈ {0, 1}∗ to a codeword Σl. The random string r is the set of random bits
used by the distributor and kept hidden from the user. We denote a fingerprinting
scheme by Γr.

3.1 n-Secure Codes

We now define n-secure codes, see [2] for a more detailed description.

Definition 7. A fingerprinting scheme Γr is a c-secure code with ε-error if there
exists a tracing algorithm A which from a word x, that has been generated (un-
der the Marking Assumption) by a coalition C of at most c users, satisfies the
following condition Pr[A(x) ∈ C] > 1 − ε where the probability is taken over
random choices made by the coalition.

Now, we define the code and its decoding algorithm:

1. Construct an n-secure (l, n)-code with length l = nO(1).
2. Construct an Γ0(n, d)-fingerprinting scheme by replicating each column of

an (l, n)-code d times. For example, suppose a (3, 4)-code {111,011,001,000}.
We can construct a Γ0(4, 3) for four users A,B,C and D as follows:

A : 111111111
B : 000111111
C : 000000111
D : 000000000

3. When the code has been defined, the next step is to define the appropriate
decoding algorithm. For instance

Algorithm 1. From [2], given x ∈ {0, 1}l, find a subset of the coalition
that produced x. We denote by Bm is the set of all bit positions in which the
column m is replicated, Rm = Bm−1 ∪ Bm and weight denotes the number
of bits that are set to 1.
(a) If weight (x | B1) > 0 then output “User 1 is guilty”
(b) If weight (x | Bn−1) < d then output “User n is guilty”
(c) For all s = 2 to n − 1 do:

Let k = weight (x | Rs). if

weight(x | Bs−1) <
k

2
−

√
k

2
log

2n

ε

then output “User s is guilty”

Finally, the only thing left to do is to find a relationship between the error ε and
the replication factor d. This relation is given in the following theorem,

New Considerations about the Correct Design 505

Theorem 1. For n ≥ 3 and ε > 0 let d = 2n2 log(2n/ε). The fingerprinting
scheme Γ0(n, d) is n-secure with ε-error and has length d(n−1) = O(n3 log(n/ε)).

3.2 Logarithmic Length c-Secure Codes

The construction of Boneh and Shaw n-secure with ε-error is impractical for a
medium and large number of user because the length of codewords increases as
O(n3 log(n/ε)). To achieve shorter codes, Boneh and Shaw apply the ideas of
[9] to construct c-secure (n, l)-codes of length l = cO(1) log(n). The basic idea is
to use the n-secure code as the alphabet which is used by an (L, N, D)p-error-
correcting code. As a result of this composition, Boneh and Shaw obtained the
following result. The proof of this theorem can be found in [2].

Theorem 2. Given integers N ,c, and ε > 0 set n = 2c, L = 2c log(2N/ε, and
d = 2n2 log(4nL/ε). Then, Γ ′(L, N, n, d) is a code which is c-secure with ε-error.
The code contains N words and has length l = O(Ldn) = O(c4 log(N/ε) log(1/ε))

Thus the code Γ ′(L, N, n, d) is made up of L copies of Γ0(n, d). Each copy is
called a component of Γ ′(L, N, n, d). The codewords of component codes will be
kept hidden from the users. Finally, the codewords of Γ ′(L, N, n, d) are randomly
permuted by π before the distributor embeds the codeword of the user ui in an
object, that is to say, user ui’s copy of the object will be fingerprinted using the
word πw(i). To guarantee the security of this scheme, the permutation π must
be kept hidden from the users in order to hide the information of which mark in
the object encodes which bit in the code.

4 Turbo Codes

Turbo codes were introduced in 1993 by Berrou, Glavieux and Thitimajashima
[10], [11]. In their research, they reported extremely impressive results for a code
with a long frame length. The main idea is an extrapolation from Shannon’s
theory of communication. Shannon shows that an ultimate code would be one
where a message is sent infinite times, each time shuffled randomly, but this
requires infinite bandwidth so this schema is unpractical. The contribution of
turbo codes is that sending the information infinite number of times is not really
needed, just two or three times provides pretty good results.

4.1 Turbo Coding

The most common turbo encoder consists of parallel concatenation of some Re-
cursive Systematic Convolutional encoders (RSC), each with a different inter-
leaver, working on the same information. The purpose of the interleaver is to offer
to each encoder an uncorrelated version of the information. This results in inde-
pendent parity bits from each RSC. It seems logical that as a better interleaver
is used, these parity bits will be more independent. The usual configuration con-
sists of two identical convolutional encoders with rate 1/2 and a pseudo-random

506 J. Tomàs-Buliart, M. Fernández, and M. Soriano

(a) Common turbo encoder (b) Common turbo decoder

Fig. 1. Dual Turbo Encoder/Decoder with ratio r = 1
3

interleaver, π, this schema is called a Parallel Concatenated Convolutional Code
(PCCC). Figure 1(a) shows the block diagram of a turbo encoder with its two
constituent convolutional encoders.

The input bits u are grouped in sequences whose length N is equal to the size
of the interleaver. The sequence u′ is obtained as the result of the interleaving
process. The first encoder receives the sequence u and produces the pairs (uk, p1

k)
and the second encoder receives the sequence u′ and produces the pairs (u′

k, p2
k).

Since both encoders are systematic encoders u′
k = π(uk), and, as π is known by

the decoder, only (uk, p1
k, p2

k) will be transmitted. The rate of this encoder is 1/3
but it can be increased by puncturing by 1/2.

4.2 Turbo Decoding

Turbo decoding is based on an iterative process to improve performance and
it uses, as a basic decoder unit, a Soft-Input Soft-Output algorithm. The block
scheme of a common turbo decoder is shown in figure 1(b).

First of all, the sequence encoded by the first encoder is decoded by the first
decoder as in an usual convolutional code scheme. As a result, this decoder
returns soft information, that is to say, an estimation about which were the
values of the bit in the original sequence and how likely is this estimation for
each bit. This information is called extrinsic information in the literature of turbo
codes. The extrinsic information of the first decoder is interleaved in the same
manner that the input bits had been interleaved in the turbo encoder before
they are applied to the second encoder. The next step is to send this interleaved
information to the second decoder. This decoder takes the extrinsic information
of the first decoder into account when it decodes the sequence encoded by the
second encoder and gives a new estimation about the original values. This process
is repeated several times depending on the performance that is required of the
system. On the average, 7 or 8 iterations give adequate results and no more 20
are ever required.

There are some algorithms that can be modified to use as a turbo decoder
component but the ones most used are the Soft Output Viterbi Algorithm [12,13]
and the BCJR [14] or Maximum A-posteriori Probability (MAP) algorithm.
SOVA is a combination of iterative decoding with a modified form of Viterbi
decoding and it maximizes the probability of a sequence. On the other hand,

New Considerations about the Correct Design 507

MAP maximizes the output probability based on some knowledge of the input
a priori probabilities and soft output from the demodulator.

5 Turbo Fingerprinting Scheme

The major contributions of the turbo fingerprinting scheme, presented by Zhang
et al. in [7] with regard to the Boneh-Shaw’s scheme are the reduction of code-
word length by means of the use of turbo codes as outer code and the improve-
ment of decoding the decoding runtime by a Maximum Likelihood Decoding
algorithm.

5.1 Concatenated Code

The proposed scheme consists of a concatenated turbo code with a Boneh-Shaw
code, that is, each symbol that a turbo encoder generates is coded by a Boneh-
Shaw encoder. Formally, Zhang et al. define their code Ψ(L, N, n, d) as the con-
catenated code that results of the composition of an outer (n0, k0)-turbo code
and an inner Boneh-Shaw Γ0(n, d)-code, where L is a turbo code length and N
is the users’ number.

The first step in the process is to generate a random binary string that will
be the user identification m(ui) for the user ui, where 1 ≤ i ≤ N . Next, m(ui) is
divided into L groups of ko bits each one. This groups are encoded by an (no, ko)-
turbo encoder and a sequence of L × n0 bits is produced. The output binary
sequence is represented by v = v1v2 · · · vL where each group vj is constituted by
n0 bits. Each vj is coded by the inner code Γ0(n, d) where, for design reasons,
n must satisfy the condition n ≥ 2n0 . As a result, the sequence W (v) = W (v1) ‖
W (v2) ‖ · · · ‖ W (vL) is obtained, where W (vj) is the codeword of Γ0(n, d)-code
assigned to vj .

To formalize the encoding process, Zhang et al. define the Ψ(L, N, n, d) en-
coding algorithm as follows:

Algorithm 2. Ψ(L, N, n, d) encoding algorithm defined in [7]:
Let m(uj) be the identification of user uj (1 ≤ j ≤ N)

1. v = Turbo − Encoding(m(uj))
2. For each 1 ≤ k ≤ L

W (vk) = Γ0(n, d) − Encoding(vk)
3. Let W (v) = W (v1) ‖ W (v2) ‖ · · · ‖ W (vL)

This process is repeated for all uj in such a way that all users will have their
own identification fingerprint. In the fingerprinting environments the common
attack is the collusion attack, that is, some users compare their marked objects
and produce, according to the Marking Assumption defined in Definition 5, a
pirate object which contains a false fingerprint that lies in Γ (C). The general
schema for two traitors is shown in Figure 2.

The aim of this kind of systems is to find, at least, one user who is part of
the coalition. So the authors present Algorithm 3 to accomplish this purpose.

508 J. Tomàs-Buliart, M. Fernández, and M. Soriano

Fig. 2. Turbo fingerprinting scheme for 2 traitors

The main idea of the decoding algorithm is to decode the Boneh-Shaw layer and
to choose one of the symbols retrieved by this layer for this position i as the
input symbol to the turbo decoder for this position i. Note that, if the Boneh-
Shaw code was error-free, then for each position, the turbo decoder could choose
among more than one symbol, depending on the symbols of the traitors in this
position. The proposal of Zhang et al. was to choose one at random. A formal
definition is shown by the following algorithm:

Algorithm 3. Ψ(L, N, n, d) decoding algorithm defined in [7]:
Given x ∈ {0, 1}l, find a subset of the coalition that produced x.

1. Apply algorithm 2 to each of the L components of x.
For each component i = 1, 2, · · · , L, arbitrarily choose one of the outputs of
algorithm 2.
Set vj to be this chosen output.
Form the word v = v1v2 · · · vL

2. m(uj) = Turbo − Decoding(v)
3. Output “User ui is guilty”

6 A New Critical Performance Analysis

To state the performance of turbo fingerprinting codes, the authors in [7] enun-
ciate the following theorem:

New Considerations about the Correct Design 509

Theorem 3. [7] Given integers N , c and ε > 0, set

n = 2c

d = 2n2(log(2n) + m)

m = log

(
N∑

de=dmin

Ade

ε

)

where Ade is the number of codewords with weight de. Then the fingerprinting
scheme Ψ(L, N, n, d) is c-secure with ε-error. The code contains N codewords
and has length Ld(n − 1). Let x be a word which was produced by a coalition C
of at most c users. Then algorithm 3 will output a member of C with probability
at least 1 − ε.

The authors in [7] prove theorem 3, assuming the well known expression for the
error probability Pe of turbo decoders in BSC channels (for detailed references
concerning error probability of turbo decoders in BSC channels see [15,16]).
In the present scenario the channel, from the turbo codes point of view, is a
Boneh-Shaw code with error probability ε′. In [7], the authors express the turbo
coded error probability as a function of the Boneh-Shaw code error probability.
Denoting by Pe, the error probability of turbo codes in a BSC, the expression is

Pe ≤
N∑

de=dmin

AdeP2(de) (1)

where Ade is the number of codewords with weight de and P2(de) is the error
probability between two codewords. Let the decoding error probability of code
Γ0 be ε′. The authors assume that the error probability between two codewords
is smaller than the error probability of code Γ0. So, from the authors’ point of
view

Pe ≤
N∑

de=dmin

AdeP2(de) ≤
N∑

de=dmin

Adeε
′ (2)

We now show that this is not in many cases correct.
Suppose a turbo fingerprinting code consists of an (n, k)-turbo code concate-

nated with a Boneh-Shaw code with negligible error probability ε. Moreover
assume that two traitors attack this scheme by a collusion attack according to
definition 5.

In the decoding process, the Boneh-Shaw decoder retrieves, for each position, 2
symbols with probability 2n−1

2n and only 1 symbol otherwise (here we suppose, as
an approximation, that in a collusion of 2 users a position can not be detected
with probability 1

2n . So 1
2n is the probability that the symbol in a particular

position will be the same for 2 codewords). The scheme proposed by Zhang et
al. takes one of them at random and sends it to the turbo decoder.

As n increases, 2n−1
2n tends to 1, that is, the probability that the traitors, say

tc1 and tc2, have the same symbol in a particular position tends to 0. So the

510 J. Tomàs-Buliart, M. Fernández, and M. Soriano

Hamming distances between tc1 or tc2 and the pirated word, say tcp, delivered
to the turbo decoder satisfy the equation dH(tc1, tcp) � dH(tc2, tcp). If L is the
length of the codeword and n is large enough, the turbo decoder takes as input a
word in which half of the symbols are erroneous respect both of the two traitor
codewords. And, as a result, the turbo decoder retrieves a codeword of the turbo
code codebook, but this codeword is not assigned to any user. Note that in this
case, the decoded codeword will be different from the pirate words with a very
high probability, which is not desirable at all. In this case there cannot be a false
positives because, the turbo encoded words are a random sequence (like hash
functions) and the collision probability for these functions is very small.

As an example suppose a (3, 1)-turbo code that consists of two component
convolutional codes. The connection expressed in octal is (3, 1). The traitors
have the sequences

t1 = 1 1 0 0 0 1 0 0 1 0,

t2 = 0 0 0 0 1 1 1 0 0 0.

The sequences t1 and t2 are turbo coded to generate

tc1 = Turbo − Encoding(t1) = 100 110 000 001 001 101 011 010 110 001 000 000,

tc2 = Turbo − Encoding(t2) = 000 000 000 001 100 111 101 011 011 011 111 100.

These turbo coded sequences may be expressed in octal notation as:

tc1 = Turbo − Encoding(t1) = 4 6 0 1 1 5 3 2 6 1 0 0

tc2 = Turbo − Encoding(t2) = 0 0 0 1 4 7 5 3 3 3 7 4

The Feasible Set will be

Γ (tc1, tc2) =
({

4
0

}{
6
0

}
, 0, 1,

{
1
4

}
,

{
5
7

}
,

{
3
5

}
,

{
2
3

}
,

{
6
3

}
,

{
1
3

}
,

{
0
7

}
,

{
0
4

})
.

After decoding the Boneh-Shaw code, if no errors are produced, a possible se-
quence sent to the turbo decoder is

tcp = 000 110 000 001 001 101 101 011 011 001 111 000,

or in octal,
tcp = 0 6 0 1 1 5 5 3 3 1 7 0.

After turbo decoding, the word obtained is

tp = 1 1 0 0 0 0 1 0 0 0,

which is none of the traitors’ codewords, dH(t1, tp) = 3 and dH(t2, tp) = 4.
That is, this construction cannot be a correct fingerprinting scheme because the
system cannot trace back t1 or t2 from tcp.

New Considerations about the Correct Design 511

7 Proposed Improvements and Open Problems

One of the most important improvements that the turbo codes have contributed
to error correcting codes is the use of the likelihood of every information bit
during the decoding process. The proposed improvements in this section are
based on the use of this information in two different ways. The first one, uses
the information provided by the fingerprinting layer to calculate the likelihood
for each information bit at the first turbo decoding iteration. On the other hand,
the second proposal is centered in the fact that the cross-correlation between the
likelihood of the decoded bits and all possible words (users) reaches the maximum
value when the evaluated user has taken part in the collusion attack, i.e. is guilty.

7.1 Decoding by the Use of Likelihood Information in Undetected
Coefficients

There exist some techniques, as concatenating a turbo codes with a Boneh-
Shaw code or the ones proposed in [17], that can be used to detect, at the turbo
decoder input, if a particular bit has been modified by a collusion attack. As it is
also well-know, each constituent decoder in a turbo decoder uses the likelihood
information of every information bit externalized by the other but this likelihood
is not known at the first iteration by the first constituent decoder. The usual
solution is to consider that all values are equally likely, that is to say, the value of
L

(2)
e for all bits in the first iteration is initialized to 0 (take into account that Le

is the Log-likelihood ratio). The first improvement is to modify the value of Le

taking into account the information of the Boneh-Shaw layer. The main idea is,
as the undetected bits by the traitors during the collusion attack are known, the
decoder can assign a greater likelihood to these bits in the first decoding stage.
After few simulations, it can be concluded that a little improvement around 2%
appears if the initial value of Le is slightly modified by the use of this previous
information. Note that, when an error is produced during the decoding process,
the returned word identifies one legal user which has not taken part in the
collusion, that is a false positive. In other words, in this situation the decoding
process frames an innocent user. In a correct TFC system, a bit error probability
around 0 is needed. If the value of Le value is highly altered, the effect can be
counterproductive because, in this case, the turbo decoder does not converge
correctly. This is shown in figure 7.1.

Even though this improvement has been applied to TFC, it is not sufficient
to guarantee that the probability of finding one of the traitors will be small
enough. It seems that the error probability has been a slight improvement and
it can be reduced near to 0 by the use of some block error correcting code as
BCH. The figures 4(a), 4(b) and 4(c) show the results of the use of a (15,11)
Hamming code, a BCH(127,64) and a BCH(127,22) respectively, concatenated
with a turbo code decoded taking into account the likelihood information.

Some open problems are how to modify the channel characteristic, in turbo
code notation that is the value of Lc, taking into account the positions not

512 J. Tomàs-Buliart, M. Fernández, and M. Soriano

10

50
100

500
1.000

5000

2

4

6

8

10

12

0

10

20

30

40

50

60

70

Bit Error Probability (%) vs. Decoding Iterations and Likelihood Values

Likelihood valuesDecoding Iterations

B
i
t

E
r
r
o
r

P
r
o
b
a
b
i
l
t
y

(
%
)

2 4 6 8 10 12
0

5

10

15

Decoding Iterations vs.
Bit Error Probability (%)

10 50 100 500 1.000
0.8

0.9

1

1.1

1.2

Likelihood Values vs.
Bit Error Probability (%)

Fig. 3. Bit probability error of a TFC with generator sequences constituent RSC
(53, 75)8 over collusion attack decoded using likelihood information

detected by the attackers and the study of the relation between the RSC gen-
erator sequences and the likelihood value to assign to each bit at first decoding
stage.

7.2 Decoding by the Use of Making Correlation Conditional on
Likelihood

The decoding algorithm proposed in the original paper of TFC was the commonly
used to decode turbo codes. The main problem was that the turbo decoder
returns the most likely codeword over all the code space; that is, if a user ID of
512 bits is used, the turbo decoder will return the word of 512 bits that is the
most likely to have been sent. This means that with a very high probability an
innocent user has been framed. This is the main reason of the problems produced
in the decoding stage of TFC.

In practice, it is very difficult to think about an application in which 2512 users
are needed. For instance, Figure 5 shows the results of a 1000 iterations simulation
of one system which uses a TFC with user ID of 128 bits but the system has only
1000 users whose user IDs are randomly distributed in the codes pace. In each iter-
ation two different users are chosen randomly and a collusion attack is performed
with their code words. Next, this colluded codeword is decoded by the turbo de-
coder in order to obtain one of the traitors. None of them have been found by the
use of the original TFC decoding system or, as is named in the figure, TFC with-
out correlation. If the word which results from the TFC original decoding system
is correlated with all possible user IDs, we will always find at least one of the trai-
tors and, more than 90 percent of the times, the two traitors will be found. If the
likelihood information is used instead of the pirate word, the probability of finding
the two traitors comes close to 100 percent. In other words, the user IDs that have
the maximum correlation value with the likelihood returned by the turbo decoder
are the user IDs of the members of the collusion.

New Considerations about the Correct Design 513

10

50
100

500
1.000

5000

2

4

6

8

10

12

0

10

20

30

40

50

Bit Error Probability (%) vs. Decoding Iterations and Likelihood Values
(TFC concatenated with HC(15,11))

Likelihood valuesDecoding Iterations

B
i
t

E
r
r
o
r

P
r
o
b
a
b
i
l
t
y

(
%
)

2 4 6 8 10 12
0

5

10

15

Decoding Iterations vs.
Bit Error Probability (%)

10 50 100 500 1.000
0.4

0.45

0.5

0.55

0.6

Likelihood Values vs.
Bit Error Probability (%)

(a) TFC concatenated with HC(15,11).

10

50
100

500
1.000

5000

2

4

6

8

10

12

0

5

10

15

20

25

30

35

Bit Error Probability (%) vs. Decoding Iterations and Likelihood Values
(TFC concatenated with BCH(127,64))

Likelihood valuesDecoding Iterations

B
i
t

E
r
r
o
r

P
r
o
b
a
b
i
l
t
y

(
%
)

2 4 6 8 10 12
0

2

4

6

8

10

Decoding Iterations vs.
Bit Error Probability (%)

10 50 100 500 1.000
0.2

0.25

0.3

0.35

Likelihood Values vs.
Bit Error Probability (%)

(b) TFC concatenated with BCH(127,64).

10

50
100

500
1.000

5000

2

4

6

8

10

12

0

2

4

6

8

10

12

Bit Error Probability (%) vs. Decoding Iterations and Likelihood Values
(TFC concatenated with BCH(127,22))

Likelihood valuesDecoding Iterations

B
i
t

E
r
r
o
r

P
r
o
b
a
b
i
l
t
y

(
%
)

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Decoding Iterations vs.
Bit Error Probability (%)

10 50 100 500 1.000
0.01

0.015

0.02

0.025

0.03

Likelihood Values vs.
Bit Error Probability (%)

(c) TFC concatenated with BCH(127,22).

Fig. 4. Bit probability error of a TFC with generator sequences constituent RSC
(53, 75)8 concatenated with several error correcting codes over collusion attack decoded
using likelihood information

514 J. Tomàs-Buliart, M. Fernández, and M. Soriano

(a) TFC with generator sequences con-
stituent RSC (53, 75)8

(b) TFC with generator sequences con-
stituent RSC (117, 155)8

Fig. 5. % of detecting 0, 1 or 2 traitors after a collusion attack of 2 traitors by the use
of TFC with correlation decoding

The main drawback of this proposal is that the decoding time increases ex-
ponentially with the number of users.

8 Conclusions

The work presented in this paper discusses an undesired problem in the analysis
of the turbo fingerprinting codes presented by Zhang et al. in [7]. We show that
the probability of tracing one of the traitors tends to 0 when the alphabet size of
the outer turbo code increases. That is because the symbol-by-symbol collusion
attack performed by pirates is not treated efficiently by the decoding algorithm
proposed in [7]. Note that, from the point of view of the turbo decoder, the
error probability of the equivalent channel tends to 1/2, because it takes as
input symbols one of the symbols retrieved by the Boneh-Shaw decoder chosen
at random.

The new problem found in the turbo fingerprinting codes renders them inap-
plicable in many cases unless the design takes into account our new contribution.
Moreover, our studies indicate that, the more efficient the turbo fingerprinting
code design is, from the point of view of the length requirement, a far worse per-
formance is obtained from the tracing algorithm. In other words, to find a traitor
will be more complicated when the (n, k)-turbo code used, has large values of n.

Besides, two different ways to improve the performance of turbo fingerprinting
codes are given. These two ways use the likelihood of the turbo decoder to
perform the improvements. The first proposal modifies this likelihood at the
input of the turbo decoder and the other use the turbo decoder output likelihood

New Considerations about the Correct Design 515

to correlate it with the user IDs in order to find the traitors. Moreover, this two
improvements can be integrated in the same scheme.

Acknowledgements

The authors wish to thank Juan Pérez-Esteban for helping in the simulations
and the anonymous reviewers for their valuables comments.

References

1. Wagner, N.R.: Fingerprinting. In: SP 1983: Proceedings of the, IEEE Symposium
on Security and Privacy, Washington, DC, USA, p. 18. IEEE Computer Society,
Los Alamitos (1983)

2. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data (extended ab-
stract). In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 452–465.
Springer, Heidelberg (1995)

3. Barg, A., Blakley, G.R., Kabatiansky, G.A.: Digital fingerprinting codes: problem
statements, constructions, identification of traitors. IEEE Transactions on Infor-
mation Theory 49(4), 852–865 (2003)

4. Fernandez, M., Soriano, M.: Fingerprinting concatenated codes with efficient iden-
tification. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp.
459–470. Springer, Heidelberg (2002)

5. Zhu, Y., Zou, W., Zhu, X.: Collusion secure convolutional fingerprinting informa-
tion codes. In: ASIACCS 2006: Proceedings of the, ACM Symposium on Informa-
tion, computer and communications security, pp. 266–274. ACM Press, New York
(2006)

6. Tomàs-Buliart, J., Fernandez, M., Soriano, M.: Improvement of collusion secure
convolutional fingerprinting information codes. In: Proceedings of International
Conference on Information Theoretic Security (ICITS 2007) (2007)

7. Zhang, Z., Chen, X., Zhou, M.: A digital fingerprint coding based on turbo codes.
In: International Conference on Computational Intelligence and Security, 2007, pp.
897–901 (2007)

8. Hamming, R.W.: Error detecting and error correcting codes. Bell System Techincal
Journal 29, 147–160 (1950)

9. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Transactions on
Information Theory 46(3), 893–910 (2000)

10. Berrou, C., Glavieux, A.: Near optimum error correcting coding and decoding:
turbo-codes. IEEE Transactions on Communications 44(10), 1261–1271 (1996)

11. Berrou, C., Glavieux, A., Thitimajshima, P.: Near shannon limit error-correcting
coding and decoding: Turbo-codes. 1. In: IEEE International Conference on Com-
munications, 1993. ICC 1993. Geneva. Technical Program, Conference Record, May
23-26, 1993, vol. 2, pp. 1064–1070 (1993)

12. Hagenauer, J., Hoeher, P.: A viterbi algorithm with soft-decision outputs and its
applications. In: Global Telecommunications Conference, 1989, and Exhibition.
Communications Technology for the 1990s and Beyond. GLOBECOM 1989, No-
vember 27-30, 1989, vol. 3, pp. 1680–1686. IEEE, Los Alamitos (1989)

13. Hagenauer, J., Papke, L.: Decoding turbo-codes with the soft output viterbi algo-
rithm (sova). In: Proceedings of the IEEE International Symposium on Information
Theory (June 27–July 1, 1994), p. 164 (1994)

516 J. Tomàs-Buliart, M. Fernández, and M. Soriano

14. Bahl, L., Cocke, J., Jelinek, F., Raviv, J.: Optimal decoding of linear codes for
minimizing symbol error rate (corresp.). IEEE Transactions on Information The-
ory 20(2), 284–287 (1974)

15. Lin, S., Costello, D.J.: Error Control Coding, 2nd edn. Prentice-Hall, Inc., Upper
Saddle River (2004)

16. Vucetic, B., Yuan, J.: Turbo codes: principles and applications. Kluwer Academic
Publishers, Norwell (2000)

17. Navau, J.C., Fernandez, M., Soriano, M.: A family of collusion 2-secure codes. In:
Barni, M., Herrera-Joancomart́ı, J., Katzenbeisser, S., Pérez-González, F. (eds.)
IH 2005. LNCS, vol. 3727, pp. 387–397. Springer, Heidelberg (2005)

	New Considerations about the Correct Design of Turbo Fingerprinting Codes
	Introduction
	Definitions
	Boneh-Shaw Fingerprinting Model
	n-Secure Codes
	Logarithmic Length c-Secure Codes

	Turbo Codes
	Turbo Coding
	Turbo Decoding

	Turbo Fingerprinting Scheme
	Concatenated Code

	A New Critical Performance Analysis
	Proposed Improvements and Open Problems
	Decoding by the Use of Likelihood Information in Undetected Coefficients
	Decoding by the Use of Making Correlation Conditional on Likelihood

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

