
J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 232–243, 2008.
© IFIP International Federation for Information Processing 2008

CPI: A Novel Three-Phase Algorithm for QoS-Aware
Replica Placement Problem*

Wei Fu, Yingjie Zhao, Nong Xiao, and Xicheng Lu

School of Computer, National University of Defense Technology, Changsha, P.R. China
lukeyoyo@tom.com

Abstract. QoS-aware replica placement decides how many replicas are needed
and where to deploy them to meet every request from individual clients. In this
paper, a novel three-phase algorithm, namely CPI, is proposed. By dividing can-
didate nodes into proper medium-scale partitions, CPI is capable to handle with
large-scale QoS-aware replica placement problem. Pharos-based clustering algo-
rithm obtains ideal grouping, and partition integrating method is developed to ob-
tain final replica policy. Theoretical analysis and experiments show that CPI has
lower computation complexity and good scalability. The replicating cost and up-
dating cost remains acceptable under different simulating conditions.

1 Introduction

Replication is the process of sharing resources so as to ensure consistency between
redundant copies. These copies are formally called replicas, which usually spread at
geographically distributed locations. As a simple but effective technique, replication
is widely employed in distributed systems [1-6]. Proper replica mechanism can spee-
dup response time, reduce network traffic, balance overload, as well as enhance data
reliability and fault-tolerance. Distributed databases [1], distributed file systems [2],
content distributing network [3, 4], P2P systems [5] and Data Grids [6] are some of
the most common scenarios to use replicas. Replica placement takes charge of a
proper replica policy. It decides how many replicas should be deployed and where to
locate them, which is very important to the effectiveness of replication.

Traditional replication researches aimed at optimize the global/average metrics as
much as possible. For example, Qiu [7] tried to minimize the average accessing delay,
and Cidon [8] aimed to spend the least communication messages. While an average
performance measure may be important from the system’s point of view, it does not
differentiate the various performance requirements of the individuals [9]. With the
rapid growth of time-critical applications, some researches [9-12] tried to provide
QoS-guaranteed replica service. Instead of only concerning about average metrics,
their first and foremost objective is to guarantee that EVERY individual request
should meet its QoS requirement, usually response time. They named it as QoS-
Aware Replica Placement problem (QARP for short), which has been proved to be
NP-Complete. Several heuristic algorithms have been presented to solve the problem,

* This paper is supported by National 863 High Technology Plan (NO. 2006AA01A118, NO.

2006AA01A106), and Chinese NSF (NO.60573135, NO. 60736013).

 CPI: A Novel Three-Phase Algorithm for QoS-Aware Replica Placement Problem 233

including Tang [9], Wang [10] and Fu [12]. However, they are all centralized meth-
ods and lack of scalability. Furthermore, the computation complexities are rather
high. Theoretically, the time complexities are about or even [9-11].

In order to overcome the difficulty, a novel three-phase algorithm CPI is presented
to solve large-scale QoS-aware replica placement problem. CPI divides the entire
problem into several medium-scaled problems. Then each sub-problem deals with its
own placement problem in parallel. Finally, all sub-problem solutions are integrated
to form a final solution. The main contributions of the paper are listed as follows:

1. A novel semi-distributed method CPI is proposed to solve large-scale QoS-aware
replica placement problem;

2. A pharos-based algorithm are invented for node clustering;
3. A simple but effective integration mechanism is introduced to obtain global place-

ment policy;

2 Related Work

In 2004, Tang and Xu put forward the QARP problem for the first time [9]. They
proved the replica-aware QARP to be NP-complete. Meanwhile, two families of heu-
ristic algorithms, named l-Greedy-Insert and l-Greedy-Delete respectively, are pro-
posed for optimal solution. The selection of l reflects a tradeoff between the time
complexity and the quality of solution. On the basis of their work, Jeon [11] gave
another proof of NP-hard property. He deduced it to be a minimum set cover problem.
With the help of matrix, a centralized algorithm based on the approximation algorithm
for minimum set cover problem was presented. Wang [10] proposed another heuristic
algorithm called Greedy-Cover inspired by set operations. Recently, Fu and Xiao et.al
[12] utilized vector operations to accelerate computation. The output replica is organ-
ized into a ring structure for concurrent updating.

However, all these solutions are classified as centralized algorithms. A dominate
node is required to collect communication cost between any two nodes, and the algo-
rithm will be performed in this single node. If the scale of network is small or medium
(e.g., < 1000), they work well. However, when the scale is a bit larger, the computa-
tion cost and memory cost will both increase sharply [10]. Either the time cost will be
so long, or it will cause the out of memory exception. We can confirm this judgment
from experimental results in section 6.

Generally speaking, all of them lack of scalability. And the loads are imbalanced.
While the dominate node is over-used, all the other nodes are almost idle. The power-
ful capabilities are not exploited.

3 Replication System Model and QoS-Aware Replica Placement
Problem Definition

In this section, a replication system model is introduced. Some servers are selected to
hold replicas, which are called replica nodes. The other servers are called non-replica
nodes. In this context, the terms “server” and “node” are regarded as the same thing.

234 W. Fu et al.

Let an undirected graph represent the server network, where is the set
of servers, denotes the set of links between these nodes. Each node is
identified by a global unique identifier. Without loss of generality, we use integer 0, 1,
2, …, n, where n = | | A storage function is assigned to node , representing
for the storage cost when a replica resides on it. Besides, Let denote the
communication cost between a pair of nodes and . If () , means
communication cost of the link between and . Otherwise, equals to the
smallest cost among all possible path from to .

QARP problem is defined on the basis of this model. Given an original data in a
source node labeled by the objective of QARP is to find a subset of nodes (i.e.,

 – { }). When each server in holds a copy from , any of the other nodes can
arrive at a replica node without violating its QoS restriction. At the same time, the
replicating cost should be minimized. Figure 1 illustrates a typical graph with
communication costs.

Fig. 1. This is a graph with 15 nodes and 22 edges. Node 0 is the original server, and grey
circles are replica nodes. Any node can reach to his nearest replica node within a distance
restrict of QoS ≤ 19. Thick paths show the updating distributing tree rooted by 0, with an
updating cost of 5+10+10+3 = 28.

The replicating cost of is calculated by the following equation:

 (1)

where is a relative weight. Let be the update rate of data, and
are respectively represented by the follows:

 =
Rv

vs)((2)

 =
Tupu

upud
))(,(

))(,((3)

 CPI: A Novel Three-Phase Algorithm for QoS-Aware Replica Placement Problem 235

In equation (3), denotes an update distribution tree [13] rooted by , and token
(,) means that and its parent node are a pair of successive nodes in
the tree .

4 Three-Phase Placement Algorithm

As discussed above, most of existing algorithms are centralized solutions. The lack of
scalability and the rather high computation complexity make them incapable to solve
a large-scale QARP problem. In this section, a novel QoS-aware replica placement
algorithm CPI is introduced. Namely, the algorithm consists of three phases, illus-
trated by the pseudo-code in Figure 2.

Input: G = (V, E); QoS; s
Output: Policy P; Update distributing tree T
1 Begin

//Phrase 1: Node grouping
2 Find 3 pharoses with Pharos Electing Policy;//Sec. 4.2
3 Group all nodes into N Clusters V1,V2,…,VN; //Sec. 4.1

//Phrase 2: Find local replica placement policy
4 For each Cluster Vi
5 Find local replica policy Pi; //Sec. 4.3
6 Construct local update tree Ti; //Sec. 4.4
7 End for;

//Phrase 3: Integration of all local policies
8 P = P1 P2 … PN;
9 Construct T from T1,T2,…,TN;//Sec. 4.4
10 End

Fig. 2. The pseudo-code of algorithm CPI: Clustering, Placing and Integrating

4.1 Pharos-Based Clustering Algorithm

To divide all nodes into different clusters, the principle to be followed is that:

 If two nodes are close to each other, they should be in the same cluster;
 If two nodes are far away from each other, they should be in different clusters.

Therefore a technique is urgently needed to distinguish whether two nodes are
close to or far away from each other. The idea is inspired by GPS [14]: the Global
Positioning System. A typical GPS receiver can easily calculate its 3-D coordinate
position using the distances to four or more GPS satellites. In our algorithm, since the
graph G is in a 2-D coordinate system, it is easily to understand that 3 “satellites”,
here we called them pharoses2, are enough to position a node.

The basic idea of the pharos-based clustering algorithm is to find out which nodes
are close to each other, and then classify them into one cluster. As an simple example
illustrated by Figure 3.

2 Pharos is a peninsula in the Mediterranean Sea at Alexandria, Egypt. It is the site of an ancient

lighthouse. Ancient sailors used it to estimate their positions on the sea.

236 W. Fu et al.

Fig. 3. With the help of 3 pharoses A, B and C, it can be found out that node u is close to v,
while x and y are far away from u or v. Thus, four nodes are clustered into two clusters, as the
dashed circles shows.

Another important issue is how many clusters should be generated. Let denote
the number of clusters. The choice of is a tradeoff between local replica placement
cost and integrating cost. Generally, we decide by controlling each cluster’s size to
be medium-sale. Therefore, can be calculated by the following expression:

 = kV /|| (4)
Where k is an integer, equal to the scale we want each cluster to be.

The clustering algorithm is illustrated by the pseudo-code in Figure 4.

Input: ; Pharoses set{p1, p2, p3}; # of cluster:

Output: Subsets
1. Begin

//Initialize subsets
2. For each node u, let pha(u)=d(u,p1)2+d(u,p2) 2+d(u,p3) 2;
3. Sorting all pha(u), then divide all nodes into N

subsets according to their pha values;
//Clustering processing

4. For each node u, do loops:

5. For each subset , do loops:

6. Calculate average distances from to pharoses:

7. jd =
Viv

j Vipvd /),(, j= 1, 2, 3;

8. diff(u)=(d(u,p1)- 1d)2+(d(u,p2)- 2d)2+(d(u,p3)- 3d)2

9. End of For each subset

10. Move n to the which gets the minimal diff(u);
11. End of For each node
12. End

Fig. 4. The pseudo-code of Pharos-based Clustering Algorithm

 CPI: A Novel Three-Phase Algorithm for QoS-Aware Replica Placement Problem 237

Finally, un-intersect subsets are generated. They meet the
following conditions:

=

i, j {1,2,…, }, =

4.2 Pharos Determination Policy

In a 2-D coordinate system, 3 different reference points would be enough for position-
ing an unknown u. This can be easily confirmed by the left part of Figure 5.

Fig. 5. Left: Let d1, d2 and d3 denote the distances from u to three reference points A, B and C.
Regard A as the centre, d1 as the radius, draws a circle Circle(A, d1). Similarly draw Circle(B,
d2) and Circle(C, d3). Three circles can only intersect at one single point. Figure 5 Right: If
three reference points are on a straight line, the position of u cannot be determinate, because it
still has two alternatives.

Feasible pharoses should avoid being on the same line. Furthermore, geometrical
theorem reveals that far-away reference points can improve positioning accuracy.
Here introduce an elaborate method to meet these two requirements. Firstly, find out
the diameter of , denoted as . Suppose two end nodes connecting the diameter are

 and . Secondly, find out the set of nodes whose distances to are larger than
2/ , denoted as Set1. Similarly, find out another set of nodes whose distances to
are larger than 2/ , denoted as Set2. Finally, let p3 be the node which makes the
maximum sum: = + , Set1 Set2. Then { } are the
selected pharoses. Since + > = = , it is
surely that and are not on a straight line. Meanwhile, these three nodes are
as far away as possible from each other.

4.3 Local Replica Placing Process

After Clustering phase, a large-scale problem is divided into several medium-scale
problems. It is noticeable that these problems are completely independent from each

238 W. Fu et al.

other. One cluster’s result has none dependence with another’s. Obviously,
distributed and parallel Placing phrase can provide more scalability and speedup the
whole algorithm. In each cluster , any existing algorithm mentioned in section 2 can
be applied to obtain local replica policy with much smaller computation and
memory overhead.

In order to minimize update cost, a shortest path tree is adopted to act as the update
distributing tree . Every establishes its local tree according to the location of
source node : In cluster which contains the original node , take as the root of

. In other clusters, a root should be found through the following rule. Let denote
the root of i. Then it can be picked out by calculate the distance between any node in

and original tree : Let denote the smallest one:

=)}},({min{min vud
TsvTiu

 (7)

Then = . And will be recorded as the attaching point, see Section 4.4.

4.4 Partition Integrating Mechanism

In order to obtain the global policy, every cluster submits its local policy to the
original node. It is obviously that the finial replica policy is = .

The last thing remaining is the integrating of update distributing trees. During the
Integrating phase, every tree i is submitted to . Then they are attached to one by
one, as Figure 6 illustrated. The attaching points also come from (7). This only needs
constant time complexity.

Fig. 6. An example of tree integration during Integrating phase. Black dots represent for replica
nodes, while whit dots for non-replica nodes. Four local update distributing trees are grafted to
the original tree, thus obtaining the global update distributing tree T.

5 Theoretical Analysis

The philosophical foundation of CPI algorithm is deduction and induction. At the
beginning, a large-scale problem is deducted to several small-scale problems with the

 CPI: A Novel Three-Phase Algorithm for QoS-Aware Replica Placement Problem 239

same essence. On finishing these small problems, all partial results are inducted to
generate a complete result. Moreover, CPI is provided with parallel and distributed
features in the second phase.

Recall the pseudo-code in Figure 2, we will analyze the time complexity of CPI
line by line.

(1) Line 2: the pharos electing algorithm is performed at the time complexity O(| |2).
(2) Line 3: the pharos-based clustering process is executed. It contains a sorting

process, which has O(| |*log| |) time complexity [15]. About the nested For
loops in Figure 4, there are | | nodes and N clusters, so the complexity is
O(N*| |). Thus the total time complexity of line 3 is O(| |*log| | + N*| |).

(3) In the For loops from line 4 to line 7, suppose the time complexity of the local
replica placement algorithm is typically O((| |/N)3), since constructing update
distributing tree only needs a complexity of O((| |/N)2) [13], so the total time
complexity is O(N*(| |/N)3)=O(| |3/N2).

(4) Line 8: constant time.
(5) Line 9: according to equation (6), since the average sizes of and are all n/N,

so the time complexity is O(| |2/N2).

Therefore, the total time complexity is O(| |3/N2 + | |2), depending on the choice
of N. For example, in our experiments, let N=| |/k, k is a constant. Then the final
time complexity is O(k2*| | + | |2) = O(| |2). It can be concluded that the
computation cost is much cheaper than all existing ones.

6 Experiments and Evaluation

With Java language, we developed a simulating test-bed for replica algorithm validat-
ing. It consists of 5 parts, listed as follows:

• A famous network topology generator BRITE [16] was imbedded to produce net-
works graphs. Also corresponding functions were designed to read in BRITE out-
put files and generate all-pairs shortest path matrix.

• A Java GUI graphic tool was developed to show how nodes and replicas are dis-
tributed in a square plane.

• A class was implemented to generate a shortest path tree and obtain update cost.
• A library included many existing replica placement algorithms, as well as CPI.
• Other utilities and assistant classes.

The test-bed is running at a personal computer with Intel Pentium M Process
1.7GHz, 1GB memory, 100GB disk and Windows XP OS. For justice, only “pure”
costs of algorithms are recorded. For one graph size, BRITE generated 100 graphs to
test effects of one algorithm. The result of this algorithm in our record is the average
of 100 times of experiments. We chose the Waxman model [16] to generate network
topology. The process can be outlined as follows: firstly N nodes are randomly placed
into a square plane ordered by HS and LS. Then link is created between each pair of

240 W. Fu et al.

nodes with the probability of =)/(),(Dvude , where is the
Euclidean distance between and , is the diameter of the graph, and , are both
Waxman parameters. Larger will generate more edges, and higher will result
more long edge. Finally a bandwidth is set to every edge. In our experiments, HS =
1000, LS = 1000, = 0.15, = 0.2. Additionally, the label of original node was
generated randomly. Without loss of generality, 1 and 0.5.

6.1 The Choice of Parameter

As we discussed in section 4.1, number of clusters influences the clustering
algorithm so much. In this section, different sizes of are tested to find the proper
rang of . Let varies from 100 to 800. At the same time, different sizes of are
tested. Since update cost is consistent with the time cost, we only recorded the time
expended. Table 1 shows the influence of .

Table 1. Time complexity of CPI under different parameter (unit: second)

100 200 400 800 1600 3200
 =100 2.47 2.86 23.16 63.03 241.37 328.73
 =200 2.14 23.86 24.67 41.93 125.42 245.32
 =400 3.03 3.86 11.12 34.17 63.25 183.25
 =800 3.39 5.97 33.67 242.27 445.13 456.31

When is large, the time cost is mainly decided by the local replica algorithm. On
the contrary, it is mainly generated from the clustering algorithm. From table 1 we
can conclude that =400 is a proper value.

6.2 Time Complexity and Space

Four different algorithms were operated on the test-bed, with the number of nodes
growing from 100 to 3200. The QoS is fixed to 0.2* , where is the diameter of
graph . 0-Greedy-Insert and 0-Greedy-Delete are introduced in Tang and Xu’s
paper [9]. GC stands for Greedy-Cover algorithm [10]. In CPI algorithm, 0-Greedy-
Insert is adopted to solve cluster replica placing problem. The number of clusters is
set to 400, as discussed in Section 6.1. If < , no clustering operation occurs.
And the CPI algorithm will be degraded to be a normal 0-Greedy-Insert. Note: if
running time exceeds 2 hours (7200 seconds), it will be marked as the symbol E/T,
which means OutOfTime exception. Comparatively, another symbol E/M represents
for the OutOfMemory exception.

Table 2 shows how the number of nodes influenced the time complexity of
traditional algorithms. As the node number doubled, the time costs of 0-Greedy-Insert,
0-Greedy-Delete and GC increased by an order of magnitude. GC got better results
than 0-Greedy-Insert or 0-Greedy-Delete because it didn’t have to repeat calculating
the update cost during placing. The construction of update distributing tree can be
finished at the very end of the algorithm.

 CPI: A Novel Three-Phase Algorithm for QoS-Aware Replica Placement Problem 241

Only CPI can handle a placement problem with over 3000 nodes. When is less
than 400, time cost of CPI is almost the same with a local algorithm. In this case, CPI
is degenerated to a 0-Greedy-Insert algorithm. When is larger than 400, the cost of
CPI keeps stable at several tens of seconds, which is approximate the cost of 0-
Greedy-Insert handling 400 nodes. Even when = 3200, the cost does not exceed
500 seconds. This result accords with the theoretical analysis in section 5.

Table 2. Time & space costs of different algorithms (unit: second)

of Nodes 0-Greedy-Insert 0-Greedy-Delete GC CPI
100 0.19 5.78 0.11 0.35
200 2.78 151.45 0.38 3.66
400 35.78 5285 3.16 37.85
800 542.27 E/T 29.50 42.72
1600 E/T E/T 259.91 192.65
3200 E/M E/M E/M 472.23

6.3 The Effect of Replica Placement

In this section we will compare the effect of different algorithms. Metrics includes the
number of replicas and the update costs, and thus the replica cost calculated by the
expression (1).

Suppose that CPI still use 0-Greedy-Insert as the local cluster replica placement so-
lution. From figure 7 we know that CPI needs more replicas than 0-Greedy-Insert to
satisfy all clients’ QoS requirements. However, the replica number of CPI is much

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6

of nodes

#

o
f

R
e
p
l
i
c
a
s

CPI GC 0-greedy-insert 0-greedy-delete

Fig. 7. With the growth of nodes, increments of replica numbers of different algorithms remain
stable. The coordinates 1-6 at x- axis stand for 100 nodes, 200 nodes, 400 nodes, 800 nodes,
1600 nodes and 3200 nodes respectively.

242 W. Fu et al.

less than that of GC. This is because GC only considered the nodes nearby, while CPI
will check the whole node sets to find proper clusters. The increment of storage cost
is also acceptable. From the experiment we also found that update cost is closely
relative with the number of replicas. It has the similar curves as in Figure 7. For the
limitations of space, we omitted to describe it.

7 Conclusion

By testing various existing QoS-aware replica placement algorithms on our self-
designed test-bed, we found out that they all lacks of scalability and can only handle
small-scale and medium-scale QARP problems. In this paper, we propose a novel
three-phase algorithm CPI to overcome the embarrassment. The ideal of CPI is to
divide a large-scale problem into several medium-scale partial problems with an ef-
fective clustering algorithm. After each partial problem is solved, the integration of all
partial results will generate the complete result.

There are several original ideas in the algorithm, including the pharos-based clus-
tering methods and the integrating mechanism of multiple update distributing trees. In
order to investigate and test different algorithms, we designed and implemented a
general-purposed test-bed by ourselves. Elaborate plans and sufficient experiments
make our work solid and convincible.

References

1. Patiño-Martinez, M., Jiménez-Peris, R., et al.: MIDDLE-R: Consistent database replica-
tion at the middleware level. ACM Transactions on Computer Systems (TOCS) 23(4),
375–423 (2005)

2. Zhang, J., Honeyman, P.: Hierarchical Replication Control in a Global File System. In:
Seventh IEEE International Symposium on Cluster Computing and the Grid, CCGRID
2007, pp. 155–162 (2007)

3. Gkantsidis, C., Rodriguez, P.R.: Network coding for large scale content distribution. In:
24th Annual Joint Conference of the IEEE Computer and Communications Societies,
vol. 4, pp. 2235–2245 (2005)

4. Krishnamurthy, B., Wills, C., Zhang, Y.: On the use and performance of content distribu-
tion networks. In: Proceedings of the 1st ACM SIGCOMM Workshop on Internet Meas-
urement table of contents, pp. 169–182

5. Malkhi, D., Novik, L., Purcell, C.: P2P replica synchronization with vector sets. ACM SI-
GOPS Operating Systems Review archive 41(2), 68–74 (2007)

6. Ann Chervenak, I.F., Kesselman, C., Salisbury, C., Tuecke, S.: The Data Grid: Towards an
Architecture for the Distributed Management and Analysis of Large Scientic Datasets.
Journal of Network and Computer Applications 23, 187–200 (2001)

7. Qiu, L., Padmanabhan, V.N., Voelker, G.M.: On the Placement of Web Server Replicas.
In: Proc. IEEE INFOCOM 2001, pp. 1587–1596 (2001)

8. Cidon, I., Kutten, S., Soffer, R.: Optimal Allocation of Electronic Content. In: Proc. IEEE
INFOCOM 2001, April 2001, pp. 1773–1780 (2001)

9. Tang, X., Xu, J.: Qos-aware replica placement for content distribution. IEEE Transactions
on Parallel and Distributed Systems 10, 921–932 (2005)

 CPI: A Novel Three-Phase Algorithm for QoS-Aware Replica Placement Problem 243

10. Hsiangkai Wang, P.L., Wu, J.-J.: A QoS-Aware Heuristic Algorithm for Replica Place-
ment. In: Grid Computing Conference 2006 (2006)

11. Won, J., Jeon, I.G., Nahrstedt, K.: QoS-aware Object Replication in Overlay Networks. In:
IPTPS 2005 (2005)

12. Fu, W., Xiao, N., Lu, X.: QoS-Guaranteed Ring Replication Management with Strong
Consistency. In: ApWeb/WAIM Workshops, Huangshan China (2007)

13. Tao, W., Wei-Sheng, L.: A Fast Low-Cost Shortest Path Tree Algorithm. Journal of Soft-
ware (China) 15(5), 660–665

14. http://en.wikipedia.org/wiki/Global_Positioning_System (2008)
15. Schnorr, C.P., Shamir, A.: An optimal sorting algorithm for mesh connected computers.

In: Proceedings of the eighteenth annual ACM symposium on Theory of computing table
of contents, pp. 255–263 (1986)

16. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: an approach to universal topology
generation. In: Ninth International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, pp. 346–353 (2001)

	CPI: A Novel Three-Phase Algorithm for QoS-Aware Replica Placement Problem
	Introduction
	Related Work
	Replication System Model and QoS-Aware Replica Placement Problem Definition
	Three-Phase Placement Algorithm
	Pharos-Based Clustering Algorithm
	Pharos Determination Policy
	Local Replica Placing Process
	Partition Integrating Mechanism

	Theoretical Analysis
	Experiments and Evaluation
	The Choice of Parameter N
	Time Complexity and Space
	The Effect of Replica Placement

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

