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Abstract. QoS-aware replica placement decides how many replicas are needed 
and where to deploy them to meet every request from individual clients. In this 
paper, a novel three-phase algorithm, namely CPI, is proposed. By dividing can-
didate nodes into proper medium-scale partitions, CPI is capable to handle with 
large-scale QoS-aware replica placement problem. Pharos-based clustering algo-
rithm obtains ideal grouping, and partition integrating method is developed to ob-
tain final replica policy. Theoretical analysis and experiments show that CPI has 
lower computation complexity and good scalability. The replicating cost and up-
dating cost remains acceptable under different simulating conditions. 

1   Introduction 

Replication is the process of sharing resources so as to ensure consistency between 
redundant copies. These copies are formally called replicas, which usually spread at 
geographically distributed locations. As a simple but effective technique, replication 
is widely employed in distributed systems [1-6]. Proper replica mechanism can spee-
dup response time, reduce network traffic, balance overload, as well as enhance data 
reliability and fault-tolerance. Distributed databases [1], distributed file systems [2], 
content distributing network [3, 4], P2P systems [5] and Data Grids [6] are some of 
the most common scenarios to use replicas. Replica placement takes charge of a 
proper replica policy. It decides how many replicas should be deployed and where to 
locate them, which is very important to the effectiveness of replication. 

Traditional replication researches aimed at optimize the global/average metrics as 
much as possible. For example, Qiu [7] tried to minimize the average accessing delay, 
and Cidon [8] aimed to spend the least communication messages. While an average 
performance measure may be important from the system’s point of view, it does not 
differentiate the various performance requirements of the individuals [9]. With the 
rapid growth of time-critical applications, some researches [9-12] tried to provide 
QoS-guaranteed replica service. Instead of only concerning about average metrics, 
their first and foremost objective is to guarantee that EVERY individual request 
should meet its QoS requirement, usually response time. They named it as QoS-
Aware Replica Placement problem (QARP for short), which has been proved to be 
NP-Complete. Several heuristic algorithms have been presented to solve the problem, 
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including Tang [9], Wang [10] and Fu [12]. However, they are all centralized meth-
ods and lack of scalability. Furthermore, the computation complexities are rather 
high. Theoretically, the time complexities are about or even  [9-11]. 

In order to overcome the difficulty, a novel three-phase algorithm CPI is presented 
to solve large-scale QoS-aware replica placement problem. CPI divides the entire 
problem into several medium-scaled problems. Then each sub-problem deals with its 
own placement problem in parallel. Finally, all sub-problem solutions are integrated 
to form a final solution. The main contributions of the paper are listed as follows: 

 

1. A novel semi-distributed method CPI is proposed to solve large-scale QoS-aware 
replica placement problem; 

2. A pharos-based algorithm are invented for node clustering; 
3. A simple but effective integration mechanism is introduced to obtain global place-

ment policy; 

2   Related Work 

In 2004, Tang and Xu put forward the QARP problem for the first time [9]. They 
proved the replica-aware QARP to be NP-complete. Meanwhile, two families of heu-
ristic algorithms, named l-Greedy-Insert and l-Greedy-Delete respectively, are pro-
posed for optimal solution. The selection of l reflects a tradeoff between the time 
complexity and the quality of solution. On the basis of their work, Jeon [11] gave 
another proof of NP-hard property. He deduced it to be a minimum set cover problem. 
With the help of matrix, a centralized algorithm based on the approximation algorithm 
for minimum set cover problem was presented. Wang [10] proposed another heuristic 
algorithm called Greedy-Cover inspired by set operations. Recently, Fu and Xiao et.al 
[12] utilized vector operations to accelerate computation. The output replica is organ-
ized into a ring structure for concurrent updating.  

However, all these solutions are classified as centralized algorithms. A dominate 
node is required to collect communication cost between any two nodes, and the algo-
rithm will be performed in this single node. If the scale of network is small or medium 
(e.g., < 1000), they work well. However, when the scale is a bit larger, the computa-
tion cost and memory cost will both increase sharply [10]. Either the time cost will be 
so long, or it will cause the out of memory exception. We can confirm this judgment 
from experimental results in section 6. 

Generally speaking, all of them lack of scalability. And the loads are imbalanced. 
While the dominate node is over-used, all the other nodes are almost idle. The power-
ful capabilities are not exploited.  

3   Replication System Model and QoS-Aware Replica Placement 
Problem Definition 

In this section, a replication system model is introduced. Some servers are selected to 
hold replicas, which are called replica nodes. The other servers are called non-replica 
nodes. In this context, the terms “server” and “node” are regarded as the same thing. 
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Let an undirected graph represent the server network, where is the set 
of servers,  denotes the set of links between these nodes. Each node is 
identified by a global unique identifier. Without loss of generality, we use integer 0, 1,
2, …, n, where n = | | A storage function  is assigned to node , representing 
for the storage cost when a replica resides on it. Besides, Let  denote the 
communication cost between a pair of nodes and . If  ( ) , means 
communication cost of the link between  and . Otherwise, equals to the 
smallest cost among all possible path from  to .

QARP problem is defined on the basis of this model. Given an original data in a 
source node labeled by  the objective of QARP is to find a subset of nodes  (i.e., 

 – { }). When each server in  holds a copy from , any of the other nodes can 
arrive at a replica node without violating its QoS restriction. At the same time, the 
replicating cost should be minimized. Figure 1 illustrates a typical graph with 
communication costs.   

 

Fig. 1. This is a graph with 15 nodes and 22 edges. Node 0 is the original server, and grey 
circles are replica nodes. Any node can reach to his nearest replica node within a distance 
restrict of QoS ≤ 19. Thick paths show the updating distributing tree rooted by 0, with an 
updating cost of 5+10+10+3 = 28. 

The replicating cost of  is calculated by the following equation: 

  (1)

where is a relative weight. Let  be the update rate of data, and
are respectively represented by the follows:  
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In equation (3),  denotes an update distribution tree [13] rooted by , and token 
( , )  means that  and its parent node  are a pair of successive nodes in 
the tree .  

4   Three-Phase Placement Algorithm 

As discussed above, most of existing algorithms are centralized solutions. The lack of 
scalability and the rather high computation complexity make them incapable to solve 
a large-scale QARP problem. In this section, a novel QoS-aware replica placement 
algorithm CPI is introduced. Namely, the algorithm consists of three phases, illus-
trated by the pseudo-code in Figure 2.  

Input:  G = (V, E); QoS; s 
Output: Policy P; Update distributing tree T 
1 Begin

//Phrase 1: Node grouping 
2   Find 3 pharoses with Pharos Electing Policy;//Sec. 4.2
3   Group all nodes into N Clusters V1,V2,…,VN; //Sec. 4.1

//Phrase 2: Find local replica placement policy
4   For each Cluster Vi
5      Find local replica policy Pi; //Sec. 4.3
6      Construct local update tree Ti; //Sec. 4.4
7 End for;

//Phrase 3: Integration of all local policies 
8 P = P1 P2 … PN;
9   Construct T from T1,T2,…,TN;//Sec. 4.4
10 End

 

 

Fig. 2. The pseudo-code of algorithm CPI: Clustering, Placing and Integrating 

4.1   Pharos-Based Clustering Algorithm  

To divide all nodes into different clusters, the principle to be followed is that:  

 If two nodes are close to each other, they should be in the same cluster;  
 If two nodes are far away from each other, they should be in different clusters. 

Therefore a technique is urgently needed to distinguish whether two nodes are 
close to or far away from each other. The idea is inspired by GPS [14]: the Global 
Positioning System. A typical GPS receiver can easily calculate its 3-D coordinate 
position using the distances to four or more GPS satellites. In our algorithm, since the 
graph G is in a 2-D coordinate system, it is easily to understand that 3 “satellites”, 
here we called them pharoses2, are enough to position a node.  

The basic idea of the pharos-based clustering algorithm is to find out which nodes 
are close to each other, and then classify them into one cluster. As an simple example 
illustrated by Figure 3.  
                                                           
2 Pharos is a peninsula in the Mediterranean Sea at Alexandria, Egypt. It is the site of an ancient 

lighthouse. Ancient sailors used it to estimate their positions on the sea. 
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Fig. 3. With the help of 3 pharoses A, B and C, it can be found out that node u is close to v, 
while x and y are far away from u or v. Thus, four nodes are clustered into two clusters, as the 
dashed circles shows. 

Another important issue is how many clusters should be generated. Let  denote 
the number of clusters. The choice of  is a tradeoff between local replica placement 
cost and integrating cost. Generally, we decide  by controlling each cluster’s size to 
be medium-sale. Therefore,  can be calculated by the following expression: 

 = kV /||      (4) 
Where k is an integer, equal to the scale we want each cluster to be.  

The clustering algorithm is illustrated by the pseudo-code in Figure 4.  

Input: ; Pharoses set{p1, p2, p3}; # of cluster: 

Output: Subsets 
1. Begin

//Initialize  subsets 
2.   For each node u, let pha(u)=d(u,p1)2+d(u,p2) 2+d(u,p3) 2;
3.   Sorting all pha(u), then divide all nodes into N

subsets  according to their pha values; 
//Clustering processing

4.   For each node u, do loops: 

5.     For each subset , do loops: 

6.         Calculate average distances from  to pharoses:  

  

7. jd =
Viv

j Vipvd /),( , j= 1, 2, 3; 

8.       diff(u)=(d(u,p1)- 1d )2+(d(u,p2)- 2d )2+(d(u,p3)- 3d )2

9.     End of For each subset 

10.     Move n to the  which gets the minimal diff(u); 
11.   End of For each node 
12. End  

Fig. 4. The pseudo-code of Pharos-based Clustering Algorithm 
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Finally,  un-intersect subsets  are generated. They meet the
following conditions: 

=

i, j {1,2,…, }, =  

4.2   Pharos Determination Policy 

In a 2-D coordinate system, 3 different reference points would be enough for position-
ing an unknown u. This can be easily confirmed by the left part of Figure 5.  

 

Fig. 5. Left: Let d1, d2 and d3 denote the distances from u to three reference points A, B and C. 
Regard A as the centre, d1 as the radius, draws a circle Circle(A, d1). Similarly draw Circle(B, 
d2) and Circle(C, d3). Three circles can only intersect at one single point. Figure 5 Right: If 
three reference points are on a straight line, the position of u cannot be determinate, because it 
still has two alternatives. 

Feasible pharoses should avoid being on the same line. Furthermore, geometrical 
theorem reveals that far-away reference points can improve positioning accuracy. 
Here introduce an elaborate method to meet these two requirements. Firstly, find out 
the diameter of , denoted as . Suppose two end nodes connecting the diameter are 

 and . Secondly, find out the set of nodes whose distances to  are larger than 
2/ , denoted as Set1. Similarly, find out another set of nodes whose distances to  
are larger than 2/ , denoted as Set2. Finally, let p3 be the node which makes the 
maximum sum:  = + , Set1 Set2. Then { } are the 
selected pharoses. Since  +  > =  = ,  it is 
surely that and  are not on a straight line. Meanwhile, these three nodes are 
as far away as possible from each other.  

4.3   Local Replica Placing Process 

After Clustering phase, a large-scale problem is divided into several medium-scale 
problems. It is noticeable that these problems are completely independent from each  
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other. One cluster’s result has none dependence with another’s. Obviously, 
distributed and parallel Placing phrase can provide more scalability and speedup the 
whole algorithm. In each cluster , any existing algorithm mentioned in section 2 can 
be applied to obtain local replica policy  with much smaller computation and 
memory overhead.  

In order to minimize update cost, a shortest path tree is adopted to act as the update 
distributing tree . Every establishes its local tree  according to the location of 
source node :  In cluster  which contains the original node , take  as the root of 

.  In other clusters, a root should be found through the following rule. Let  denote 
the root of i. Then it can be picked out by calculate the distance between any node in 

and original tree : Let denote the smallest one: 

= )}},({min{min vud
TsvTiu

    (7) 

Then   = . And will be recorded as the attaching point, see Section 4.4.  

4.4   Partition Integrating Mechanism 

In order to obtain the global policy, every cluster submits its local policy to the 
original node. It is obviously that the finial replica policy is  = .

The last thing remaining is the integrating of update distributing trees. During the 
Integrating phase, every tree i is submitted to . Then they are attached to  one by 
one, as Figure 6 illustrated. The attaching points also come from (7). This only needs 
constant time complexity.  

 

Fig. 6. An example of tree integration during Integrating phase. Black dots represent for replica 
nodes, while whit dots for non-replica nodes. Four local update distributing trees are grafted to 
the original tree, thus obtaining the global update distributing tree T.  

5   Theoretical Analysis 

The philosophical foundation of CPI algorithm is deduction and induction. At the 
beginning, a large-scale problem is deducted to several small-scale problems with the 
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same essence. On finishing these small problems, all partial results are inducted to 
generate a complete result. Moreover, CPI is provided with parallel and distributed 
features in the second phase.  

Recall the pseudo-code in Figure 2, we will analyze the time complexity of CPI 
line by line.  

(1) Line 2: the pharos electing algorithm is performed at the time complexity O(| |2).
(2) Line 3: the pharos-based clustering process is executed. It contains a sorting 

process, which has O(| |*log| |) time complexity [15]. About the nested For 
loops in Figure 4, there are | | nodes and N clusters, so the complexity is 
O(N*| |). Thus the total time complexity of line 3 is O(| |*log| | + N*| |).

(3) In the For loops from line 4 to line 7, suppose the time complexity of the local 
replica placement algorithm is typically O((| |/N)3), since constructing update 
distributing tree only needs a complexity of O((| |/N)2) [13], so the total time 
complexity is O(N*(| |/N)3 )=O(| |3/N2).

(4) Line 8: constant time. 
(5) Line 9: according to equation (6), since the average sizes of  and  are all n/N, 

so the time complexity is O(| |2/N2).

Therefore, the total time complexity is O(| |3/N2 + | |2), depending on the choice 
of N. For example, in our experiments, let N=| |/k, k is a constant. Then the final 
time complexity is O(k2*| | + | |2) = O(| |2). It can be concluded that the 
computation cost is much cheaper than all existing ones.  

6   Experiments and Evaluation 

With Java language, we developed a simulating test-bed for replica algorithm validat-
ing. It consists of 5 parts, listed as follows: 

• A famous network topology generator BRITE [16] was imbedded to produce net-
works graphs. Also corresponding functions were designed to read in BRITE out-
put files and generate all-pairs shortest path matrix. 

• A Java GUI graphic tool was developed to show how nodes and replicas are dis-
tributed in a square plane.  

• A class was implemented to generate a shortest path tree and obtain update cost.  
• A library included many existing replica placement algorithms, as well as CPI. 
• Other utilities and assistant classes. 

The test-bed is running at a personal computer with Intel Pentium M Process 
1.7GHz, 1GB memory, 100GB disk and Windows XP OS. For justice, only “pure” 
costs of algorithms are recorded. For one graph size, BRITE generated 100 graphs to 
test effects of one algorithm. The result of this algorithm in our record is the average 
of 100 times of experiments. We chose the Waxman model [16] to generate network 
topology. The process can be outlined as follows: firstly N nodes are randomly placed 
into a square plane ordered by HS and LS. Then link is created between each pair of  
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nodes with the probability of = )/(),( Dvude , where  is the 
Euclidean distance between  and ,  is the diameter of the graph, and , are both 
Waxman parameters. Larger  will generate more edges, and higher  will result 
more long edge. Finally a bandwidth is set to every edge. In our experiments, HS = 
1000, LS = 1000, = 0.15, = 0.2. Additionally, the label of original node was 
generated randomly. Without loss of generality, 1 and 0.5.  

6.1   The Choice of Parameter  

As we discussed in section 4.1, number of clusters  influences the clustering
algorithm so much. In this section, different sizes of  are tested to find the proper
rang of . Let  varies from 100 to 800. At the same time, different sizes of   are
tested. Since update cost is consistent with the time cost, we only recorded the time
expended. Table 1 shows the influence of .  

Table 1. Time complexity of CPI under different parameter  (unit: second) 

100 200 400 800 1600 3200 
 =100 2.47 2.86 23.16 63.03 241.37 328.73 
 =200 2.14 23.86 24.67 41.93 125.42 245.32 
 =400 3.03 3.86 11.12 34.17 63.25 183.25 
 =800 3.39 5.97 33.67 242.27 445.13 456.31 

 

When  is large, the time cost is mainly decided by the local replica algorithm. On 
the contrary, it is mainly generated from the clustering algorithm. From table 1 we 
can conclude that  =400 is a proper value.  

6.2   Time Complexity and Space 

Four different algorithms were operated on the test-bed, with the number of nodes 
growing from 100 to 3200. The QoS is fixed to 0.2* , where  is the diameter of 
graph . 0-Greedy-Insert and 0-Greedy-Delete are introduced in Tang and Xu’s 
paper [9]. GC stands for Greedy-Cover algorithm [10]. In CPI algorithm, 0-Greedy-
Insert is adopted to solve cluster replica placing problem. The number of clusters is
set to 400, as discussed in Section 6.1. If  < , no clustering operation occurs. 
And the CPI algorithm will be degraded to be a normal 0-Greedy-Insert. Note: if 
running time exceeds 2 hours (7200 seconds), it will be marked as the symbol E/T, 
which means OutOfTime exception. Comparatively, another symbol E/M represents 
for the OutOfMemory exception.  

Table 2 shows how the number of nodes influenced the time complexity of 
traditional algorithms. As the node number doubled, the time costs of 0-Greedy-Insert,
0-Greedy-Delete and GC increased by an order of magnitude. GC got better results 
than 0-Greedy-Insert or 0-Greedy-Delete because it didn’t have to repeat calculating 
the update cost during placing. The construction of update distributing tree can be 
finished at the very end of the algorithm.  
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Only CPI can handle a placement problem with over 3000 nodes. When  is less 
than 400, time cost of CPI is almost the same with a local algorithm. In this case, CPI 
is degenerated to a 0-Greedy-Insert algorithm. When  is larger than 400, the cost of 
CPI keeps stable at several tens of seconds, which is approximate the cost of 0-
Greedy-Insert handling 400 nodes. Even when  = 3200, the cost does not exceed 
500 seconds. This result accords with the theoretical analysis in section 5.  

Table 2. Time & space costs of different algorithms (unit: second) 

# of Nodes 0-Greedy-Insert 0-Greedy-Delete GC CPI 
100 0.19 5.78 0.11 0.35 
200 2.78 151.45 0.38 3.66 
400 35.78 5285 3.16 37.85 
800 542.27 E/T 29.50 42.72 
1600 E/T E/T 259.91 192.65 
3200 E/M E/M E/M 472.23 

 

6.3   The Effect of Replica Placement 

In this section we will compare the effect of different algorithms. Metrics includes the 
number of replicas and the update costs, and thus the replica cost calculated by the 
expression (1). 

Suppose that CPI still use 0-Greedy-Insert as the local cluster replica placement so-
lution. From figure 7 we know that CPI needs more replicas than 0-Greedy-Insert to 
satisfy all clients’ QoS requirements. However, the replica number of CPI is much  
 

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6

# of nodes

#
 
o
f
 
R
e
p
l
i
c
a
s

CPI GC 0-greedy-insert 0-greedy-delete

 

Fig. 7. With the growth of nodes, increments of replica numbers of different algorithms remain 
stable. The coordinates 1-6 at x- axis stand for 100 nodes, 200 nodes, 400 nodes, 800 nodes, 
1600 nodes and 3200 nodes respectively.  
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less than that of GC. This is because GC only considered the nodes nearby, while CPI 
will check the whole node sets to find proper clusters. The increment of storage cost 
is also acceptable. From the experiment we also found that update cost is closely 
relative with the number of replicas. It has the similar curves as in Figure 7. For the 
limitations of space, we omitted to describe it.  

7   Conclusion 

By testing various existing QoS-aware replica placement algorithms on our self-
designed test-bed, we found out that they all lacks of scalability and can only handle 
small-scale and medium-scale QARP problems. In this paper, we propose a novel 
three-phase algorithm CPI to overcome the embarrassment. The ideal of CPI is to 
divide a large-scale problem into several medium-scale partial problems with an ef-
fective clustering algorithm. After each partial problem is solved, the integration of all 
partial results will generate the complete result.  

There are several original ideas in the algorithm, including the pharos-based clus-
tering methods and the integrating mechanism of multiple update distributing trees. In 
order to investigate and test different algorithms, we designed and implemented a 
general-purposed test-bed by ourselves. Elaborate plans and sufficient experiments 
make our work solid and convincible.  
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