
J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 210–220, 2008.
© IFIP International Federation for Information Processing 2008

Automatic Transformation for Overlapping
Communication and Computation

Changjun Hu, Yewei Shao, Jue Wang, and Jianjiang Li

School of Information Engineering, University of Science and Technology Beijing
NO.30 Xueyuan Road, Haidian District, Beijing, P.R.China

huchangjun@ies.ustb.edu.cn, yeweishao@gmail.com,
ncepu5@gmail.com, jianjiangli@gmail.com

Abstract. Message-passing is a predominant programming paradigm for dis-
tributed memory systems. RDMA networks like infiniBand and Myrinet reduce
communication overhead by overlapping communication with computation. For
the overlap to be more effective, we propose a source-to-source transformation
scheme by automatically restructuring message-passing codes. The extensions
to control-flow graph can accurately analyze the message-passing program and
help perform data-flow analysis effectively. This analysis identifies the minimal
region between producer and consumer, which contains message-passing func-
tional calls. Using inter-procedural data-flow analysis, the transformation
scheme enables the overlap of communication with computation. Experiments
on the well-known NAS Parallel Benchmarks show that for distributed memory
systems, versions employing communication-computation overlap are faster
than original programs.

Keywords: Parallel compiling; Communication optimization; Control-flow
analysis; Source-to-source transformation.

1 Introduction

Message-passing is widely used in parallel programs and is a standard interface for
message-passing parallel programs written in C, C++, or Fortran that supports point-
to-point communications (send, receive, isend, ireceive) and collective operations
(broadcast, gather, scatter, alltoall, alltoallv). The algorithm presented in this paper is
applicable to message-passing codes. Our platform is a set of sixteen processor nodes,
connected with an infiniBand switch. Current infiniBand switches have Remote Di-
rect Memory Access (RDMA) capability and support that non-blocking communica-
tion can progress concurrently with computation.

The benefit of overlapping communication and computation in parallel computing
has been extensively studied in the past decade. We can classify previous works into
three kinds. Some of researches are achieved by compiled methods [1, 2, 3, 4, 5];
some of them have been performed in the field of Global Address Space languages [6,
7, 8] or achieved by particular hardware [9, 10, 11]. However, these techniques may
be effective for overlapping communication and computation only in a single loop. In

 Automatic Transformation for Overlapping Communication and Computation 211

this paper, we present a transformation scheme to overlap communication with com-
putation using inter-procedural data-flow analysis.

Compared with previous researches, our main contributions are as follows:

 Using inter-procedural data-flow analysis to find the minimal region from pro-
ducer to consumer in context of message-passing programs.

 We propose a transformation scheme to overlap communication with computation.
 We evaluate some NAS benchmarks to validate our transformation.

The rest of this paper is organized as follows. Section 2 gives the algorithm to cre-
ate the control-flow graph for message-passing programs. Section 3 describes a
source-to-source transformation scheme to optimize the parallel programs. Section 4
evaluates the performance of NAS benchmarks using our transformation algorithm.
Section 5 places this paper in the context of related work. Section 6 presents
conclusions.

2 Control-Flow Graph for Message-Passing Program

The compiler must characterize the control-flow and the data-flow of programs, so
that the programs can be optimized in next step. It is regrettable that the previous
control-flow graph does not consider the message-passing call, which can result in
less precise and even incorrect analysis results. To resolve these problems, Shires et
al. [12] give an extension to the control-flow graph called the MPI-CFG. A motiva-
tion example will be given in figure1, which is a generic code segment in SPMD
(Single Process, Multiple Data) parallel program. The array dum is communicated
between statement S1 and S2. In figure 2 MPI-CFG contains control-flow edges rep-
resented with solid lines and a communication edges represented with dash lines. This
is the start point of our work.

Fig. 1. A code segment of SPMD program

212 C.J. Hu et al.

Fig. 2.The MPI-CFG of the code segment presented in Figure1

3 The Overlap of Communication and Computation

There are two challenges involved in data-flow analysis. The first challenge is to
identify message-passing variables and characterize corresponding data accesses. The
second challenge is that producer-consumer data-flow analysis need to be performed
to ensure communication-computation overlap.

3.1 Inter-procedural Data-Flow Analysis for Message-Passing Programs

To characterize and analyze data accesses in message-passing program, we perform
the inter-procedural dataflow analysis for message-passing variables. Message-
passing variable is defined as data that may be communicated or related to commu-
nication data, such as the parameters in message-passing call and the compiler
identifies these message-passing variables using the algorithm described in Figure
3. In Figure 3, we first locate communication statements, and then obtain their pa-
rameters and functional calls. If the parameters are communicated through commu-
nication statement, we add these parameters into our Message-passing Variables
list. If the communication statement has function calls, we should go into these
functions and get parameters from these calls, and then add these parameters into
our list. Finally, our list is a set of variables that may be communicated or related to
communication data.

 Automatic Transformation for Overlapping Communication and Computation 213

Fig. 3. Algorithm to create list of message-passing variables

Fig. 4. Algorithm to construct the minimal region from producer to consumer

214 C.J. Hu et al.

3.2 Constructing the Minimal Region from the Producer to Consumer

In this section we give producer-consumer relationship analysis which can be applied
at any level. If the statement S1 precedes S2 in execution order, then S1 < S2. De-
pendence between two statements in program is relation that constrains their execu-
tion order and control dependence constrain that arises from control-flow graph. Data
dependence arises from flow of data. Therefore, we will give the types of producer-
consumer dependencies. If S1 < S2, and S1 sets value and later S2 uses it, then call it
producer-consumer. If S1 < S2, and S1 uses some variable value and S2 sets it, then
call it anti producer-consumer. We treat producer-consumer and anti producer-
consumer differently.

To expose the maximum available opportunity for overlapping communication
with computation, the algorithm shown in Figure 4 resolves the minimal region from
producer to consumer, which contains the communication function calls. Each vari-
able could be produced and be consumed in multi places in the program, and we only
pay attention to the minimal region from the producer to the consumer. Getting vari-
able from the Message-passing Variables list which is described in Figure 3, we lo-
cate the places that produce this variable and then we select the place called min-
Place_P that is the minimal place from the producer to the communication statement
which contains variable. Then we choose the place called minPlace_Q that is the
nearest place consuming the variable after communication statement. Finally, our
minimal region is from minPlace_P to minPlace_Q.

3.3 Transformation Algorithm

We classify the communication patterns into two cases, blocking communication and
non-blocking communication. To overlap communication and computation, messages
are initiated early using non-blocking sends/receives and completed just before the
consumption point at the receiver with a wait.

Fig. 5. Transformation algorithm for overlapping communication and computation

 Automatic Transformation for Overlapping Communication and Computation 215

MPI provides a direct interface to non-blocking point-to-point operations, while
non-blocking collective operations to overlap communication and computation are not
directly supported by the MPI standard. For blocking communication, we change it
into non-blocking communication using the techniques of Hoefler et al [13, 14]. In
other words, we change MPI_Send into MPI_Isend, MPI_Receive into MPI_Ireceive,
and get the non-blocking communications including MPI_Ibcast, MPI_Igather,
MPI_Iscatter, MPI_Ialltoall and MPI_Ialltoallv. Since collective communication and
point-to-point communication are used in a different way, they should be considered
separately.

We give the transformation algorithm presented in Figure5. The algorithm based on
the minimal region from producer to consumer described in Figure5 and guarantee the
maximization of overlapping communication and computation.

4 Experimental Results

To evaluate the effect of our strategy, the performance comparisons between the
original program and our optimized program using our transformation algorithm. The
experimental environment is a set of sixteen processor nodes, connected with a high-
performance infiniBand switch. Each node has an Intel Xeon 3.0G processor with
1024KB L2 Cache, and the switch has a Remote Direct Memory Access (RDMA)
capability, whereby non-blocking message-passing communication can progress con-
currently with computation. The Operating System is RedHat Linux version FC3,
with Kernel 2.6.9 and we use MVAPICH2 1.0[15] for communication over Infini-
Band. Time is measured by inserting MPI_Wtime() calls before and after the region
we want to execute.

To validate the transformation scheme, we design several experiments implement-
ing the algorithm of overlapping communication and computation using data-flow
analysis to apply to NAS benchmarks. The NAS parallel benchmarks [16] are a set of
programs designed originally to evaluate supercomputers. We use NPB 2.4 [17] im-
plementation written in MPI and give some experiments based on the NAS parallel
programs which confirm to our algorithm, such as LU, IS, BT, MG.

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16
Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

Communication available for Overlap in CLASS=A

Computation available for Overlap in CLASS=A

Communication available for Overlap in CLASS=B

Computation available for Overlap in CLASS=B

Fig. 6. Performance in LU benchmark

216 C.J. Hu et al.

Figure6 shows the performance of LU benchmark before and after optimized pro-
gram. The transformed program succeeds in tolerating the communication latency and
reducing the execution time by almost from 10% to 17% going from two to sixteen
nodes both in class A problem size, while reducing time from 5% to 17% in class B
problem size.

Figure7 shows the time taken in communication and computation available for
overlap both in class A problem size and class B problem size in LU benchmark. The
time taken in communication available for overlap is close to the time taken in com-
putation and it occupies a large proportion in the parallel program. Therefore, opti-
mized program of LU benchmark succeeds in reducing the execution time taken in
parallel program.

Figure8 shows the performance of MG benchmark while Figure9 shows the
communication and computation available for our algorithm. The time taken in com-
munication available for overlap is much larger than the time taken in computation.
Although the time spent in communication occupies a large proportion in the parallel
program, the actual time spent in overlapping is relatively low. In Figure 8 the
transformation algorithm reduces the execution time only from 5% to 8%. Therefore,

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16
Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

original program in CLASS=A optimized program in CLASS=A

original program in CLASS=B optimized program in CLASS=B

Fig. 7. Communication and computation available for overlapping in class A and class B prob-
lem size (LU benchmark)

0

10

20

30

40

50

60

70

2 4 8 16

Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

original program in CLASS=A optimized program in CLASS=A

original program in CLASS=B optimized program in CLASS=B

Fig. 8. Performance in MG benchmark

 Automatic Transformation for Overlapping Communication and Computation 217

0

2

4

6

8

10

12

14

2 4 8 16

Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

Communication available for Overlap in CLASS=A

Computation available for Overlap in CLASS=A

Communication avalable for overlap in CLASS=B

Computation availabler Overlap in CLASS=B

Fig. 9. Communication and computation available for overlapping in class A and class B prob-
lem size (MG benchmark)

0

5

10

15

20

25

30

2 4 8 16
Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

original program in CLASS=A optimized program in CLASS=A

original program in CLASS=B optimized program in CLASS=B

Fig. 10. Performance in IS benchmark

0

1

2

3

4

5

6

7

8

2 4 8 16
Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

communication avaiable for overlap in CLASS=A

Computation available for overlap in CLASS=A

Communication available for overlap in CLASS=B

Computation available for overlap in CLASS=B

Fig. 11. Communication and computation available for overlapping in class A and class B
problem size (IS benchmark)

transformation algorithm achieves good performance only if the time taken in com-
munication available for overlap is close to the time taken in computation. The time
taken in available to overlap occupies relatively low in the whole parallel program
execution in BT benchmark, so it does not show an obvious result in this benchmark

218 C.J. Hu et al.

Figure10 shows the performance of IS benchmark while Figure11 shows the com-
munication and computation available for our algorithm. It is obviously seen from
Figure 11 that the descent speed of computation is faster than the descent speed of
communication in going from two to sixteen nodes. On two to four nodes, the time
taken in communication available for overlap is lower than the time taken in computa-
tion, while on eight to sixteen nodes the time taken in communication available for
overlap is larger than the computation. Since the time taken in communication avail-
able for overlap is close to the time taken in computation and the time occupies a
large proportion in the parallel program execution, Figure 10 shows that the optimized
program can reduce the time from 11% to 39% in class A problem size and from
17% to 22% in class B problem size.

From the above observations, the improvement of performance depends on the
following aspects. The first aspect is the proportion of actual time for overlapping
occupied in parallel programs. The second one is the time taken in communication
should be close to the time taken in computation available for overlap.

Even after our overlap communication and computation, the communication vol-
ume is still very high. However, overlap allows us to tolerate the communication
latency considerably.

5 Related Work

Control-flow frameworks have been extended by Shires et al. [12], which represents
the semantics of message-passing by including communication edges between mes-
sage-passing procedure calls. This control-flow graph can not describe non-blocking
communication accurately. To resolve this problem, our analysis contains inter-
procedural in the control-flow graph and inter-procedural in the data-flow graph.

Reducing communication latency using overlap communication and computation
has been used in the past decade. HPF compilers [18] proposed a notion of posting of
sends as early as possible and receiving as late as possible in order to overlap com-
munication with computation. Some later approaches have suggested the overlapping
of communication and computation [2, 19, 20, 21, 22], but they are limited to overlap
them in a single loop.

Hoefler et al. [13, 14] gives non-blocking collective operations which are obvious
extensions to message-passing. Kennedy et al. [23] presents a communication place-
ment framework that reduces communication latency. The difference between us is
that the communication placement can be determined by a sequence of simple unidi-
rectional analyses while we add communication edges and use inter-procedural analy-
sis in control-flow graph. This is the important starting points for our work. In our
previous work [24], we pipelined an irregular loop by splitting inspector phase and
using corresponding dependence analysis.

To the best of our knowledge, this paper presents the first approach to overlap
communication and computation by the inter-procedural analysis of message-passing
programs. Algorithm could be used in both point-to-point communications and collec-
tive operations.

 Automatic Transformation for Overlapping Communication and Computation 219

6 Conclusions

In this paper, we present a transformation scheme to achieve overlapping communica-
tion and computation based on inter-procedural data-flow analysis. The data-flow
analysis gives the RSD of each variable in message-passing calls and the minimal
region from producer to consumer. Finally, we give transformation scheme to accom-
plish our optimization. To study the impact of our optimization, we give some ex-
periment results to illustrate that our strategy is useful for improving the performance
of the message-passing programs.

Acknowledgments

The research is partially supported by the Key Technologies Research and Develop-
ment Program of China under Grant No.2006038027015, the Hi-Tech Research and
Development Program (863) of China under Grant No. 2006AA01Z105 and No.
2008AA01Z109 Natural Science Foundation of China under Grant No.60373008, and
by the Key Project of Chinese Ministry of Education under Grant No. 106019 and
No.108008.

References

1 Basumallik, A., Eigenmann, R.: Optimizing Irregular Shared-Memory Applications for
Distributed-Memory Systems, PPOPP, New York, USA, March 29-31 (2006)

2 Fishgold, L., Danalis, A., Pollock, L., Swany, M.: An automated approach to improve
communication-computation overlap in cluster. NIC Series, vol. 33, pp. 481–488. John
von Neumann Institute for computing, Julich (2006)

3 Danalis, A., Pollock, L., Swany, M.: Automatic MPI application transformation with AS-
PhALT. IEEE, Los Alamitos (2007)

4 Danalis, A., Kim, K.-Y., Pollock, L., Swany, M.: Transformations to Parallel Codes for
Communication-computation Overlap. ACM, New York (2005)

5 Kreaseck, B., Carter, L., Casanova, H., Ferrante, J.: On the Interference of Communication
on Computation in Java. IEEE, Los Alamitos (2004)

6 El-Ghazawi, T.A., Carlson, W.W., Draper, J.M.: UPC specification, v. 1.1 (2003),
http://upc.gwu.edu/documentation

7 Hilfinger, P., Bonachea, D., Gay, D., Graham, S., Liblit, B., Pike, G., Yelick, K.: Titanium
language reference manual. tech report ucb/csd-01-1163, u.c. berkeley (November 2001)

8 Numrich, R.W., Reid, J.K.: Co-Array Fortran for parallel programming. ACM FortranFo-
rum 17(2), 1–31 (1998)

9 Goumas, G., Sotiropoulos, A., Koziris, N.: Minimizing completion time for loop tiling
with computation and communication overlapping. In: Proceedings of the 15th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2001), April 23–27, 2001,
p. 39. IEEE Computer Society, Los Alamitos (2001)

10 Gupta, S.K.S., Huang, C.-H., Sadayappan, P., Johnson, R.W.: Atechnique for overlapping
computation and communication for block recursive algorithms. Concurrency: Practiceand
Experience 10(2), 73–90 (1998)

220 C.J. Hu et al.

11 Sohn, A., Biswas, R.: Communication studies of dmp and smp machines. Technical Report
NAS-97-005,NASA Ames ResearchCenter (March 1997)

12 Shires, D., Pollock, L., Sprenkle, S.: Program Flow Graph Construction for Static Analysis
of MPI programs. In: International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 1999) (June 1999)

13 Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and Performance Analysis of Non-
Blocking Collective operations for MPI. In: SC 2007, Reno, Nevada, USA, November 10-
16 (2007)

14 Hoefler, T., Lumsdaine, A.: Optimizing non-blocking collective operations for infiband
(April 2008); Accepted for publication at the CAC 2008 in conjunction with the IDPDS
2008

15 http://mvapich.cse.ohio-state.edu
16 http://www.nas.nasa.gov/software/NPB
17 Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi, R., Fine-

berg, S., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H., Venkatakrishnan, V.,
Weeratunga, S.: The NAS parallel benchmarks, Tech. Rep. RNR-94-007, NASA Ames

18 Gupta, M., Miskiff, S., Schonberg, E., Seshadri, V., Shields, D., Wang, K., Ching, W.,
Ngo, T.: An HPF compiler for the IBM SP2. In: Proceedings of Supercomputing 1995,
San Diego, CA (1995)

19 Ishizaki, K., Komatsu, H., Nakatani, T.: A loop transformation algorithm for communica-
tion overlapping. International Journal of Parallel Programming 28(2), 135–154 (2000)

20 Tseng, E.H.Y., Gaudiot, J.L.: Communication generation for aligned and Cyclic(k) distri-
butions using integer lattice. IEEE Transactions on Parallel Distributed Systems 10(2),
136–146 (1999)

21 Lancu, C., Husbands, P., Chen, W.: Message Strip Mining Heuristics for High Speed Net-
works. In: VECPAR (2004)

22 Bell, C., Bonachea, D., Nishtala, R., Yelich, K.: Optimizing Bandwidth Limited Problems
Using One-Side communication and overlap. In: 20th International parallel & Distributed
Processing Symposium (IPDPS) (2006)

23 Kennedy, K., Sethi, A.: A Communication Placement Framework with Unified Depend-
ence and Data-flow Analysis. In: Proceeding 3rd International Conference on High Per-
formance Computing, December 19-22, 1996, pp. 201–208 (1996)

24 Hu, C., Yao, G., Wang, J., Li, J.: OpenMP Extensions for Irregular Parallel Applications
on Cluster. In: Chapman, B.M., Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D.
(eds.) IWOMP 2007. LNCS, vol. 4935. Springer, Heidelberg (2008)

	Automatic Transformation for Overlapping Communication and Computation
	Introduction
	Control-Flow Graph for Message-Passing Program
	The Overlap of Communication and Computation
	Inter-procedural Data-Flow Analysis for Message-Passing Programs
	Constructing the Minimal Region from the Producer to Consumer
	Transformation Algorithm

	Experimental Results
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

