
Forward Secure Password-Based Authenticated
Key Distribution in the Three-Party Setting�

Shuhua Wu and Yuefei Zhu

Department of Networks Engineering,
Zhengzhou Information Science Technology Institute,

Zhengzhou 450002, China
wushuhua726@sina.com.cn

Abstract. Key establishment protocols are used for distributing shared
keying material in a secure manner. In 1995, Bellare and Rogaway pre-
sented a three-party server-based key distribution (3PKD) protocol. But
the protocol was recently found insecure and then was fixed by Raymond
Choo et al.. But forward-secrecy is not considered in the revised protocol.
In this paper, we demonstrate that it is not forward secure indeed. We
then revise the protocol to be a password-based authenticated key distri-
bution in the three-party setting and prove our protocol is forward secure
in the random-oracle and ideal-cipher models under the Password-based
Chosen-basis Gap Diffie-Hellman assumption. Our protocol is quite sim-
ple and elegant, and rather efficient when compared to previous solutions.

Keywords: password, forward-secure, three-party.

1 Introduction

The need for authentication is obvious when two entities communicate on the
Internet. The password-based mechanism is useful for user authentication in
computer network systems. It allows users to be authenticated by remote com-
puter systems via easily memorable passwords and in the absence of public-key
infrastructures or pre-distributed symmetric keys. However, since people like to
choose simply-guessed strings (e.g. personal identity, nickname, birth day, etc.)
as their passwords, many password-based systems are vulnerable to replay attack
or dictionary attacks [1]. Designing a secure password-based system is a precise
task that has attracted many cryptographers. Bellovin and Merritt [1] proposed
the encrypted key exchange (EKE) protocol in 1992. The EKE protocol enables
two communication entities to authenticate each other and to establish a session
key for securing later transmissions via a weak password. Since then, numerous
two-party password-based authenticated key exchange (2PAKE) protocols have
been proposed to improve security and performance. However, only a few take

� This work was partially supported by a grant from the National High Technology
Research and Development Program of China (863 Program) (No. 2007AA01Z471).

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 105–115, 2008.
c© IFIP International Federation for Information Processing 2008

106 S. Wu and Y. Zhu

into account the 3-party scenario, e.g., [2,3,4,5,6,7,8], where each communication
entity shares a password with a trusted server and any two communication enti-
ties can be achieved mutual authentication and secure communication through
the server’s assistance. Moreover, to the best of our knowledge, with the excep-
tion of the protocols proposed in [6,7,8], none of the proposed the three-party
password-based authenticated key exchange(3PAKE) enjoys provable security.
However, the protocols in [7,8] were subsequently shown insecure in [9] and [10]
respectively. As for the protocol proposed in [6], the security was proved in a
model with no Corrupt oracle and thus the forward security for it was still
unknown. Other protocols, such as the symmetric-key-based key distribution
scheme of Bellare and Rogaway [11], do consider the 3-party setting, but not in
the password-based scenario. Recently, the protocol [11] was found insecure and
fixed by by Raymond Choo et al. in [12]. Yet, forward-secrecy is not considered
in the revised protocol.

In this paper, we demonstrate that it is not forward secure indeed. We then
revise the protocol to be a password-based authenticated key distribution in
the three-party setting. One should remark that adding authentication ser-
vices to a key establishment protocol is a not trivial since redundancy in the
flows of the protocol can open the door to different forms of attacks [13].
Fortunately, we can prove our protocol is forward secure in the random-oracle
[14] and ideal-cipher models [15] under the Password-based Chosen-basis Gap
Diffie-Hellman assumption (see section 4). Our protocol is quite simple and
elegant and rather efficient when compared to previous solutions. In particu-
lar, the costs for each participant of the new 3-party protocol are comparable
to those of a 2-party password-based key exchange protocol. Besides, a three
party password-based key distribution protocol is the underlying primitive of
the generic construction in [6]. We hope one will leverage our work to obtain
tighter and more meaningful security measurements for the forward-secrecy of
the protocol.

The remainder of this paper is organized as follows. In Section 2, we introduce
the formal model of security for for 3-party key exchange. Next, in Section 3, we
recall the computational assumptions upon which the security of our protocol
is based upon. Section 4 describes the 3PKD revised by Raymond Choo et
al. and demonstrates that the revised protocol is not forward secure indeed.
Section 5 then presents the improved protocol— our 3-party password-based
key distribution protocol— along with its security claims and rigorous proof. In
the last section, We conclude this paper.

2 Security Model for Three-Party Key Exchange

In this section, we introduce the formal security models which will be used in
next section when we show that our protocol is secure in the random-oracle
model. The model was proposed in 2000 by Bellare, Pointcheval and Rogaway
[15], hereafter referred to as the BPR2000 model.

Forward Secure Password-Based Authenticated Key Distribution 107

2.1 The Security Model

The interaction between an adversary A and the protocol participants occurs
only via oracle queries, which model the adversary capabilities in a real attack
(see literature for more details [15,16].) The types of oracles available to the
adversary are as follows:

– Execute(U i1
1 , Sj , U i2

2): This query models passive attacks in which the at-
tacker eavesdrops on honest executions among the client instances U i1

1 and
U i2

2 and trusted server instance Sj . The output of this query consists of the
messages that were exchanged during the honest execution of the protocol.

– SendClient(U i, m): This query models an active attack, in which the adver-
sary may intercept a message and then modify it, create a new one, or simply
forward it to the intended client. The output of this query is the message
that client instance U i would generate upon receipt of message m.

– SendServer(Sj , m): This query models an active attack against a server. It
outputs the message that server instance Sj would generate upon receipt of
message m.

– Reveal(U i): If a session key is not defined for instance U i or if a Test query
was asked to either U i or to its partner, then return ⊥. Otherwise, return
the session key held by the instance U i.

2.2 Security Notions

In order to define a notion of security for the key exchange protocol, we consider
a game in which the protocol P is executed in the presence of the adversary A. In
this game, we first choose the long-lived keys for each participant, provide coin
tosses and oracles to A, and then run the adversary, letting it ask any number
of queries as described above, in any order.

Forward Security. In order to model the forward secrecy (semantic security) of
the session key, we consider a game Gameake−fs(A, P), in which two additional
oracles are available to the adversary: the Test(U i) and Corrupt(U): oracle.

– Test(U i): This query tries to capture the adversary’s ability to tell apart
a real session key from a random one. In order to answer it, we first flip a
(private) coin b and then forward to the adversary either the session key sk
held by U i (i.e., the value that a query Reveal(U i) would output) if b = 1
or a random key of the same size if b = 0.

– Corrupt(U): This query returns to the adversary the long-lived key (e.g.
passwords pwU in the password-based scenario) for participant U . As in
[15], we assume the weak corruption model in which the internal states of
all instances of that user are not returned to the adversary.

The Test-oracle can be queried at most once by the adversary A and is only
available to A if the attacked instance U i is FS-Fresh, which is defined to avoid
cases in which adversary can trivially break the security of the scheme. In this
setting, we say that a session key sk is FS-Fresh if all of the following hold:

108 S. Wu and Y. Zhu

(1) the instance holding sk has accepted, (2) no Corrupt-query has been asked
since the beginning of the experiment; and (3) no Reveal-query has been asked
to the instance holding sk or to its partner (defined according to the session
identification). In other words, the adversary can only ask Test-queries to in-
stances which had accepted before the Corrupt query is asked. Let Succ denote
the event in which the adversary successfully guesses the hidden bit b used
by Test oracle. The FS-AKE advantage of an adversary A is then defined as
Advake−fs

P (A) = 2Pr[Succ] − 1 . The protocol P is said to be (t, ε)-FS-AKE-
secure if A’s advantage is smaller than ε for any adversary A running with time
t. The definition of time-complexity that we use henceforth is the usual one,
which includes the maximum of all execution times in the experiments defining
the security plus the code size [17].

In the password-based scenario, key exchange protocols are said to be secure
against dictionary attacks if the advantage of an attacker in distinguishing a real
session key from a random key is less than O(n/ |D|)+ ε(k) where |D| is the size
of the dictionary D, n is the number of active sessions and ε(k) is a negligible
function depending on the security parameter k.

Note 1. In the original security models, A was required to output the guess bit
of b immediately after making a Test query. However, such a requirement is
not strong enough to guarantee security for certain applications(see section 4).
Therefore, this restriction has been removed in the current models.

3 Algorithmic Assumptions

The arithmetic is in a finite cyclic group G = 〈P 〉 of order a k-bit prime number
q, where the operation is denoted addictively.

3.1 GDH-Assumption

A (t, ε)−CDHP,G attacker, in a finite cyclic group G of prime order q with P as
a generator, is a probabilistic machine Δ running in time t such that its success
probability Succcdh

P,G(A), given random elements xP and yP to output xyP , is
greater than ε:

Succcdh
P,G(A) = Pr[Δ(xP, yP) = xyP] ≥ ε.

We denote by Succcdh
P,G(t) the maximal success probability over every adversaries

running within time t. The CDH-Assumption states that Succcdh
P,G(t) ≥ ε for any

t/ε not too large.
A (t, n, ε) − GDHP,G attacker is a (t, ε) − CDHP,G attacker, with access to

an additional oracle: a DDH-oracle, which on any input (xP, yP, zP) answers
whether z = xy mod q. Its number of queries is limited to n. As usual, we
denote by Succgdh

P,G(n, t) the maximal success probability over every adversaries
running within time t. The GDH-Assumption states that Succgdh

P,G(n, t) ≥ ε for
any t/ε not too large [18].

Forward Secure Password-Based Authenticated Key Distribution 109

3.2 PCGDH-Assumption

The so-called Password-based Chosen-basis CDH (PCCDH) problem is a
variation of the computational Diffie-Hellman that is more appropriate to the
password-based setting: Let D = {1, · · · , |D|} be a dictionary containing |D|
equally likely password values. Now let us consider an adversary A that runs
in two stages. In the first stage, the adversary is given as input two random
elements U and V in G as well as the dictionary D and it outputs an element M
in G (the chosen-basis). Next, we choose a password pw ∈ D randomly and give
it to the adversary. The goal of the adversary in this second stage is to output
K = CDH(M +pwU, V). We denote by Succpccdh

P,G,D(t) the maximal success prob-
ability over every adversaries A running within time t. An (t, ε)−PCCDHP,G,D
attacker is a probabilistic machine running in time t such that its success prob-
ability Succpccdh

P,G,D(A) is greater than 1/|D|+ ε. The PCCDH-Assumption states
that Succpccdh

P,G,D(t) ≥ 1/|D| + ε for any t/ε not too large. Fortunately, the new
assumption is not stronger than the CDH-Assumption [19,20]. Similarly, we can
define the PCGDH-Assumption.

4 Rmarks on Raymond Choo’s protocol

In this section, we revisit Raymond Choo’s protocol and demonstrate that the
revised protocol is not forward secure indeed.

Fig. 1. An execution of Raymond Choo’s protocol

As illustrated in Fig.1., Raymond Choo’s protocol involves three parties, a
trusted server S and two principals A and B who wish to establish communi-
cation. The security goal of this protocol is to distribute a session key between
two communication principals (i.e. the key establishment goal), which is suitable
for establishing a secure session. In the protocol, the notation {message}Kenc

AS

denotes the encryption of some message under the encryption key Kenc
AS and the

notation [message]KMAC
AS

denotes the computation of MAC digest of some mes-
sage under the MAC key KMAC

AS . Kenc
AS is the encryption key shared between A

and B, and KMAC
AS is the MAC key shared between A and B. Both keys, Kenc

AS

and KMAC
AS , are independent of each other.

The protocol begins by having A randomly select a k-bit challenge RA and send
it to the B with whom she desires to communicate. Upon receiving the message RA

from A, B also randomly selects a k-bit challenge RB and sends RB together with
RA as a message (RA,RB) to the server S. S, upon receiving the message (RA,RB)

110 S. Wu and Y. Zhu

from B, runs the session key generator to obtain a session key SKAB, which has
not been used before. S then encrypts SKAB with Kenc

AS and Kenc
BS to obtain ci-

phertexts αA and αB, and computes the MAC digests βA and βB of the strings
(A, B, RA, RB , {SKAB}Kenc

AS
) and (A, B, RA, RB, {SKAB}Kenc

BS
) under the keys

KMAC
AS and KMAC

BS respectively. S then sends messages (αA, βA, RB) and (αB, βB)
to A and B respectively in Steps 3a and 3b of the protocol.

Unfortunately, forward-secrecy is not considered in the protocol. Indeed the
revised protocol is not forward secure since any adversary who knows the long-
lived encryption keys Kenc

AS or Kenc
BS certainly can obtain the session key by

decrypting αA and αB respectively. Now we describe the attack in the BPR2000
mode and illustrate that it is wrong to make the restriction that the Test query
be the adversary’s last. It is especially important to understand the security proof
in Section 5.2. We assume a malicious adversary A runs the game simulation
Game as follows. As a preliminary step, A eavesdrops on honest executions
among the client instances U i1

1 and U i2
2 and trusted server instance Sj and

obtains the messages αA, αB. When the session is accepted, A makes a Test
oracle query to the client instance U i1

1 or U i2
2 . We should note that the session

is still fresh at this moment. A continues making a Corrupt oracle query to the
principal and knows its long-lived key Kenc

AS or Kenc
BS and thus the session key

and the bit b involved in the Test oracle. Eventually, A terminates the game
simulation and outputs the value of b correctly. Our attack demonstrates that
the protocol is not forward secure in the BPR2000 model. However, if A was
required to output the guess bit of b immediately after making a Test query,
the attack described above would have not been captured. Therefore, removal of
this restriction is quite important to guarantee security.

5 Our Three-Party Password-Based Protocol

As we mentioned in Section 1, the original key distribution scheme of Raymond
Choo et al. [12] is not in the password-based scenario. In this section, we revised it
to be a password-based authenticated key distribution protocol and provide the
rigorous proof of forward-security for it based on the hardness of the Password-
based Chosen-basis Gap Diffie-Hellman problem. The security proof is in the
random oracle model and the ideal-cipher model. It assumes that the clients
willing to establish a common secret session key share passwords with a common
server and the latter is a trusted server.

5.1 Description

As illustrated on Fig.2. (with an honest execution of the 3PAKD protocol), the
protocol runs between two clients A, B and a server S, and the session-key sk
is a random value chosen by S and distributed to the clients. Client and server
initially share a low-quality password PW , uniformly drawn from the dictionary
D. In Fig.2, by U2

message←−−−−−
send

U1 we mean that user U1 sends message to user

Forward Secure Password-Based Authenticated Key Distribution 111

Public information: G, q, Hi

Secret information: PWA, PWB ∈ G
Client A Server S Client B

x
R←− Zq ,X∗ ← xP − PWA y

R←− Zq ,Y ∗ ← yP − PWA

A
A,X∗
−−−−→
send

S S
B,Y ∗
←−−−−
send

B

t
R←− Zq ,T ← tP

ZAS ← t(X + PWA)
KAS ← H1(IDAS , ZAS)

αA ← EKAS
(sk)

μA ← H2(IDAS , αA, ZAS)
ZBS ← t(Y + PWB)

KBS ← H1(IDBS , ZBS)
αB ← EKBS

(sk)
μB ← H2(IDBS , αB , ZBS)

A
S,αA,T,μA←−−−−−−−−

send
S

S,αB,T,μB−−−−−−−−→
send

B

ZAS ← xT ZBS ← yT

μA
?= H2(IDAS , αA, ZAS) μB

?= H2(IDBS, αB , ZBS)
if false, terminates if false, terminates

KAS ← H1(IDAS , ZAS) KBS ← H1(IDBS , ZBS)
skA ← DKAS

(αA) skB ← DKBS
(αB)

νA ← H0(IDAS , ZAS) νB ← H0(IDBS , ZBS)

A
νA−−−−→

send
SA SB

νB←−−−−
send

B

terminates and accepts terminates and accepts

νA
?= H1(IDAS , ZAS)

if false, terminates

νB
?= H1(IDBS , ZBS)

if false, terminates
terminates and accepts

Fig. 2. The password-based authenticated key distribution

U2. Hash functions from {0, 1}∗ to {0, 1}l are denoted Hi for i = 0, 1, 2. A block
cipher is denoted (EK , DK) where K is its private key.

The protocol consists of three flows. First, each client chooses an ephemeral
public key by choosing a random element in Zq and raising P to the that power,
encrypts it using his password, and sends it to the server. Upon receiving a
message from each client, the server decrypts these messages to recover each
client’s ephemeral public key, chooses a random index t ∈ Zq, exponentiates
each of the ephemeral public keys to the t-th power as the Diffie-Hellman keys
Z, and at the same time raises P to the that power as his ephemeral public
key. Then the server computes the private keys K for the block cipher via a
hash function H0 using as input ID and Z, and encrypts the session key sk to
be distributed subsequently as the encrypted value α using the block cipher E
with private key K. In the end, the server computes the authenticators μ via a
hash function H1 using as input ID, α and Z. Here, ID represents the string
consisting of the transcript of the conversation among the clients and the server
and the password. More specifically, IDAS is A, B, S, PWA, X∗, T and IDBS is
A, B, S, PWB, Y ∗, T . This is just for simplicity.

In the second round of messages, the server sends to each client his iden-
tity S, the encrypted values α, his ephemeral public key T and the authenti-
cators μ. Upon receiving a message from the server, each client computes the

112 S. Wu and Y. Zhu

Diffie-Hellman key Z, and the authenticators μ. Then he checks the authenti-
cator received is valid. If it is invalid, he simply abolishes and terminates the
execution of the protocol. Otherwise, he proceeds to compute the private keys
K for the block cipher and to recover the session key sk. In addition, he also
computes his authenticator ν via a hash function H2.

In the third round of messages, the client sends his authenticator ν to the
server S and accepts and terminates the execution of the protocol. Upon receiv-
ing the authenticator from the two clients, the server S checks the authenticators
received —νA andνB— are valid. If both of them are valid, accepts and termi-
nates the execution of the protocol.

Note 2. One should remark that the last round of messages is necessarily in-
cluded so that the servers can detect online dictionary attacks as pointed out
in [21]. For 3-party PAKE protocols, only adding mutual authentication be-
tween two communicating clients in the end can not enhance those protocols
to be resistant to undetectable on-line dictionary attacks. Unlike 2-party proto-
cols, malicious attacker can play the legal role of client users and interacts with
trusted servers to guess the value of passwords.

Our protocol is quite efficient, only requiring a small amount of computation
by each user. In what concerns block cipher computations, hash computations,
each client only has to perform 1 block cipher computation, and 3 hash com-
putations; and the server only has to perform 2 block cipher computations, and
6 hash computations. All these can be done efficiently and their computational
complexity can be neglected. The most expensive part of our protocol is the
number of scalar multiplication, which entails the highest computational com-
plexity. Since each client needs to perform 2 scalar multiplications and the server
3 scalar multiplications, our protocol has a per-user computational cost that is
comparable to that of the underlying two-party encrypted key exchange. When
compared to previous solution in [6], our protocol requires at least one less scalar
multiplication for each participant and thus certainly more efficient.

5.2 Security

As the following theorem states, our 3PAKD is a forward-secure 3-party
password-based key distribution protocol as long as the Password-based Chosen-
basis Gap Diffie-Hellman problem is hard in G . The specification of this protocol
is found on Fig.2.

Theorem 1. Let D be a uniformly distributed dictionary of size |D|. Let P
describe the 3-party password-based authenticated key distribution protocol asso-
ciated with these primitives as defined in Fig.2. Then,

Advake−fs
P (A) ≤ (2qp+qs)2

q + 2q2
E

q + q2
h

2l + 2qs

|D| +
4qs+2qp

2l + 4Succpcgdh
P,G,D(qh, t + 2τ),

where qs denotes the number of active interactions with the parties (Send-
queries); qp denotes the number of passive eavesdroppings (Execute-queries);

Forward Secure Password-Based Authenticated Key Distribution 113

qh denotes the number of hash queries to Hi; qE denotes the number of encryp-
tion/decryption queries; and τ denotes the computational time for an exponen-
tiation in G.

Due to the limitation of the paper length, the complete proof is to be included
in the full version of this paper.

Note 3. The ideal-cipher model is very strong (even stronger than the ideal-
hash model) and yet there are natural and apparently-good ways to instantiate
an ideal cipher for use in practical protocols (see [22]). Working in this model
does not render trivial the goals that this paper is interested in, and it helps
make for protocols that achieve provably forward security. We can only prove
the proposed scheme is sematic secure but forward secure if we do not assume
ideal cipher model. There seems to be some collisions with some technique that
is used in our proof when we attempts to reduce an adversary against forward
security of the protocol to an adversary against the classical security definition
of the encryption scheme.

Rationale for the scheme. At first thought, you may wonder how we can make
the original protocol forward-secure by adding password-authentication services.
Now let us reconsider the attack in the section 4. In that case, the adversary
A that eavesdrops on honest executions and then corrupts any player of the
target session can compute the ephemeral public keys but should not be able to
compute the Diffie-Hellman key and thus the private key and the session key.
Therefore,we can prove our protocol is forward-secure in the BRP2000 model.

6 Conclusion

We have shown Raymond Choo’s protocol is not forward-secure in the BPR2000
model. Following that, we have presented a 3-party password-based authenti-
cated key distribution protocol by adding password-authenti- cation services to
Raymond Choo’s protocol. Furthermore, we have proved the forward-security
for our protocol under the Password-based Chosen-basis Gap Diffie-Hellman as-
sumption in the BPR2000 model. When compared with previous solutions in the
password-based scenario, our protocol is efficient. The costs for each participant
of the new 3-party protocol are comparable to those of a 2-party encrypted key
exchange protocol.

References

1. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: Proc. 1992 IEEE Computer Society Symp.
on Research in security and Privacy, May 1992, pp. 72–84 (1992)

2. Byun, J.W., Jeong, I.R., Lee, D.H., Park, C.-S.: Password-authenticated key ex-
change between clients with different passwords. In: Deng, R.H., Qing, S., Bao, F.,
Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 134–146. Springer, Heidelberg
(2002)

114 S. Wu and Y. Zhu

3. Lin, C.-L., Sun, H.-M., Hwang, T.: Three-party encrypted key exchange: Attacks
and a solution. ACM SIGOPS Operating Systems Review 34(4), 12–20 (2000)

4. Wang, S., Wang, J., Xu, M.: Weaknesses of a password-authenticated key exchange
protocol between clients with different passwords. In: Jakobsson, M., Yung, M.,
Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 414–425. Springer, Heidelberg
(2004)

5. Yeh, H.-T., Sun, H.-M., Hwang, T.: Efficient three-party authentication and key
agreement protocols resistant to password guessing attacks. Journal of Information
Science and Engineering 19(6), 1059–1070 (2003)

6. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)

7. Abdalla, M., Pointcheval, D.: Interactive Diffie-Hellman Assumptions with
Applications to Password-based Authentication. In: Patrick, S., Yung, A.
(eds.) FC 2005. LNCS, vol. 3570, pp. 341–356. Springer, Heidelberg (2005),
http://www.di.ens.fr/∼pointche/pub.php

8. Wen, H.-A., Lee, T.-F., Hwang, T.: Provably secure three-party password-based
authenticated key exchange protocol using Weil pairing. IEE Proceedings — Com-
munications 152(2), 138–143 (2005)

9. Nam, J., Kim, S., Won, D.: Security Weakness in a Three-Party Password-Based
Key Exchange Protocol Using Weil Pairing. In: Cryptology ePrint Archive, Report
(2005), http://eprint.iacr.org/2005/269.ps

10. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining Indistinguishability-Based
Proof Models for Key Establishment Protocols. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg (2005)

11. Bellare, M., Rogaway, P.: Provably Secure Session Key Distribution: The Three
Party Case. In: 27th ACM Symposium on the Theory of Computing, pp. 57–66.
ACM Press, New York (1995)

12. Choo, K.-K.R., Boyd, C., Hitchcock, Y., Maitland, G.: On Session Identifiers in
Provably Secure Protocols—The Bellare-Rogaway Three-Party Key Distribution
Protocol Revisited. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352,
pp. 352–367. Springer, Heidelberg (2005)

13. Abdalla, M., Bresson, E., Chevassut, O., Pointcheval, D.: Password-based Group
Key Exchange in a Constant Number of Rounds. In: Yung, M., Dodis, Y., Kiayias,
A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 427–442. Springer, Heidelberg
(2006)

14. Bellare, M., Rogaway, P.: Optimal asymmetric encryption: How to encrypt with
RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111.
Springer, Heidelberg (1995), http://www-cse.ucsd.edu/users/mihir

15. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure
Against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

16. Bresson, E., Chevassut, O., Pointcheval, D.: New security results on encrypted key
exchange. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
145–158. Springer, Heidelberg (2004)

17. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001)

18. Okamoto, T., Pointcheval, D.: The Gap-Problems: a New Class of Problems for
the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992. Springer, Heidelberg (2001)

http://www.di.ens.fr/~pointche/pub.php
http://eprint.iacr.org/2005/269.ps
http://www-cse.ucsd.edu/users/mihir

Forward Secure Password-Based Authenticated Key Distribution 115

19. Abdalla, M., Pointcheval, D.: Simple Password-Based Encrypted Key Exchange
Protocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208.
Springer, Heidelberg (2005)

20. Abdalla, M., Bresson, E., Chevassut, O., Möller, B., Pointcheval, D.: Provably
Secure Password-Based Authentication in TLS. In: Proc. of at AsiaCCS 2006,
Taipei, Taiwan, March 21-24 (2006)

21. Ding, Y., Horster, P.: Undetectable On-line Password Guessing Attacks. ACM
Operating Systems Review 29(4), 77–86 (1995)

22. Black, J., Rogaway, P.: Ciphers with Arbitrary Finite Domains (manuscript, 2000)

	Forward Secure Password-Based Authenticated Key Distribution in the Three-Party Setting
	Introduction
	 Security Model for Three-Party Key Exchange
	The Security Model
	Security Notions

	Algorithmic Assumptions
	GDH-Assumption
	PCGDH-Assumption

	Rmarks on Raymond Choo's protocol
	Our Three-Party Password-Based Protocol
	 Description
	Security

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

