
Formal Specification of Gateways in Integrated
Architectures

R. Obermaisser

Vienna University of Technology, Austria

Abstract. Complex embedded computer systems can encompass multiple appli-
cation subsystems, such as a multimedia, a powertrain, a comfort and a safety
subsystem in the in-vehicle electronic system of a typical premium car. Infor-
mation exchanges between these application subsystems are essential to realize
composite services that involve more than one application subsystem and to re-
duce redundant computations and sensors. A major challenge is to resolve the
property mismatches at the interfaces between application subsystems, such as
incoherent naming, divergent syntax, or different communication protocols. Also,
fault isolation capabilities are required to prevent common mode failures induced
by the propagation of faults between application subsystems. The contribution of
this paper is a formal specification of gateways that contain structured collections
of time-sensitive variables associated with timing information (called real-time
databases) in order to separate the application subsystems. The formal specifica-
tion can serve as a basis for automatic code generation or formal verification.

1 Introduction

Large distributed embedded systems (e. g., complete on-board electronic system of a
car) consist of numerous application subsystems, each providing a part of the overall
application functionality. Designers follow a divide-and-conquer strategy in order to
manage the system’s complexity by structuring the overall functionality into nearly-
independent subsystems [1, chap. 8]. For example, in-vehicle electronics are usually
grouped into several domains, including the safety-related powertrain and chassis do-
mains, as well as the non-safety critical comfort and multimedia domains [2]. Each do-
main comprises a set of Electronic Control Units (ECUs) interconnected by a network
(e. g., Controller Area Network (CAN) [3], FlexRay [4]).

However, the subdivision of the overall system usually does not lead to fully indepen-
dent application subsystems. Interactions between application subsystems are required
for improved quality-of-service, for implementing application services that span more
than one application subsystem, and for exploiting redundancy [5].

The requirement of sharing information between application subsystems becomes
a challenge, if the overall system encompasses heterogeneous application subsystems,
which exchange messages using different communication protocols, incoherent nam-
ing, and divergent syntax or semantics. In this case, property mismatches at the inter-
faces between application subsystems need to be resolved.
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In previous work [5], we have introduced a framework for the realization of gateways
between application subsystems as part of the Dependable Embedded Components and
Systems (DECOS) architecture [6]. The gateways proposed in this framework support
selective redirection of information between networks in conjunction with the necessary
property transformations. Central to this framework is a real-time database [7, p. 289],
which is contained in the gateway and stores real-time images for the information ex-
change between the interconnected networks.

This paper describes the formal specification of these gateways. The formal gateway
specification is expressed using state machines with timing constraints and gateway-
specific operations (e. g., operations for accessing the real-time database). Existing so-
lutions for the specification of real-time systems, such as timed automata [8], calendar
automata [9] and time-triggered automata [10], were considered for developing this for-
mal gateway specification. The formal gateway specification serves as the input for an
automatic code generation tool, which yields data structures and code that serve as a
parameterization of a generic architectural gateway service. Furthermore, the formal
gateway specification is a baseline for the formal verification of systems using the pro-
posed gateways.

The paper is structured as follows. Section 2 explains the gateway framework. The
formal specification of the gateways is the focus of Section 3. The gateway specification
formally captures the information to control the behavior of the gateway (i. e., selective
redirection and property transformations). Section 4 gives an overview of the model-
based generation of the gateways using the gateway specification as a starting point.
The paper concludes with a discussion in Section 5.

2 Gateways Based on a Real-Time Database

A real-time system can be modeled using a set of real-time entities [11], which are
significant state variables that are located in the computer system or the environment.
The current value of such a real-time entity is called a real-time image and can be sent
within a message on network. Redirection of information through a gateway occurs
when a real-time image contained in a message is required by another Distributed Ap-
plication Subsystem (DAS) connected to the gateway. We denote such a real-time image
that is relevant at the gateway as a convertible element.

The presented gateways recombine convertible elements acquired from one network
into messages for another network, while converting between different temporal and
syntactic specifications and resolving naming incoherences. For this purpose, the gate-
way maintains a real-time database with convertible elements called the gateway repos-
itory. The gateway repository decouples the different networks accessed by the gateway
and allows the convertible elements that are necessary for constructing a particular mes-
sage to arrive at different points in time.

In addition, the gateway contains for each accessed DAS a so-called network-adapter,
which implements the communication protocol of the network of the DAS and performs
information exchanges between the network and the gateway repository (see Figure 1).
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Fig. 1. Gateway

2.1 Network Adaptors

A network adaptor can acquire convertible elements from a network and write them into
the gateway repository. Depending on the protocol, the acquisition of a message with
convertible elements can involve the exchange of several messages at input and output
ports, e. g., the transmission of a request message before a response message carrying the
convertible elements arrives. Secondly, a network adaptor can read convertible elements
from the gateway repository, construct messages and disseminate them on a network.
Thereby, information can be redirected between networks, if the read convertible ele-
ments have been placed in the gateway repository by another network adaptor.

The specification of the network adaptors occurs using state machines with timing
constraints and will be explained in Section 3.

2.2 Gateway Repository

For the storage of convertible elements, the gateway repository takes into account the
information semantics of convertible elements. Due to the respective characteristics of
state and event semantics, the gateway repository distinguishes two types of storage ele-
ments in analogy to state and event ports. For convertible elements with state semantics,
the repository contains state variables that are overwritten whenever a new version of the
convertible element arrives (update-in-place). Convertible elements with event seman-
tics, on the other hand, are stored in queues.

In addition to the data of the convertible elements, the gateway repository also stores
meta-information about convertible elements. The meta-information maintained in the
gateway repository includes three dynamic attributes (most recent update instant, update
request indication, number of queued instances) and a static attribute (temporal accuracy
offset).

– Most Recent Update Instant. The point in time of the most recent update tupdate is
a dynamic attribute associated with each convertible element with state semantics.
tupdate is set to the current time tnow, whenever a network adaptor overwrites the
convertible element in the gateway repository.

– Temporal Accuracy Interval and Offset. Due to the dynamics of real-time en-
tities, the validity of convertible elements is time-dependent. For this reason, the
gateway repository maintains for each convertible element with state semantics a
dynamic attribute called the temporal accuracy interval dacc. At any given instant,
dacc denotes how long the convertible element will still remain a valid image of the
respective real-time entity in case no update of the convertible elements occurs in
the meantime.
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The temporal accuracy offset doffset is a static attribute that determines the tem-
poral accuracy interval immediately after an update of the convertible element.
In conjunction with the instant of the most recent update, the temporal accuracy
offset allows to compute the temporal accuracy interval of a convertible element:
dacc = doffset − (tnow − tupdate). Hence, only the temporal accuracy offset needs to
be stored in the gateway repository, because the temporal accuracy interval can be
computed on-the-fly.

– Update Request Indication. In order to support on-demand communication ac-
tivities, the gateway repository contains boolean update request indications. For a
convertible element with state or event semantics, the respective update request in-
dication breq denotes whether a new convertible element needs to be transferred into
the gateway repository. By setting the update request indication, a network adap-
tor can demand convertible elements from the other network adaptors. A network
adaptor receiving messages from a network can initiate receptions conditionally,
based on the value of the update request indication.

– Number of Queued Instances. Every convertible element with event semantics
possesses this dynamic attribute. It denotes the number of instances of the convert-
ible element that are currently queued in the gateway repository.

Using the introduced attributes, we can control the behavior of a network adaptor. For
example, the meta-information provides the network adaptors with information for the
decision whether to actively engage in the acquisition of convertible elements for the
update of the gateway repository. A network adaptor can react to the imminent inval-
idation of temporal accuracy, e. g., by starting a protocol to perform an update of the
convertible element in the gateway repository.

3 Formal Specification of Gateways

This section formally defines a gateway with multiple network adaptors and a real-time
database. Based on the notion of the gateway state, we also describe the execution of a
gateway over time.

3.1 Definition of Network Adaptor

A network adaptor is a state machine with local variables, clock variables, locations,
and edges. An edge interconnects two locations of the network adaptor and can be as-
sociated with a guard, assignments to variables and communication actions. The guard
expresses a boolean condition, which defines whether the edge can be taken. Commu-
nication actions are used to express interactions with the gateway repository and the
ports. Variables are used to capture the internal state of the network adaptor. In particu-
lar, variables can store messages and convertible elements. In a communication action,
variables can serve as the source for the transfer of a convertible element into the gate-
way repository or the transfer of a message to a port for being transmitted. In analogy,
variables can serve as the destination when executing a communication action to read a
convertible element from the gateway repository or to receive a message from a port.
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Formally, a network adaptor is a tuple 〈L, l, X, R, E〉, where

L is a finite set of symbols denoting locations,
l ∈ L is the initial location,
X is a finite set of clocks X = {X1, X2, ...},
R is a set of local variables: R ⊂ {(a, b)|a ∈ N ∧ b ∈ P(N)} Each local vari-

able is associated with a name a ∈ N. We call the set of all variable names
η(R) := {z|∃(z, b) ∈ R}. In addition, each variable possesses a corresponding do-
main described by a subset of N. We use the function domain(x) to determine the
domain of a variable with name x: domain(x) := b where (a, b) ∈ R ∧ x = a

E is a set of edges: E ⊆ L × L × Φ(Z̄) × α(Z̄) × χ(Z̄), where
Z̄ is the state of the gateway (cf. Section 3.3)
Φ is the guard defined by the function Z̄ 	→ {T, F}
α is the assignment action defined by the function Z̄ 	→ R̄, where R̄ denotes the

local variables state (cf. Section 3.3), i. e., the values of the local variables at a
certain point in time

χ is the communication action defined by a function χ : Z̄ 	→ P(N)×P(N)×
P(N)×P(N), controlling in each state Z̄ the effect of the network adaptor on
the port and repository state. χ(Z̄) = (Cout, Cin, Min, Mout}, where Cout is
the set of convertible elements, which are pushed into the gateway repository.
The set of messages pulled out of the gateway repository is captured by Cin.
Min is the set of messages, which are received by the gateway, i. e., transferred
from a port to variables. Mout is the set of messages, which are sent by the
gateway, i. e., transferred from variables to a port.

3.2 Definition of a Gateway

A gateway consists of one or more network adaptors, ports with messages, and the
gateway repository with convertible elements. Formally, a gateway is a tuple Z =
〈A, V, M, C, Y 〉, where

A is a finite set of network adaptors: A =< A0, A1, ..., Az >,
A0 =< L0, l0, X0, R0, E0 >, . . . , Az =< Lz, lz, Xz, Rz, Ez >

V is the global set of variables (i.e., local variables of all network adaptors extended
with network adaptor names): V = {(c, b)|c = (i, a) ∧ (a, b) ∈ Ri ∧ 0 � i � z}

M is a finite set of messages: M ⊂ {(u, v, p, n, d, τ)|u ∈ N, v ⊂ η(V ), p ∈ {ET,TT},
n ∈ N, d ∈ N, τ : domain(v) 	→ domain(v)}, where each message possesses
a message name u, a set of associated variables v, a control paradigm p, a queue
length n (only relevant for event information), and a temporal accuracy offset d
(only relevant for state information). A transfer syntax can be specified using the
function τ : domain(v) 	→ domain(v) The associated variables are defined with
respect to the set of all variable names η(V ) := {z|∃(z, b) ∈ V }.

C is a finite set of convertible elements: C ⊂ { (u, v, p, n, d)|u ∈ N, v ⊂ η(V ), p ∈
{ET,TT}, n ∈ N, d∈N},whereeachconvertibleelementspossessesanameu,asetof
associated variables v, a control paradigm p, a queue length n (only relevant for event
information), and a temporal accuracy offset d (only relevant for state information).

Y is the global set of clocks (i.e., local clock variables of all network adaptors extended
with network adaptor names): Y = {((z, a), b)|b ∈ N, a ∈ Xi ∧ 0 � i � z}
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3.3 Gateway State

The capturing of the gateway state serves the definition of the execution semantics of
a gateway. The gateway state embodies all past history of the gateway. Thus, at any
specific time the future outputs of the gateway depend only on the current state of the
gateway and the future inputs (i. e., messages at ports).

Formally, the state of a gateway Z̄ =
〈
t, V̄ , M̄ , C̄, Ȳ

〉
at time t consists of the global

time t (t ∈ N), the variables state V̄ , the message state M̄ , the repository state C̄, and
the clocks state Ȳ . These constituting elements of the gateway state will be explained
in the following.

State of Variables. At a certain time t, the variables state V̄ of the gateway encom-
passes the values of the local variables of all network adaptors:

V̄ ⊂ {(x, y)|∃(a, b) ∈ V with a = x ∧ y ∈ b} where ∀
x∈η(V )

∣
∣(x, y) ∈ V̄

∣
∣ = 1

︸ ︷︷ ︸
exactly one value for each variable

The name of each variable is a 2-tuple (x ∈ N×N) identifying the network adaptor and
the local variable. The value y of the variable is an element of the variable domain.

In addition, we can also define the local variables state R̄ of a single network adaptor,
where each variable name is a natural number (x ∈ N).

R̄ ⊂ {(x, y)|∃(a, b) ∈ R with a = x ∧ y ∈ b} where ∀
x∈η(R)

∣
∣(x, y) ∈ R̄

∣
∣ = 1

︸ ︷︷ ︸
exactly one value for each variable

Port State. The port state consists of the state of the state ports (M̄ (tt)) and the state
of the event ports (M̄ (et)). Each element of the port state (M̄ (tt) and M̄ (et)) is a 5-tuple
< x, y, z, l, t >, where x is a message name, y is a variable name, z is a value, l is the
number of queued elements, and t is the global point in time of the last update.

Formally, we can define the state of event and state ports as follows:

M̄ (tt) ⊂ {(x, y, z, 1, t)|∃(u, v, p, n, d, τ)∈M,∃(a, b)∈V with x = u ∧ y ∈ v ∧ y = a ∧ z ∈ b ∧ p = TT, t ∈ N}
M̄ (et) ⊂{(x, y, z, l, 0)|∃(u, v, p, n, d, τ)∈M,∃(a, b)∈V with x=u ∧ y∈v ∧ y=a ∧ z ∈ bn ∧ p=ET ∧ l∈{0, 1, ..., n}}

For state ports, the queue length in the 5-tuple is always 1, because state ports provide no
message queues. The value z of a constituting variable v of a message u is an element
of the variable’s domain b. For event ports, l is the actual number of messages and
must be smaller or equal to the maximum queue length. The value z is an element of
the Cartesian power bn of the domain b over the maximum queue length n. We model
the queue at an event port as a vector of dimension n, where the first vector element
represents the most recently enqueued message.

The port state needs to assign exactly one value to each constituting variable of a
message. In order to express this property, we demand that the following constraint
holds:
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∀
(x,y)∈Smsg

∣
∣∣(x1, y1, z1, l1, t1)∈M̄ (tt) with x1 = x ∧ y1 = y

∣
∣∣ +

∣
∣∣(x2, y2, z2, l2, t2) ∈ M̄ (et) with x2 = x ∧ y2 = y

∣
∣∣ = 1

Smsg = {(x, y)|(u, v, p, n, d, τ)∈M ∧ u = x ∧ v = y}

Repository State. The repository state encompasses the state of convertible elements
with state information (C̄(tt)) and the state of convertible elements with event informa-
tion (C̄(et)). For each convertible element the repository state (C̄(tt) and C̄(et)) contains
a 6-tuple < x, y, z, l, t, r >, where x is a convertible element name, y is a variable name,
z is a value, l is the number of queued elements, t is the global point in time of the last
update, and r is the number of update request indications.

Formally, we can define the repository state as follows:

C̄(tt) ⊂ {(x, y, z, 1, t, 0)|∃(u, v, p, n, d)∈C,∃(a, b)∈V with x = u ∧ y ∈ v ∧ y = a ∧ z ∈ b ∧ p = TT, t ∈ N}
C̄(et) ⊂{(x, y, z, l, 0, r)|∃(u, v, p, n, d)∈C,∃(a, b)∈V with x=u ∧ y∈v ∧ y=a ∧ z ∈ bn ∧ p=ET ∧ l∈{0, 1, ..., n}, r ∈ N}

For the convertible element with event information, l is the actual number of convertible
elements in the queue, bn is the Cartesian power of the domain b over the maximum
queue length n, and r is the number of requested convertible elements.

The repository state needs to assign exactly one value to each combination of con-
vertible element name and variable name. In order to express this property, we demand
that the following constraint holds:

∀
(x,y)∈Smsg

∣∣∣(x1, y1, z1, l1, t1)∈M̄ (tt) with x1 = x ∧ y1 = y
∣∣∣ +

∣∣∣(x2, y2, z2, l2, t2) ∈ M̄ (et) with x2 = x ∧ y2 = y
∣∣∣ = 1

Smsg = {(x, y)|(u, v, p, n, d, τ)∈M ∧ u = x ∧ v = y}

Clock State. At any specific time, the clock state consists of the values of all clock
variables.

Ȳ ⊂{(x, y)|x ∈ Y, y ∈ N} where ∀
x∈Y

∣∣ (x, y) ∈ Ȳ
∣∣ = 1

︸ ︷︷ ︸
exactly one value for each clock

3.4 Formal Definition of Gateway Execution

In the execution of a gateway, we can distinguish two types of transitions, namely timed
transitions and untimed transitions. In the following these two types of transitions and
the sequence of their execution will be explained.

Timed Transitions. During the execution of a timed transition, a tick of the global
time base elapses. The time progress of one tick is reflected by incrementing the clock
variables by a value of one, while the variables state, port state, and repository state

remain unchanged. Formally, a timed transition Z̄i
T→ Z̄i+1 is defined as follows:

Z̄i =
〈
ti, V̄i, M̄

(tt)
i , M̄

(et)
i , C̄

(tt)
i , C̄

(et)
i , Ȳi

〉
,

Z̄i+1 =
〈
ti+1, V̄i+1, M̄

(tt)
i+1 , M̄

(et)
i+1 , C̄

(tt)
i+1, C̄

(et)
i+1 , Ȳi+1

〉

ti+1 = ti + 1, V̄i+1 = V̄i, M̄
(tt)
i+1 =M̄

(tt)
i , M̄

(et)
i+1 =M̄

(tt)
i , C̄

(tt)
i+1 = C̄

(tt)
i , C̄

(et)
i+1 = C̄

(tt)
i

Ȳi = {{x1, y1}, {x2, y2}, ...} , Ȳi+1 = {{x1, y1 + 1}, {x2, y2 + 1}, ...}



Formal Specification of Gateways in Integrated Architectures 41

Untimed Transitions. The execution of untimed transitions is instantaneous. During

an untimed transition Z̄i
I,O→
A

Z̄i+1 a network adaptor A processes input (i. e., incoming

messages I and outgoing messages O at ports) and executes assignment and communi-

cation actions. Like a timed transition, an untimed transition Z̄i
I,O→
A

Z̄i+1 links a source

state Z̄i with a target state Z̄i+1:

Z̄i =
�
ti, V̄i, M̄

(tt)
i , M̄

(et)
i , C̄

(tt)
i , C̄

(et)
i , Ȳi

�
,

Z̄i+1 =
�
ti+1, V̄i+1, M̄

(tt)
i+1 , M̄

(et)
i+1 , C̄

(tt)
i+1, C̄

(et)
i+1 , Ȳi+1

�

As described in Section 2, ports are the interface between the gateway and the networks.
Consequently, both the gateway and the networks can cause changes to the port state.
The effects on the port state due to networks are captured by the sets I and O:

I = {(u1, v1, z1), (u2, v2, z2), . . . | ∀
j=1,2,...

: uj ∈ η(M) ∧ ∃(a, b) ∈ V with a = vj ∧ zj ∈ b}

O = {(u1, v1), (u2, v2), . . . | ∀
j=1,2,...

: uj ∈ η(M) ∧ vj ∈ η(V )}

η(M) = {u|∃(u, v, p, n, d, τ) ∈ M}

The set I contains tuples each with a message name, a variable name and a value of
the respective value domain. The value is used to perform an update-in-place of the
message at a state port or to enqueue a message at an event port. The set O contains
only message and variable names, which are used to dequeue messages at event ports.
η(M) is the set of all message names.

The update of the port state is defined below. The new state of a state port is the union
of the unmodified ports (i. e., no update by the gateway or a network) and the ports
with updated messages (i. e., either through the network or through the communication
action of a network adaptor). In case of an update-in-place of the port, the most recent
update instant is equal to the current global time t.

( ) ( )

1

neither send operation nor update of port through communication system

( )

{( , , , , ) | ( , , ) with }

{( , , , , ) | ( , , , , ) ( , , )

tt tt
i i out

tt
i

M x y z l t M x M u v b I u x

x y z l t t t x y z l t M u v b
communication system delivers msg. to port

( )

1

value of a variable is copied as par

with }

{( , , , , ) | ( , , , , ') ( , ) }tt
i out i

I u x y v z b

x y z l t t t x y z l t M x M i j V i y z j
t of a send operation of a state message

In analogy, the new state of an event port is the union of the unmodified ports and the
ports with enqueued or dequeued messages.

( ) ( )

1

communication system delivers event message to port

{( , , , ,0) | ( , , , ,0) ( , , ) with ( , , , ,0) ( , , , ,0, ) }

{(

et et
i iM x y z l x y z l M u v b I u x v y x y z l enqueue x y z l b

x ( )

communication system retrieves event message from port

( )

1

, , , ,0) | ( , , , ,0) ( , ) 1}

{( , , , ,0) | ( , , , ,0) ( , ) ( , ,

et
i

et
i out i

y z l x y z l M u v O u x v y l l

x y z l x y z l M x M i j V i y x y
send operation of an event message

( )

receive operation of an event message

, ,0) ( , , , ,0, )}

{( , , , ,0) | ( , , , ,0) 1}et
i in

z l enqueue x y z l j

x y z l x y z l M x M l l

( )

neither send operation, receive operation, nor update of port through communication system

{( , , , ,0) | ( , ) ( , , ) with }et
i out inx y z l M x M x M x y O u v b I u x v y
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Networks can deliver messages to a port, thereby adding another queue element (first
line in the definition of M̄

(et)
i+1 ). Also, networks can retrieve a message from a port, thus

leading to the removal of a message from the queue (second line in the definition). Fur-
thermore, the addition or removal of messages can occur through the send and receive
operations within the communication action (lines 3 and 4 in the definition).

In the definition of the port state update, we use a supporting function enqueue,
which inserts an additional message at the queue of an event port. The message queue
of an event port with a maximum length of n is represented as a vector of size n.
enqueue rotates all messages in this queue using a matrix multiplication of the vector.
Subsequently, the new message is inserted at position 1 of the vector.

enqueue(x, y, z, l, n, d) = (x, y, z′, l′, d) where l′ = l + 1 ∧ z′ =z ·

�
�������

0 0 · · · 0 0
1 0 · · · 0 0

0 1
...

...

0 0
. . . 0 0

0 0 · · · 1 0

�
�������

+

�
������

n
0
0
...
0

�
������

The update of the gateway repository state is similar to the update of the port state.
However, the union contains only the unmodified convertible elements and the con-
vertible elements altered by the communication actions. Unlike the ports, the gateway
repository is only accessed by the gateway (and not by the networks). In case of an
update-in-place, the most recent update instant t′′ of the convertible element is set to
the current global time t.

( ) ( ) ( )

1 1

no push operation (state information) variable is copied as part of a push operat

{( , , , , ) | } {( , , , , ) | ( , , , , ) ( , ) }tt tt tt
i i out i out iC x y z l t C x C x y z l t t t x y z l t C x C i j V i y j z

ion of a convertible element with state information

( ) ( )

1 1

push operation 

{( , , , ,0) | ( , , , ,0) ( , ) ( , , , ,0) ( , , , ,0, )}et et
i i out iC x y z l x y z l C x C i j V i y x y z l enqueue x y z l j

of a convertible element with event information

( ) ( )

pull operation of a convertible ele

{( , , , ,0) | } {( , , , ,0) | ( , , , ,0) 1}et et
i in i inx y z l C x C x y z l x y z l C x C l l

ment with event information

( )

neither push nor pull (event information)

{( , , , ,0) | }et
i out inx y z l C x C x C

The new variables state is the union of the variables which remain unchanged by com-
munication actions, the variables which are assigned a new value through a pull opera-
tion (i. e., new value from the gateway repository), and the variables which are assigned
a new value through a receive operation (i. e., new value from a port). In the definition
of the variables state, we use a supporting function front, which yields the first element
in the queue of a port or a convertible element in the gateway repository.

front(z, l, n) = z · el where el is the canonical unit vector of dimension n

e1 =
	
1 0 0 · · · 0


T
, e2 =

	
0 1 0 · · · 0


T
, en =

	
0 0 0 · · · 1


T

Finally, the global time and the clock state of an untimed transition remain unchanged
(i. e., Ȳi+1 = Ȳi, ti+1 = ti).



Formal Specification of Gateways in Integrated Architectures 43

Sequence of Timed and Untimed Transitions. A gateway contains an ordered set
of network adaptors. The execution of the network adaptors occurs in cycles. Starting
with the first network adaptor, untimed transitions are taken as long as guards Φ of the
first network adaptor are fulfilled. When no guard is satisfied any more, the execution
proceeds with the second network adaptor. A cycle terminates with the last network
adaptor when no more untimed transitions of the last network adaptor can be executed,
because no guard is satisfied. At this point, a timed transition is taken advancing the
value of all clock variables by 1. Subsequently, the next cycle starts with the execution
of untimed transitions of the first network adaptor.

1
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4 Model-Based Generation of Gateways

Based on the introduced formal specification of the gateway, we have realized a tool
for automatic code generation of gateways in a prototype implementation of the DE-
COS architecture [12,13]. The protoype implementation consists of five nodes inter-
connected by the Time-Triggered Protocol (TTP) [14], a cluster with three nodes in-
terconnected by the Controller Area Network (CAN), and a cluster with three nodes
interconnected by the Local Interconnect Network (LIN). The gateways execute
within the TTP nodes, each of which is a multiprocessor node consisting of a connector
unit and two application computers.

The purpose of the connector unit is the implementation of the time-triggered com-
munication protocol for the physical network. The connector unit provides the appli-
cation computers with a global time base and supports the periodic exchange of state
messages at a priori specified global points in time. The connector unit contains a TTP
communication controller and is realized using a single board computer equipped with
a MPC855 PowerPC from Freescale.

The application computers host the application software (i. e., jobs belonging to one
or more DASs) in conjunction with the gateways. Each application computer is imple-
mented on a Soekris net4521 embedded computer from Soekris Engineering1, which

1 www.soekris.com

www.soekris.com
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is based on a 133 MHz 486 class ElanSC520 processor from AMD. We deploy on all
application computers the real-time Linux variant LXRT/RTAI [15] extended by a time-
triggered scheduler [12] as the operating system. Time-triggered LXRT/RTAI tasks are
used both for executing the jobs containing the application code, as well as for the
middleware implementing the gateways.

As an input, the code generation tool uses an instance of a UML meta-model that has
been derived from the formal definition of a gateway in Section 3. UML was selected
for the code generator due to the availability of code libraries (e. g., for parsing and
checking compliance to the meta-model) that have eased the implementation of the
code generation tool. In addition, a wide range of supporting tools (e. g., editors for
creating UML models) can be used for creating gateway specification models.

Both the code for the network adaptors and configuration data structures are auto-
matically generated from the gateway specification model using a gateway generation
tool. The tool is based on the XML C parser toolkit developed for the Gnome project.
It takes as input an XML Metadata Interchange (XMI) representation of the gateway
specification UML model. The output of the code generation tool are C source files
with code for the network adaptors and configuration data structures.

Figure 2 depicts the structure of the gateway generation tool. The parser module
processes the XMI input and builds a parse tree in memory. The parse tree is used for
producing code for the gateway middleware, as well as for constructing a makefile.

5 Discussion

The use of gateways for the interconnection of networks with different communication
protocols is an important problem that has received much attention in previous work.
Many authors have focused on formal specifications based on communicating finite
state machines. This paper describes a novel solution for the specification of gateways
based on a real-time database in-between the interconnected networks. The real-time
database stores temporally accurate real-time images in conjunction with meta infor-
mation (e. g., instant of most recent update, information w.r.t. to update requests). The
major benefit of the real-time database is the ability for a constructive realization of
gateways in distributed real-time systems. Large, complex gateways can be divided into
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smaller modules, which are not only simpler but facilitate reuse and localize changes.
For each network, developers can independently specify which messages update the
real-time database and which messages are sent with the information from the real-
time database. The introduced state machines with timing constraints provide a power-
ful and intuitive formalism for this task. They enable developers to specify the proto-
cols for accessing specific networks along with the corresponding syntax and naming
transformations.
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