
U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 406–416, 2008.
© IFIP International Federation for Information Processing 2008

Implementation of an Obfuscation Tool for C/C++
Source Code Protection on the XScale Architecture*

Seongje Cho1, Hyeyoung Chang1, and Yookun Cho2

1 Dept. of Computer Science & Engineering, Dankook University, Gyeonggi-do, Korea
2 School of Computer Science and Engineering, Seoul National University, Seoul, Korea

{sjcho,hychang}@dankook.ac.kr, cho@os.snu.ac.kr

Abstract. Obfuscation is one of the most effective methods to protect software
against malicious reverse engineering intentionally making the code more com-
plex and confusing. In this paper, we implement and evaluate an obfuscation
tool, or obfuscator for protecting the intellectual property of C/C++ source
code. That is, this paper presents an implementation of a code obfuscator, a tool
which transforms a C/C++ source program into an equivalent one that is much
harder to understand. We have used the ANTRL parser generator for parsing
C/C++ programs, and applied some obfuscation algorithms. Performance analy-
sis is conducted by executing two obfuscated programs on the XScale architec-
ture to establish the relationship between the complexity and the performance of
each program. When the obfuscated source code has been compared with the
original source code, it has enough effectiveness in terms of potency and resil-
ience though it incurs some run-time overhead.

Keywords: Obfuscation, Source Code Protection, Reverse Engineering.

1 Introduction

The major types of attack against software protection mechanisms can be classified as
software piracy, malicious reverse engineering, and tampering. Software piracy is the
illegal distribution and/or reproduction of software applications for business or per-
sonal use. Global PC software piracy alone accounted for nearly $40 billion annual
loss [1] to the software industry in 2006. Many software developers therefore try to
protect their programs against illegal copying. They also worry about their applica-
tions being reverse engineered [2,3,4,5]. Certain classes of automated reverse engi-
neering tools can successfully attack compiled software to expose underlying code. In
some cases, a valuable piece of code may be extracted from an application and incor-
porated into a competitor’s code. Another related threat is software tampering [2,5,6].
Any illicit modification of program file or attack against program integrity should
make the software unusable.

As the use of a client code like ‘mobile agent’ programs downloaded or installed
on a host becomes more general, the client software is more frequently threatened by

* This work was supported by the Korea Research Foundation Grant funded by the Korean

Government (MOEHRD, Basic Research Promotion Fund)(KRF-2008-314-D00340).

 Implementation of an Obfuscation Tool for C/C++ Source Code Protection 407

the host. This results from the power of the adversary model in digital rights man-
agement (DRM) systems, which is significantly more vulnerable than in the tradi-
tional security scenarios. The adversary can even gain complete control of the client
node–supervisory privileges along with the full physical as well as architectural object
observational capabilities. Unfortunately, the traditional security techniques to protect
software from malicious client may not be applicable to protect a client code against a
host attack [2, 3]. As a result, software protection has recently attracted tremendous
commercial interest, from major software vendors to mobile DRM venders.

While it is generally believed that complete protection of software is an unattain-
able goal, recent results have shown that some degree of protection can be achieved.
Software watermarking, obfuscation, and tamper-proofing have emerged as feasible
methods for the intellectual property (IP) protection of software [2-11]. Watermark-
ing, a defense against software piracy, is a process that makes it possible to determine
the origin of software. Obfuscation, a defense against reverse engineering, is a process
that renders software unintelligible but still functional. Tamper-proofing, a defense
against tampering, is a process so that unauthorized modifications to software (for
example, to remove a watermark) will result in nonfunctional code.

In this paper, we focus only on obfuscation techniques useful for protecting soft-
ware from reverse engineering. The paper describes the implementation and evalua-
tion of an obfuscation tool which converts a C/C++ source codes into an equivalent
one that is much harder to understand. We implement some obfuscation algorithms on
the XScale architecture and evaluate the performance and effectiveness of the
obfuscation tool in terms of potency, resilience, and cost.

The rests of the section in this paper is organized as follows. Section 2 explains ob-
fuscation, its related work, and the evaluation metrics of obfuscation. It is then fol-
lowed by the description of the proposed method in section 3. Section 4 describes the
implementation of obfuscation algorithms. We present the performance results of our
implementation in section 5. Finally, section 6 concludes the paper.

2 Obfuscation

Software obfuscation can be defined as a semantics-preserving code transformation of
a program in an attempt to make the code as complex and confusing as possible. Ob-
fuscation protects the intellectual property (IP) of software from reverse-engineering
attacks. The IP can be the software design, algorithms, or data contained in the soft-
ware. Obfuscating transformations are primarily classified depending on the kind of
information they target. Some simple transformations target the lexical structure (the
layout) of the program while others target the data structures used by the program or
its flow of control [2,4,7,8,11].

Layout obfuscations are aimed at making the code unreadable by introducing ‘for-
matting change’, ‘remove comments’, ‘remove debug information’, and ‘scramble
identifiers’ methods. Most commercial obfuscators fall in this category. Crema, one
of the oldest Java obfuscators, uses layout obfuscation. Data obfuscations are aimed at
obscuring data and data structures used in the program. These data transformations
can be classified into the following methods: ‘split variables’, ‘array transformation
including splitting and folding’, and ‘modifying inheritance including class split and
class insertion’.

408 S. Cho, H. Chang, and Y. Cho

Control obfuscations are aimed at obfuscating the flow of execution by applying
‘opaque construct’, ‘redundant code introducing opaque predicates and multiple ob-
fuscated loops’, ‘inline removing procedural abstraction’, and ‘outline creating bogus
procedural abstraction’ algorithms [2,7,8]. Several control obfuscations rely on the
existence of opaque variables and opaque predicates. A variable V is opaque if it has
some property q which is known a priori to the obfuscator, however is difficult for de-
obfuscator to deduce. Similarly, a predicate Ρ (a Boolean expression) is opaque if its
outcome is known at obfuscation time, but is difficult for the de-obfuscator to deduce.
We write ΡT (ΡF) if Ρ always evaluates to TRUE (FALSE), and Ρ? if Ρ may some-
times evaluates to TRUE and sometimes to FALSE.

In general, three criteria are considered in evaluating the quality of an obfuscation
method; including potency, resilience, and cost [2-9]. The potency refers to what
degree the transformed code is more obscure than the original. Software complexity
metrics define various complexity measures for software, such as number of predi-
cates it contains, depth of its inheritance tree, nesting levels, etc. While the goal of
good software design is to minimize complexity based on these parameters, the goal
of obfuscation is to maximize it.

The resilience of the software is a measure of how well the transformed code can
resist attacks from either the programmer or an automatic de-obfuscator. It is a com-
bination of the programmer effort to create a de-obfuscator and the time and space
required by the de-obfuscator. The highest degree of resilience is a one-way transfor-
mation that cannot be undone by a de-obfuscator. An example is when the obfusca-
tion removes information such as source code formatting. The difference between
potency and resilience is that a transformation is potent if it can confuse a human
reader, whereas it is resilient if a de-obfuscator tool cannot undo the transformation.

The cost of a transformation defines to how much computational overhead is added
to the obfuscated program. Examples of the cost are the extra execution time and
space penalty incurred by the obfuscation.

There are many software protection tools such as Cloakware, DashO, Dotfuscator, Kava
(Konfused Java), JHide, and Semantic Designs’ source code obfuscator [2,4,5,9,10,11].
Cloakware is capable of providing significant control and dataflow obfuscations of C
source code. DashO and Dotfuscator can construct layout transformations including dead
code removal and identifier renaming for Java and Microsoft Intermediate Language
(MSIL), respectively. Semantic Designs’ source code obfuscators provide a software de-
veloper with identifier renaming and optional whitespace removal for several high-level
languages. A tool called Sandmark measures the effectiveness of software-based methods
for protecting software against piracy, reverse engineering, and tampering [4]. MacBride
et. al. [9] presented a qualitative measurement of the capability of two commercial obfus-
cators, DashO-Pro and KlassMaster. The measurement showed the two obfuscators both
could cause variations in the performance of the algorithms used for testing.

3 The Structure of C/C++ Source Code Obfuscator

The approach we are going to consider is source code obfuscation to protect intellec-
tual property embedded in C/C++ source programs. The source code obfuscator
accepts a source file, and generates another functionally equivalent source file which

 Implementation of an Obfuscation Tool for C/C++ Source Code Protection 409

Fig. 1. Structure of high-level obfuscator

is much harder to understand or reverse-engineer. This is useful for technical protec-
tion of intellectual property in the following cases1. First, the source code must be
delivered for public execution purposes. Second, commercial software components
must be delivered in source form for direct integration by a customer into her end
product (portable applications in C or PHP etc., code libraries or hardware compo-
nents coded in Verilog or VHDL). Third, we have to send test cases derived from
proprietary code to vendors. Fourth, an object code still contains many clues such as
class public methods used only inside an application, as with java class files.

Figure 1 shows the overall structure of our source code obfuscator. We use a parser
generator called ANTRL, ANother Tool for Language Recognition [12], to obfuscate
the C/C++ source programs. The parser generated by the ANTRL takes C/C++ pro-
grams as input and analyzes a sequence of tokens to determine grammatical structure
with respect to a given formal grammar. It captures the implied hierarchy of the input
text and transforms it into abstract syntax tree (AST), or just syntax tree. The parser
can use a separate lexical analyzer (lexer) to create tokens from the sequence of input
characters. The AST is a finite, labeled, and directed tree, where each interior node
represents a programming language construct and the children of that node represent
meaningful components of the construct. It is used in the parser as an intermediate
between a parse tree and a data structure. Based on the information contained in the
AST, we implement the obfuscation algorithms by inserting, modifying, and restruc-
turing a proper node after locating the node to apply the algorithms.

The obfuscation tool consists of two parts; one part shown in left side of Figure 1
obtains symbol information and the other part shown in right side constructs obfusca-
tion algorithms utilizing the derived symbol information. The symbol information
includes the attributes of identifiers such as the name, type, and size of all the vari-
ables. We can finally transform an original source program into an obfuscated source
program by both using the symbol information and reconstructing the AST.

1 http://www.semdesigns.com/Products/Obfuscators

410 S. Cho, H. Chang, and Y. Cho

4 The Implementation of Obfuscation Algorithms

In the remainder of this paper we will describe and evaluate various obfuscating trans-
formations. We start by formalizing the notion of an obfuscating transformation.
Given a set of obfuscating transformations T = {T1, …, Tn} and a program C consist-
ing of source code objects (classes, methods, statements, etc.) {S1, …, Sk}, find a
new program C’ = { …, S’j = Ti(Sj), …} such that C’ has the same observable behav-
ior as C, i.e., the transformations are semantics-preserving. Our obfuscator have cur-
rently implemented some obfuscation algorithms: modifying an original program’s
layout, splitting variables, restructuring arrays, extending loop conditions, and add-
ing redundant operand. As the target programs to apply the obfuscation algorithms,
we have selected three programs, bubblesort, advanced encryption standard (AES),
and Diffie-Hellman key exchange programs. In this section, we mainly consider the
original source code and the obfuscated code of the AES program.

4.1 Layout Transformations

We first introduce layout obfuscation altering the formatting of the source file. This
involves removing source code comments, and changing the names of elements such
as the class, member variables, and the local variable. Source code comment removal
and formatting removal are free transformations, since there is no increase in space
and time from the original application. The potency is low because there is very little
semantic content in formatting. It is a one-way transformation because the formatting,
once removed, cannot be recovered. Scrambling of variable names is also a one-way
and free transformation, but it has much higher potency than formatting removal.

4.2 Split Variable

Integer variables and other variables of restricted range can be split into two or more
variables. Figure 2 shows an example where the splitting principle is applied to inte-
ger variables. Here, the elements of i are distributed over two short variables, _888
and _15871. The algorithm can sometimes substitute a target variable with a function
which returns the same value as the variable. The potency, resilience, and cost of this
method all increase with the number of variables into which the original variable is
split.

4.3 Restructure Arrays: Array Folding

A number of transformations can be devised for obscuring operations performed on
arrays: we are trying for a programmer to be able to split an array into several sub-
arrays, merge two or more arrays into one array, fold an array (increasing the number
of dimensions), or flatten an array (decreasing the number of dimensions). Figure 3
demonstrates how a one-dimensional array sbox can be folded into a two-
dimensional array sbox. Array folding increases the data structure complexity of the
potency metrics.

 Implementation of an Obfuscation Tool for C/C++ Source Code Protection 411

Fig. 2. A data transformation that splits variables

Fig. 3. Array restructuring: Array folding

4.4 Extend Loop Conditions

Figure 4 shows how we can obfuscate a loop by making the termination condition
more complex. The basic idea is to extend the loop condition with a ΡT or ΡF predi-
cate which will not affect the number of times the loop will execute. In Figure 4, our
obfuscator has added to the termination condition of the loop the ‘&&’ operator fol-
lowed by the predicate ΡT which will always evaluate to TRUE, and the ‘||’ operator
followed by the predicate ΡF which will always evaluate to FALSE.

4.5 Add Redundant Operand

By constructing some opaque variables, we can use algebraic laws to add redundant
operands to arithmetic expressions. This will increase the program length metric of
the potency metrics. Obviously, this method works best with integer expressions
where numerical accuracy is not an issue. In the obfuscated statement in Figure 5, we
construct an opaque sub-expression (int) (856* 0.0001)*4 whose value is 4.

412 S. Cho, H. Chang, and Y. Cho

Fig. 4. Loop condition insertion

Fig. 5. Add redundant operand

5 Performance Evaluation

The transformation constructing the obfuscation algorithms may increase execution
time, program complexity, and cost. We think there will always be a trade-off be-
tween the level of obfuscation and the performance overhead incurred. In this section,
we have analyzed the quality of the obfuscation algorithms on an embedded board
equipped with the Intel XScale PXA255 400MHz CPU, 128 megabyte SDRAM, and
32 megabyte Flash ROM. Embedded Linux kernel 2.4.19, g++ compiler, and the AES
and Diffie-Hellman programs have been used for performing the experiments. The
potency, resilience, and cost are considered in evaluating the quality of obfuscation
methods: ‘layout transformations’, ‘split variable’, ‘array folding’, ‘extend loop con-
ditions’, and ‘add redundant operand’.

5.1 Measures of Potency

Even though there are many complexity metrics to evaluate the degree of the
potency [8], we consider only some of the complexity measures listed in Table 1. The
goal of an obfuscating method is to maximize these measures. The potency is meas-
ured by the summation of the series for the five complexity values in Table 1. An
obfuscation method is a potent obfuscating transformation if the following equation,
its relative potency ratio with respect to a program, is satisfied.

 Implementation of an Obfuscation Tool for C/C++ Source Code Protection 413

{Potency(obfuscated program) / Potency(original program)} – 1 > 0 (1)

Table 1. Overview of some software complexity measures

Metric Metric name and Its meaning

Program Length
µ1 Complexity of a program increases with the number of operators and operands in a

program
Cyclomatic Complexity

µ2 Complexity of a function or method increases with the number of predicates in a func-
tion or method
Nesting Complexity

µ3
Complexity of a function or method increases with the nesting level of conditionals

Data Flow Complexity
µ4 Complexity of a function or method increases with the number of inter-basic block

variable references
Fan-in/out Complexity

µ5 Complexity of a function or method increases with the number of formal parameters to
the function or method, and with the number of global data structures read or updated
by the function or method.

Table 2 shows the complexity values and relative potency ratio obtained by meas-
uring the five metric values of the AES and Diffie-Hellman programs. In Table 2, we
can see that the obfuscator has increased the relative potency ratio by 0.675 for the
AES program and 0.848 for the Diffie-Hellman program, respectively when both data
and control transformations were applied.

Table 2. Complexity and potency ratio of each code before and after applying obfuscation

AES Diffie-Hellman

Original Data Control Data+Control Original Data Control Data+Control
µ1 10356 15605 13264 17311 3299 5001 4519 6094
µ2 17 23 38 32 22 30 31 41
µ3 21 25 43 37 21 25 30 37
µ4 29 50 64 71 18 34 35 50
µ5 12 21 27 32 26 33 31 36

Potency
ratio 0.507 0.288 0.675 0.513 0.372 0.848

5.2 Measures of Resilience

It is not easy to quantitatively measure resilience of the obfuscated codes. As shown
in Figure 6, we measure it on a scale from trivial to one-way according to the criteria
proposed by Collberg et. al. in [8]. One-way transformations are the highest resilience

414 S. Cho, H. Chang, and Y. Cho

Fig. 6. Resilience of an obfuscating method

Table 3. Resilience of the implemented algorithms

Target Transformation Algorithm Resilience Value

Layout Remove Comments One-way 5

Extend Loop Condition Weak ~ Strong 2~3 Control
flow Add Redundant Operands Weak ~ Strong 2~3

Split Variable Weak 2
Data

Fold Array Weak 2

in the sense that they can never be undone. Other transformations add unnecessary
information to the program that do not change its functional behavior, however which
make it difficult to construct an automatic tool to undo the transformations or execut-
ing such a tool will be extremely time-consuming. Table 3 shows the resilience of the
obfuscated algorithms implemented in Section 4.

5.3 Measures of Cost

We measured the file size and execution time of the target programs before and after
applying obfuscation methods. The experimental results are shown in Table 4. Each
execution time of the AES encryption and Diffie-Hellman key distribution programs
present the average time consumed to encrypt a plaintext file of 262144 bytes and to
generate a secret key of 128 bits, respectively. We can see from the table that the
obfuscator increases the file size and execution time of the obfuscated programs.

Table 4. File size (in bytes) and execution time (in seconds) before and after applying obfuscation

AES Diffie-Hellman

Original Data Control
Data+

Control
Original Data Control

Data+
Control

Source file
size 9658 15605 13352 17332 3299 5001 4519 6094

Object file
size 9180 13228 13200 15416 2904 3748 3896 4660

Execution
time 6.610s 7.666s 6.677s 7.711s 0.176s 0.210s 0.225s 0.250s

 Implementation of an Obfuscation Tool for C/C++ Source Code Protection 415

Fig. 7. Comparison of assembly codes before and after applying obfuscation

5.4 Comparison of Assembly Codes

Finally, we have compared the ARM assembly language of an original program with
that of its obfuscated one to check if the transformation algorithms are effective in the
machine-level code. Figure 7 shows the assembly codes corresponding to some part
of the function AddRoundKey() in the AES program. The right side part of the figure
shows the assembly code after applying two obfuscation algorithms, ‘split variable’
and ‘extend loop condition’. The assembly code of the obfuscated function is quite
different from that of the original one. As a result, our C/C++ obfuscator for the
XScale architecture is effective even though it incurs some space and time overhead.

6 Conclusion and Future Work

This paper presents the implementation of an obfuscation tool, or obfuscator on the
XScale architecture that protects C/C++ source code against malicious reverse engi-
neering by making the code as complex and confusing as possible, but still functional.
To render software unintelligible, the obfuscator uses layout transformations, data
transformations including ‘split variable’ and ‘fold array’, and control transforma-
tions such as ‘extend loop conditions’ and ‘add redundant operand’. We have also
evaluated the quality of obfuscation methods using three criteria: potency, resilience,
and cost. Experimental results have shown that our obfuscator can enhance the po-
tency and resilience of the obfuscated code, but incur some space penalty and the
extra execution time.

416 S. Cho, H. Chang, and Y. Cho

The future work for this research is to continue to introduce other obfuscation algo-
rithms in this obfuscator to make more obscure the control-flow of the source pro-
gram and the data structure used in it. We will also develop another obfuscation
method for a low-level program like assembly or machine languages, and then
incorporate it with the current obfuscation method.

References

1. Business Software Alliance, Fourth Annual BSA and IDC Global Software Piracy Study
(2006)

2. Collberg, C.S., Thomborson, C.: Watermarking, Tamper-Proofing, and Obfuscation –
Tools for Software Protection. IEEE Transactions on Software Engineering 28(8), 735–
746 (2002)

3. Gomathisankaran, M., Tyagi, A.: Architecture Support for 3D Obfuscation. IEEE Transac-
tion on Computer 55(5), 497–507 (2006)

4. Collberg, C., Myles, G., Huntwork, A.: Sandmark – Tool for Software Protection Re-
search. IEEE Security & Privacy (Software Protection), 40–49 (July/August 2003)

5. Naumovicb, G., Memon, N.: Preventing Piracy, Reverse Engineering, and Tampering.
IEEE Computer, 64–71 (2003)

6. Fu, B., Richard III, G.G., Chen, Y., Husseiny, A.: Some New Approaches For Preventing
Software Tampering. In: Proc. of the 44th ACM Southeast Regional Conference (ACM SE
2006), pp. 655–660 (2006)

7. van Oorschot, P.C.: Revisiting Software Protection. In: Boyd, C., Mao, W. (eds.) ISC
2003. LNCS, vol. 2851, pp. 1–13. Springer, Heidelberg (2003)

8. Collberg, C., Thomborson, C., Low, D.: A Taxonomy of Obfuscating Transformations.
Technical report 148, Dept. of Computer Science, University of Auckland, New Zealand
(1997)

9. MacBride, J., Mascioli, C., Marks, S., Tang, G., Head, L.M.: A Comparative Study of Java
Obfuscators. In: IASTED International Conference on Software Engineering and Applica-
tions, Phoenix, Arizona, November 14 –16, 2005, pp. 82–86 (2005)

10. Ertaul, L., Venkatesh, S.: JHide – a tool kit for code obfuscation. In: Proc. of the 8th
IASTED International Conference Software Engineering and Applications (2004)

11. Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Static Disassembly of Obfuscated Bina-
ries. In: Proc. of the 13th USENIX Security Symposium, pp. 255–270 (2004)

12. ANTLR, http://www.antlr.org

	Implementation of an Obfuscation Tool for C/C++ Source Code Protection on the XScale Architecture
	Introduction
	Obfuscation
	The Structure of C/C++ Source Code Obfuscator
	The Implementation of Obfuscation Algorithms
	Layout Transformations
	Split Variable
	Restructure Arrays: Array Folding
	Extend Loop Conditions
	Add Redundant Operand

	Performance Evaluation
	Measures of Potency
	Measures of Resilience
	Measures of Cost
	Comparison of Assembly Codes

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

