
Context-Aware Deployment of Services in Public Spaces

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ichiro@nii.ac.jp

Abstract. This paper presents the context-aware deployment of user-assistant
services in public spaces, e.g., museums. Using location-sensing systems, it de-
tects the locations of users and deploys user-assistant services, e.g., visitor guides,
at computers near to the their current locations. When users move between ex-
hibits in a museum, it enables agents to follow users to annotate the exhibits in
personalized form and navigate them to the next exhibits along their routes. To
demonstrate the utility and effectiveness of the framework, we constructed and
operated a location/user-aware visitor-guide service in a museum as case studies
in the development of context-aware services in public spaces.

1 Introduction

The use of user/location-aware services in public spaces, including cities, stations, and
museums, has attached much attention from researchers over the past few years. This
paper addresses context-aware services to guide visitors in a museum as case studies
for developing ubiquitous computing systems for city-wide public spaces. Few visitors
in museums have sufficient knowledge about the exhibits. Therefore, they need annota-
tions on these. However, their knowledge and experiences are varied so that they may
become puzzled (or bored) if the annotations provided to them are beyond (or beneath)
their knowledge or interest. To solve this problem, we construct a context-aware system
for providing visitors with services to annotate exhibits in their personalized forms at
nearby computers, even when they move between exhibits.

There have been several academic or commercial attempts to develop context-aware
services for museums with the aim of enabling visitors to view or listen to information
about exhibits at the right time and in the right place and to help them navigate between
exhibits along recommended routes. However, most of existing attempts have been de-
veloped to the prototype stage and tested in small-scale laboratory-based experiments.
They have been designed in an ad-hoc manner to provide specific single services in par-
ticular spaces, i.e., research laboratories and buildings. As a result, they are not suitable
for public spaces or for applications that they were not initially designed to support. In
addition, they implicitly or explicitly assume centralized management systems, so their
scalability could be a serious problem.

We construct a framework for providing context-aware services in a real museum
with real users. It provides each user with mobile agent-based software components
to deploy application-specific services at computers independently of the underlying
infrastructure and other services. It can also spatially bind a user to their agent/s using
location-sensing systems. For example, when a user stands in front of an exhibit, his/her

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 221–232, 2008.
c© IFIP International Federation for Information Processing 2008

222 I. Satoh

agent is deployed at a computer close to his/her position and provides him/her with
annotation services about the exhibit in a personalized form that has been adapted to
the individual user.

2 Approach

Our final goal is to construct a general-purpose infrastructure for providing context-
aware services in large public spaces, e.g., building-wide and city-wide spaces. It was
inspired by real requirements of museums rather than our academic interests.

2.1 Background

There have been many academic and commercial attempts to provide context-aware
services to visitors in public museums. A typical approach has been to provide visitors
with audio annotations from portable audio players. These have required end-users to
carry players and explicitly input numbers assigned to exhibits if they wanted to listen
to audio annotations about the exhibits in front of them. Many academic projects have
provided portable multimedia terminals or PDAs to visitors. These have enabled visitors
to interactively look at and operate annotated information displayed on the screen of
their players, e.g, the Electronic Guidebook [3] and Museum Project [2]. They assume
that visitors car carrying portable terminals, e.g., PDAs and smart phones and they
are required to explicitly input their positions, the identifiers of exhibits, and items of
interest by using user interface devices, e.g., buttons, mice, or touch panels of terminals.
However, such operations are difficult for visitors, particularly children, the elderly, and
handicapped people, and often prevent them from viewing the exhibits.

To solve this problem, several projects have used sensing systems to detect the posi-
tions of visitors, e.g., the Hippie [6], the ImogI [5], and the Rememberer [3]. Portable
smart devices, including PDAs, with location sensing systems may be popular in aca-
demic projects, but museums tend to avoid using such devices because they are too
expensive to lend to visitors and also require regular maintenance, e.g., replacing or
recharging the batteries every day. In fact, cost issues are one of the most serious prob-
lems in deploying context-aware services at public spaces, including museums. There-
fore, several existing approaches, which assume to make use of expensive or delicate
devices, will not always be used in real museums, even though they are interesting
within academic research communities. In addition, one of the most serious problems
associated with portable smart devices in museums is that they prevent visitors from fo-
cusing on the exhibits because they tend to become interested in the device rather than
the exhibition itself and therefore concentrate on operating the PDA buttons or touch
panel instead of looking at the exhibits.

2.2 Requirements

To solve these problems, we should support visitors from stationary sensors and com-
puting devices. We discuss the requirements of visitor guides in museums.

– Visitor-guide services for exhibits should be selected and customized according to
the behaviors of users, e.g., the exhibits they looked at, how long they stayed around
specific exhibits, and their current locations in addition to knowledge and interest.

Context-Aware Deployment of Services in Public Spaces 223

– User-assistant services, including visitor-guide services in public spaces, are likely
to be accessed often by users. Such services should be executed at nearby comput-
ers to minimize communication delays between user-interface devices and server-
side computers.

– Visitors move between exhibits in a museum. When he/she moves to another ex-
hibit, his/her agent should be deployed at a computer close to his/her destination by
using location-sensing systems.

– Visitor-guide services should be personalized, even when they are provided in pub-
lic spaces. Services should be provided and interact with users in a personalized
manner adapted to individual needs.

– Computers in ubiquitous computing environments often have only limited resources,
such as restricted levels of CPU power and amount of memory. They cannot support
all the services that may be needed. We therefore have to deploy software that defines
services at computers only while those services are needed.

– Our final aim is widespread building-wide and city-wide deployment of ubiquitous
computing systems. It is almost impossible to deploy and administer a system in
a scalable way when all of the control and management functions are centralized.
Our system consists of multiple servers, which are individually connected to other
servers in a peer-to-peer manner. Each server only maintains up-to-date information
on partial contextual information instead of on tags in the whole space.

2.3 Approach

To meet these requirements, our system uses mobile-agent technology.

– Each mobile agent is a self-contained autonomous programming entity. Our sys-
tem itself is independent of application-specific services. Instead these services are
defined and performed within mobile agents.

– Each agent is spatially bound to, at most, one user. When a user gets closer to
an exhibit, our system detects the migration of the user by using location-sensing
systems and then instructs the user’s agents to migrate to a computer close to the
exhibit.

– Each agent can migrate from computer to computer. When an agent moves to an-
other computer, both the code and the state of the agent are transferred to the des-
tination. After arriving at its destination, an agent can continue working, e.g., on a
user-assistant task, without losing results, such as the content of instance variables
in the agent’s program, at the source computer.

– Each agent can maintain per-user preferences on a user and record the user’s be-
havior, e.g., exhibits that they have looked at. The agent can also define user-
personalized services adapted to the user and access location-dependent services
provided at its current computer.

Mobile agents help to conserve limited resources, because each agent only needs to be
present at the computer while the computer needs the services provided by that agent.
Agents can be managed in a non-centralized manner. When an agent migrates to another
computer, it does not have to interact with the source computer.

224 I. Satoh

3 Deployable Context-Aware Agent Platform

Our context-aware system consists of three subsystems: (1) an agent host, (2) context-
aware directory servers, called CDSs (Fig. 1), and (3) service-provider agents. The first
can execute service-provider agents, where we assume that the computing devices are
located at specified spots in public spaces. The second is an autonomous entity that
defines application-specific services for visitors. The third is responsible for reflect-
ing changes in the real world and the location of users when services are deployed
at appropriate computers. User/location-aware visitor-guide services are encapsulated
within the third subsystem so that the first and second subsystems are independent of
any application specific services and other agents, which are simultaneously running to
provide different services.

Event
dispatcher

Abstraction Filter

Runtime system

Peer-to-peer

communication

Agent
migration

Location-sensing
system (Proximity)

Location-sensing
system (Lateration)

Location-sensing
system (Proximity)

Spot 1

CDS

Agent host
Spot 2

Agent host Agent host Agent host

Agent
information
database

Host
information
database

Contextual event manager

Abstraction Filter

Spot 3 Spot 4

Abstraction Filter

Contextual event manager

Service-provider
agent

Runtime system

Service-provider
agent

Runtime system

Service-providerce-pr
agentagen

pp

Runtime system

Service-provider
agent

Event
dispatcher

CDS

Agent
information
database

Host
information
database

Fig. 1. Architecture of Context-aware Service Provider Agent System

3.1 Agent Host

Each agent host is a computer that can provide visitor-guide services through user-
interface devices, e.g., display screens and loudspeakers. It provides a runtime sys-
tem for executing and migrating agents to other hosts. Each runtime system is built
on the Java virtual machine (Java VM), which conceals differences between the plat-
form architectures of the source and destination hosts. It governs all the agents inside
it and maintains the life-cycle state of each agent. When the life-cycle state of an agent
changes, e.g., when it is created, terminates, or migrates to another host, the runtime
system issues specific events to the agent. Some navigation or annotation content, e.g.,
audio-annotation, should be played without any interruptions. It can exchange agents
with another runtime system on a different host through a TCP channel using mobile-
agent technology. When an agent is transferred over the network, not only the code of
the agent but also its state is transformed into a bitstream by using Java’s object seri-
alization package and then the bit stream is transferred to the destination. The host on
the receiving side receives and unmarshals the bit stream. Agents may have to acquire
various resources, e.g., video and sound, or release previously acquired resources.

Context-Aware Deployment of Services in Public Spaces 225

3.2 Context-Aware Agent Deployment

Each CDS spatially binds an agent to a user. It maintains two databases. The first stores
information about each of the agent hosts and the second stores each of the agents
attached to users. It can exchange this information with other CDSs in a peer-to-peer
manner.

Tracking systems can be classified into two types: proximity and lateration. The first
approach detects the presence of objects within known spots or close to known points,
and the second estimates the positions of objects from multiple measurements of the dis-
tance between known points. The current implementation assumes that museums pro-
vide visitors with tags. These tags are small RF transmitters that periodically broadcast
beacons, including the identifiers of the tags, to receivers located in exhibition rooms.
The receivers locate the presence or position of the tags. To abstract away differences
between the underlying location-sensing systems, CDS maps geometric information
measured by sensing systems to specified areas. We assume such areas contain exhibits
and computing devices to play annotations. We call the areas spots.

When the underlying sensing system detects the presence (or absence) of a tag in a
spot, it sends the arrival and departure message to a CDS. The CDS attempts to query
the locations of the agent tied to the tag from its database. If the database does not
contain any information about the identifier of the tag, it multicasts a query message
that contains the identity of the new tag to other CDSs. It then waits for reply messages
from other CDSs. Next, if the CDS knows the location of the agent tied to the newly
visiting tag, it instructs the agent to migrate to a computing device.

Context-aware virtual agent

Agent runtime system

Java VM

OS / Hardware

Annotative
content

Agent migration
manager

Agent execution
manager

Agent lifecycle
event

dispatcher

User navigation
manager

Built-in service
APIs

Navigation partAnnotation part
Content
selection
function

Content player
program

Annotative
content

Agent
state
manager

User route

Navigation code

User-preference part
Knowledge Interests Visited spots

RFID Tag ID Color name

Fig. 2. Architecture of agent host

4 Context-Aware Service-Provider Agent

Each agent is attached to at most one visitor and maintains the preference information
for its user and programs to provide annotation and navigation to its visitor. To enable

226 I. Satoh

agents to be easily developed and configured agents without any professional adminis-
trators, we divided each agent into three parts:

– The user-preference part maintains and records information about visitors, e.g.,
knowledge, interests, routes, their name, and durations spent at exhibits they visited.

– The annotation part defines a task for playing annotations about exhibits or inter-
acting with visitors.

– The navigation part defines a task for navigating visitors to their destinations.

When an agent is deployed at another computer, the runtime system invokes a specified
callback method defined in the annotation part and then one defined in the navigation
part. Although these parts are implemented as Java objects, they are loosely connected
with one another through data attributes by using Java’s introspection mechanism so that
they can be replaced without any compilations and linkages for their programs. The cur-
rent implementation uses the standard JAR file format for archiving these parts because
the format can support digital signatures, enabling authentication. Each agent keeps the
identifier of the tag attached to its visitor. Each agent can specify a requirement that
its destination hosts must satisfy in CC/PP form and the runtime system can select an
appropriate destination among multiple destination candidates through a comparison
between the capabilities required by agents and the capabilities of the candidates.

4.1 User-Preference Part

This is responsible for maintaining information about a visitor. In fact, it is almost im-
possible to accurately infer what a visitor knows or is interested in from data that are
measured by sensing systems. Instead, the current implementation assumes that admin-
istrators will explicitly ask visitors about their knowledge and interests and manually
input the information into this part. Nevertheless, it is still possible to make a qualified
guess with some probability as to what a visitor may be interested in, if we know which
spots he/she visited, how many he/she visited, and how long he/she visited. Each agent
has a mechanism to automatically record the identifiers, the number of visits to, and
length of stays at spots by visitors. This part is implemented as a hash-table for main-
taining the collection of data entries. Each entry is a pair of a name and a value, where
the former is a string data and the latter is an arbitrary data structure represented as Java
objects. The second and third parts can access entries with key names so that these parts
can be combined loosely and replaced by compatible parts.

4.2 Annotation Part

Each agent is required to select annotations according to the current spot and route in
addition to the information stored in the user-preference part and play the content in
its user’s personalized form. This part defines a content selection function and a set of
programs for playing the selected content. The function maps more than one argument,
e.g., the current spot, the user’s selected route, and the number of times a user has visited
the spot into a URL referring to the annotative content. The content can be stored in the
agent, the current agent host, or external http servers. That is, each agent can carry a
set of its content, play the selected content at its destinations, directly play the content

Context-Aware Deployment of Services in Public Spaces 227

ENDEND

SELECT
A or B
SELECT
A or B

COURSE-A COURSE-B

Termination

SelectionNavigation

EXIT
Warning

WARNING
GO BACK

Fig. 3. User-navigation patterns

stored at its destinations, or download and play the content stored in web-servers on the
Internet. Such content is provided in a variety of multimedia representations, e.g., text,
image, video, and sound. The annotation part defines programs for playing this content.
The current implementation supports (rich) text data, html, image data, e.g, JPEG and
GIF, video data, e.g., animation GIF and MPEG, and sound data, e.g., wav and MP3.
The format for content is specified in an MIME-based attribute description. Since the
annotation part is defined as Java-based general-purpose programs, we can easily define
interactions between visitors and agents. The current implementation can divide the part
into three sub-parts: opening, annotation, and closing, which are played by turns.

4.3 Navigation Part

Our agents are required to navigate visitors to their destinations along routes recom-
mended by museums or the visitors. After executing their annotation part, the naviga-
tion part is invoked by the runtime system to provide visual (or audio) information on
the screens of displays (or from loudspeakers) of the current agent host. For example,
the agents display the directions to exhibits that their visitors should next see. We also
introduced visitor movements between exhibits as an implicit operation for selecting
the routes that they wanted and evaluating what they had learned from the exhibits, be-
cause visitor movement is one of the most primitive and natural behaviors in museums.
This part provides the four navigation patterns, outlined in Fig. 3.

– Navigation instructs users to move to at least one specified destination spot.
– Selection enables users to explicitly or implicitly select one spot or route from one

or more spots or routes close to their current spots by moving to the selected spot
or one spot along the selected route.

– Termination informs users that they have arrived at the final spot.
– Warning informs users that they had missed their destination exhibit or their routes.

The user’s route is described as a sequences of primitives corresponding to the above
free patterns with our language for specifying the itineraries of mobile agents for net-
work management [11] and they are stored in the user-preference part. No agent knows
the spatial directions to the destinations because the directions themselves depend on
the spatial relationships between the locations of the current agent host and the loca-
tions of the destinations, as well as the direction to the current host’s screen. The cur-
rent implementation permits administrators to manually input the directions of possible

228 I. Satoh

Spot 1

Spot 2 Spot 3

Spot 4

Fig. 4. Experiment at Museum of Nature and Human Activities in Hyogo

destinations and the direction to the screen. Agent hosts provide built-in APIs to their
visiting agents. For example, if an agent has at least one destination, it invokes a spec-
ified API corresponding to the first pattern with the name of the destination; its current
host returns the direction to the destination to it or displays the direction on the screen
on its behalf.

5 Experience

To prove the utility of the propose system, we constructed and operated an experiment
at the Museum of Nature and Human Activities in Hyogo, Japan, using the proposed
system. Figure 4 has a sketch that maps the spots located in the museum. The exper-
iment was carried out at four spots in front of specimens of stuffed animals, i.e., a
bear, deer, racoon dog, and wild boar. Each spot could provide five different pieces of
animation-based annotative content about animal, e.g., its ethology, footprints, feeding,
habitat, and features, and had a display and Spider’s active RFID reader with a coverage
range that almost corresponded to the space, as shown in Fig. 5.

Pendant
(with RFID tag)

Ambient
Display

RFID
reader

Fig. 5. Spot at Museum of Nature and Human Activities in Hyogo

Context-Aware Deployment of Services in Public Spaces 229

Opening
animation

Closing
animation

Annotation
about racoon
dog

Fig. 6. Opening animation, annotation animation, and closing animation for orange pendant

When a visitor first participated in the experiment, an operator input the point of
interest and the route for the new visitor and created his/her service-provider agent.
As shown in Fig. 6, an agent tied to a pendant played the opening animation and then
played the annotation. It next plays the closing animation.

We simultaneously provided two kinds of routes for visitors to evaluate the utility of
our user-navigation supports. Both routes navigated visitors to destination spots along
the way (Fig. 7). They made each visitor go around an exhibit booth consisting of four
spots two or three times, as shown on the right of Fig. 4. That is, a visitor might visit the
same spots two or three times depending on the navigation of their agents. In addition,
the first route enabled visitors to explicitly select subjects they preferred by moving to
one of the neighboring spots corresponding to the subjects selected in specified spots
at specified times. The second route provided visitors with several quizzes to review
what they had learnt about the animals by selecting neighboring spots corresponding
to their answers in specified spots at specified timings. Both the experiments offered
visitors animation-based annotative content about the animal in front of them so they
could learn about the animal while observing the corresponding specimen.

The experimental system consisted of one CDS and four agent hosts. It enabled cura-
tors to configure annotation content through a GUI-based monitoring and configuration
for agents (right of Fig. 8) and to operate the assignment of annotation to visitors by
using a Web browser running on a portable terminal (Apple iPod Touch) equipped with
a WiFi interface (left of Fig. 8).

When the CDS detected the presence of a tag bound to a visitor at a spot, it instructed
the agent bound to the user to migrate an agent host contained in the spot. After arriving
at the host, the runtime system invoked a specified callback method defined in the an-
notative part of the agent. The method first played the opening animation defined in the
agent and then called a content-selection function with his/her route, the name of the
current spot, and the number of times that he/she had visited the spot. The latency of
migrating of an agent and starting its opening animation at the destination after visitors

230 I. Satoh

Navigation to one destination Selection from two destinations

Fig. 7. Navigation patterns for user navigation at Museum of Nature and Human Activities in
Hyogo

arrived at a spot was within two seconds, so that visitors could view the opening ani-
mation soon after they stood in front of exhibits. The method next played the selected
content and then played the closing animation. After that, the runtime system invoked a
specified callback method defined in the navigation part. An agent bound to a user could
recommend two or more destination spots by using the Selection pattern provided on its
current agent host. When a visitor moved to one of the spots, his/her agent could record
their selection. If the selection corresponded to a quiz choice, when a user moved to a
spot corresponding to a correct or incorrect answer, their agent modified the visitor’s
profile, which was maintained within it. Furthermore, if a user left out his/her route, the
navigation part invoked a method to play warning content to return him/her to his/her
previous spot.

Portable administration
terminal (iPod touch)

Terminal for monitoring the positions of
visitors and customizing agents

Fig. 8. Portable management terminal (left figure) and GUI-based system for monitoring and
configuring agents (right figure)

We operated the experiment over two weeks. Each day, more than 60 individuals or
groups took part in the experiment. Most of the participants were groups of families or
friends aged from 7 to 16. Most visitors answered questionnaires about their answers
to the quizzes and their feedback on the system in addition to their genders and ages.

Context-Aware Deployment of Services in Public Spaces 231

Almost all the participants (more than 95 percent) had positive feedback on the system.
Their typical feedback were “We were very interested in or enjoyed the system.”, “We
could easily answer to the quizzes by our moving between the spots.”, and “We gained
detail knowledge about the animals with our watching them in front of our standing
positions.” As application-specific services could be defined and encapsulated within
the agents, we were able to easily change the services provided by modifying the cor-
responding agents while the entire system was running and more than two different
visitor-guide services could also be simultaneously supported for visitors. Even while
visitors were participating, curators with no knowledge of context-aware systems were
able to configure the annotative content by doing drag-and-drop manipulations using
the GUI-based configuration system. Such dynamic configuration is useful, because
museums need to provide and configure services with visitors without any stopping.

6 Related Work

As we discussed in Section 2, there have been many attempts to provide visitor-guide
systems in museums, but most existing projects assume that visitors carry smart ter-
minals. On the other hand, there have been several research attempts on smart spaces
equipped with stationary sensors and terminals. Cambridge University’s Sentient Com-
puting project [4] provides a platform for location-aware applications using infrared-
based or ultrasonic-based locating systems in a building. Using the VNC system [7],
the platform can track the movement of a tagged entity, such as individuals and things,
so that the graphical user interfaces of the user’s applications follow him/her while
he/she moves around. Although the platform provides similar functionality to that of
our framework, its management is centralized and their services are executed in cen-
tralized servers. Microsoft’s EasyLiving project [1] enabled services running on differ-
ent computers to be combined dynamically according to contextural changes in the real
world, but aimed at private spaces, e.g., living rooms. It could not deploy services at
different computers.

We discuss differences between the framework presented in this paper and our pre-
vious frameworks. We previously presented an approach for deploying mobile agents
spatially bound to physical places and objects at computers that moved in the places or
were close to the objects [9]. However, it was not designed for user-navigation, unlike
the framework proposed in this paper. We also constructed a location model for ubiq-
uitous computing environments. The model represents spatial relationships between
physical entities (and places) as containment relationships between their programmable
counterpart objects and deploys counterpart objects at computers according to the po-
sitions of their target objects or places [12]. This was a general-purpose location-model
for context-aware services, but was not an infrastructure for deploying and operating
such services. We presented some basic evaluation on the usability of mobile agent-
based services in public museums in our another paper [13].

7 Conclusion

We designed and implemented an agent-based system for building and operating context-
aware visitor-guide services in public museums. When a visitor moves from exhibit to

232 I. Satoh

exhibit, his/her agent can be dynamically deployed at a computer close to the current
exhibit to accompany him/her and play annotations about the exhibit according to his/her
knowledge, interest, and the exhibits that he/she watched. His/her agent can also navigate
him/her to exhibits along his/her route. To support large-scale context-aware systems, the
system is managed in a non-centralized manner. Using the system, we constructed and
operated location/user-aware visitor-guide services at a museum as case studies in our
development of ambient computing services in public spaces.

References

1. Brumitt, B.L., Meyers, B., Krumm, J., Kern, A., Shafer, S.: EasyLiving: Technologies for In-
telligent Environments. In: Proceedings of International Symposium on Handheld and Ubiq-
uitous Computing, pp. 12–27 (2000)

2. Ciavarella, C., Paterno, F.: The Design of a Handheld, Location-aware Guide for Indoor
Environments. Personal and Ubiquitous Computing 8(2), 82–91 (2004)

3. Fleck, M., Frid, M., Kindberg, T., Rajani, R., O’BrienStrain, E., Spasojevic, M.: From In-
forming to Remembering: Deploying a Ubiquitous System in an Interactive Science Mu-
seum. IEEE Pervasive Computing 1(2), 13–21 (2002)

4. Harter, A., Hopper, A., Steggeles, P., Ward, A., Webster, P.: The Anatomy of a Context-
Aware Application. In: Proceedings of Conference on Mobile Computing and Networking
(MOBICOM 1999), August 1999, pp. 59–68. ACM Press, New York (1999)

5. Luyten, K., Coninx, K.: ImogI: Take Control over a Context-Aware Electronic Mobile Guide
for Museums. In: Workshop on HCI in Mobile Guides, in conjunction with 6th International
Conference on Human Computer Interaction with Mobile Devices and Services (2004)

6. Oppermann, R., Specht, M.: A Context-Sensitive Nomadic Exhibition Guide. In: Thomas,
P., Gellersen, H.-W. (eds.) HUC 2000. LNCS, vol. 1927, pp. 127–142. Springer, Heidelberg
(2000)

7. Richardson, T., Stafford-Fraser, Q., Wood, K., Hopper, A.: Virtual Network Computing.
IEEE Internet Computing 2(1), 33–38 (1999)

8. Rocchi, C., Stock, O., Zancanaro, M., Kruppa, M., Kruger, A.: The Museum Visit: Gen-
erating Seamless Personalized Presentations on Multiple Devices. In: Proceedings of 9th
international conference on Intelligent User Interface, pp. 316–318. ACM Press, New York
(2004)

9. Satoh, I.: SpatialAgents: Integrating User Mobility and Program Mobility in Ubiquitous
Computing Environments. Wireless Communications and Mobile Computing 3(4), 411–423
(2003)

10. Satoh, I.: A Location Model for Pervasive Computing Environments. In: Proceedings of
IEEE 3rd International Conference on Pervasive Computing and Communications (PerCom
2005), March 2005, pp. 215–224. IEEE Computer Society, Los Alamitos (2005)

11. Satoh, I.: Building and Selecting Mobile Agents for Network Management. Journal of Net-
work and Systems Management, 14(1), 147–169 (2006)

12. Satoh, I.: A Location Model for Smart Environment. Pervasive and Mobile Computing 3(2),
158–179 (2007)

13. Satoh, I.: Context-aware Agents to Guide Visitors in Museums. In: Proceedings of 8th In-
ternational Conference on Intelligent Virtual Agents (IVA 2008), September 2008. LNCS.
Springer, Heidelberg (2008)

	Context-Aware Deployment of Services in Public Spaces
	Introduction
	Approach
	Background
	Requirements
	Approach

	Deployable Context-Aware Agent Platform
	Agent Host
	Context-Aware Agent Deployment

	Context-Aware Service-Provider Agent
	User-Preference Part
	Annotation Part
	Navigation Part

	Experience
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

