

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 1–8, 2008.
© IFIP International Federation for Information Processing 2008

Using UML 2.1 to Model Multi-agent Systems

Darshan S. Dillon, Tharam S. Dillon, and Elizabeth Chang

Digital Ecosystems and Business Intelligence Institute,
Curtin University of Technology Perth, Australia
{Darshan.Dillon,Tharam.Dillon,

Elizabeth.Chang}@cbs.curtin.edu.au

Abstract. The use of UML 2.1 to model a broad range of systems is evident
from the variety of UML diagrams in academia and in the marketplace. One
class of systems currently gaining popularity are Multi-Agent Systems. There
are efforts underway to use UML to model these systems and these efforts are
both productive and form the basis for both a methodology and a notation for
systems of this type.

1 Introduction

In this paper we first introduce what an Agent is, the key characteristics of an Agent,
the scope of this paper in terms of what we model in Multi-Agent Systems, and
finally future directions.

2 What Is an Agent ?

In order to define what an agent is we should first consider a definition from the
literature.

An agent is a computer system that is situated in some environment, and that is ca-
pable of autonomous action in this environment in order to meet its design
objectives.1

From this definition a number of points are clear. Firstly, the location of the com-
puter program is important. This is so because the program can migrate from one
machine to another. This is not the usual pattern of behaviour for computer programs.
They usually are installed, configured and run on a particular machine. They do not
travel, as such. Secondly, the computer program is capable of acting automously,
which means it is not dependant on any other program. This goes together with the
fact that agents are mobile. They can be launched by a user on a particular machine,
and travel, severing their connection with the user and concentrating their state related
information within themselves. Thirdly, the computer program is goal-driven and can
choose to act in a way that satisfies it’s design objectives. Most computer programs
are data-driven, reacting to inputs.

Finally, agents play an important role in embedded and ubiqitious computer sys-
tems. They are particularly important in goal-oriented or mission-oriented environ-
ments. The modeling and design of agents is an important first step for the building of
agent- based systems.

2 D.S. Dillon, T.S. Dillon, and E. Chang

3 Characteristics of an Agent2

There are six key characteristics of an agent. They are as follows.

1. Autonomous – That is, an agent can perform independently from other agents by
making decisions based on it’s internal state and information from it’s environment.

2. Sociable – That is, an agent can co-operate and collaborate with other agents by
using a common language to communicate with each other.

3. Service Discovery – Agents are able to identify desired services.
4. Reactive – That is, an agent is pro-active. It can perform tasks that may be bene-

ficial to the user even though it has not been explicitly asked to perform those
tasks.

5. Mobility – Agents can move across networks from any location. They can be as-
signed a task and sent over the web after which their connection to the user can be
severed. Their state can be centralized within themselves.

6. Goal-Driven Execution – Each Agent has a goal that is it constantly trying to
meet.

4 Scope

As with any paper, we need to define the scope we will work within. In the case of
this paper, we will seek to illustrate how sociable and goal-driven nature of agents can
be expressed using UML 2.1.

5 Agent Characteristics Modelled

5.1 Sociable

In modeling Agents, one of their key characteristics is that they are sociable. This
means that they are able to interact with each other in order to co-operate, collaborate
and negotiate with respect to information, knowledge and services. Very often each
agent will have only part of the full picture needed to solve the problem at hand. The
ability to subdivide the tasks in order to reduce the complexity of the problem, have
individual agents work only on their aspect of the problem, and then combine sub-
solutions into a final solution is extremely helpful and productive.

In AgentUML, previous researchers have been modeling Agent protocols5,6 using a
non-standard version of sequence diagrams where each rectangle represents an agent
playing a different role. We say non-standard because the rectangles at the head of
lifelines are meant to represent classes, not agents. Having multiple rectangles each
representing the same Agent is also non-standard, where each rectangle represents the
Agent playing a particular role.

Each agent is defined by specifying a specific set of roles that it plays. Each role
could be associated with a distinct interface. These interfaces could be specified by a
technique called method lifting outlined below. Method lifting defines a composite
class. What are composite classes ? If we first consider a hierarchy of component

 Using UML 2.1 to Model Multi-agent Systems 3

classes, each of which has an interface. If we relate these component classes to a
composite class that also has an interface, and which is formed by taking a selection
of methods from the interfaces of the component classes. This process of relating the
interface of component classes to the interface of a composite class is known as
method lifting. In the example below, the methods A, B & C are individually chosen
from different component classes and combined in the composite class at the head of
the hierarchy. This is shown below.

Fig. 1. An example of Method Lifting 3

Secondly, a particular class may have more than one lifeline. For example, a par-
ticular class may have many ports, each one with it’s own lifeline. This is invaluable
in the case of modeling Agents since we need the facility to be able to represent an
Agent in a sequence diagram, where it plays more than one role concurrently. You
can see figure 2 for an example of this. The agent may be represented by a rectangle,
and have many ports, each with it’s own lifeline. In the case of the method lifting
paradiagm above the composite class may have many interfaces, each of which
chooses a selection of methods from a hierarchy of component classes used as the
source for method lifting. A sequence diagram where a composite classes that have
more than one port is shown below in figure 2.

Generally, communication between objects is done in UML in a sequence dia-
gram, or a communication diagram (used to be called a collaboration diagram in
UML 1.x). They are semantically similar although a sequence diagram can generally
be made to contain additional information. A sequence diagram is generally defined
across the page by a series of rectangles, each of which represents a class. Each of
these rectangles has a dotted line running vertically down the page. These dotted
lines are known as lifelines. As you go down the page, time passes as messages flow
between objects.

4 D.S. Dillon, T.S. Dillon, and E. Chang

A sequence diagram where composite classes have more than one port is shown
below in figure 2.

Fig. 2. Sequence diagram giving an example of a composite class with ports

In terms of previous work done using ports to represent an Agent/Class playing
different roles Hanish & Dillon8 have previously used a similar and related approach.

We now proceed to an illustrative example involving a set of Agents, one of which
(Agreement Agent) plays two roles concurrently represented by P1 and P2. Depend-
ing on which role the agent is acting in when it sends/receives messages will the
sequence diagram show arrows to/from a particular lifeline for the agent. The corre-
sponding sequence diagram of a rental car being returned to a depot (for a car rental
system) and payment being done by the customer is shown below.

If we follow the sequence across and down the page, we note a number of points.
Firstly, P1 (or port 1) represents the :Agreement agent in it’s role to establish status.
P2 represents the :Agreement agent in it’s role to perform transactions. Note that
each port has it’s own lifeline. If there are two ports, this signifies two roles that are
played by the agent from which the ports come. Initially, the request is made to return
a car. Secondly, the Agreement agent checks that the car is fine, and receives a mes-
sage back that this is so. The same agent then performs a transaction to request the
money owing on the car and the customer agent pays the money. Note that the
Agreement agent plays two different roles here. Firstly, the role to check the status of
the car, and secondly to perform the transaction. Then, the Agreement agent sets the
status of the car to “free”, and receives a message back from the Vehicle agent that
the car status is “free”. Again, the Agreement agent is acting in its role to compute
status of the car. The Agreement agent makes a request to the Customer agent to set it
to free. The Customer agent sets the status to free and returns the message to the

 Using UML 2.1 to Model Multi-agent Systems 5

Fig. 3. Sequence Diagram illustrating Sociability of Agents

Agreement agent that the Customer is free. Finally, the Agreement agent sends a
message to the Manager agent that the car is returned, and the Manager agent sends a
message that the car is returned to the Employee.

All the interaction between different Agents is shown on this sequence diagram.
Importantly, an agent (Agreement) is shown playing two different roles on the same
sequence diagram (Status and Transaction) in the same timeframe.

5.2 Goal-Driven

Being goal driven is a feature of many different agents. In order to consider what this
means we can reexamine the concept of search space. Forward-chaining begins with data
which drives the reasoning toward goals. Backward-chaining goes backwards decompos-
ing goals into subgoals and then checking to see if any of them is true. If so, the ultimate
goal is considered to be true. If not, then the process of decomposition is continued.

Most traditional software is not goal driven as such, but is a black box. That is,
specific combinations of inputs lead to specific outputs. The fact that an agent has an
overriding goal, regardless of the specifics of it’s processing, endows it with many
other features. Specifically, it will be pro-active. ie. even if there are no events

6 D.S. Dillon, T.S. Dillon, and E. Chang

Fig. 4. Definition of <<Agent>> stereotype

generated by human users that trigger the agent, it will take actions on it’s own to try
and meet it’s goals. It will also be intelligent in trying to make use of it’s enviroment.
For example, if the goal of the agent is to find certain data, it may migrate to another
site once it has exhausted all possibilities at the current site. The decision to migrate
may come from within the agent, rather than being triggered by an external event.

In this case, we use the composite structure diagram, and extend it by using a
stereotype in order to define the constructs necessary to define the goal-driven aspect
of an Agent.

The basic definition for a composite structure diagram in UML 2.1 is as follows.4
“A composite structure diagram is a diagram that shows the internal structure of a

classifier, including its interaction points to other parts of the system. It shows the
configuration and relationship of parts, that together, perform the behavior of the
containing classifier.

Class elements have been described in great detail in the section on class diagrams.
This section describes the way classes can be displayed as composite elements expos-
ing interfaces and containing ports and parts.”

Below (in figure 4) is contained the definition of the <<Agent>> stereotype based
on the composite structure . diagram. From the definition it must have a name, at least
a Manager part which controls the efforts of the Agent to achieve a goal, and at least
one port, which relates to it’s playing a role.

Having seen the definition of an <<Agent>> stereotype we can proceed to an ex-
ample to realize it’s usage. In the case of the Agreement agent in the Car Rental sys-
tem, we can model the goal driven aspect of the agent by a Composite Structure Dia-
gram with Parts, and Ports. Each part represents a distinct area of processing within
the agent. Each port represents a different role played by the agent. The diagram en-
capsulating this information is shown in figure 5.

 Using UML 2.1 to Model Multi-agent Systems 7

Fig. 5. Composite Structure Diagram representing Goal Driven characteristic of Agent

Note that the same two ports that were present in the sequence diagram are also pre-
sent here. Each of the ports is a construct which enables the Agent to interact with the
environment and with other Agents. For example, if the goal of the Agent is to close
out processing with respect to a specific Rental Agreement, then the Agent will have
to consult the Goal Driven part of the Agent to decide to check the car and the cus-
tomer processing part of the Agent to finalize return and payment, and the goal driven
part itself to see that the necessary checklist of items have been finalized for the return
of the car.

6 Conclusion

This paper has examined the use of UML 2.1 to model Multi-Agent Systems. In par-
ticular, we have examined and illustrated the Agent characteristics of being Sociable
and also Goal-Driven. Specifically, in order to illustrate the fact that Agents are so-
ciable we used a sequence diagram with ports. In order to illustrate the fact that
Agents are goal-driven we used a composite structure diagram where the Agent is
modeled with ports, which is new in UML 2. The use of ports is central where each
port represents the Agent playing a different role.

Future work may include the modeling of Agents to illustrate other characteristics
of an Agent discussed in section 3.

Acknowledgement. The authors would like to acknowledge the invaluable assistance
and suggestions of Maja Hadzic as we authored this paper.

8 D.S. Dillon, T.S. Dillon, and E. Chang

References

1. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons, Chichester
(2002)

2. Hadzic, M.: Ontology-based Multi-agent Systems for Human Disease Knowledge Sharing.
DEBII, Curtin University of Technology (July 2006)

3. Gardner, W.: Human Computer Interaction for Web Application. DEBII, Curtin University
of Technology (August 2006)

4. PIlone, D.: UML 2.0 in a Nutshell. O’Reilly, Sebastopol (2005)
5. Bauer, Muller, Odell: Agent UML: A Formalism for Specifying Multiagent Interaction. In:

Ciancarini, P., Wooldridge, M. (eds.) Agent-Oriented Software Engineering. Held at the
22nd International Conference on Software Engineering (ISCE), pp. 91–103. Springer, Ber-
lin (2001)

6. Huhns,: Agent UML Notation for Multiagent System Design. Internet Computing 8(4), 63–
71 (2004)

7. OMG Group, OMG UML 2.1.2 Superstructure (02/11/2007)
8. Hanish, A.A., Dillon, T.S.: Object-oriented behaviour modelling for real-time design. In:

IEEE Computer Society 3rd International Workshop on Object-Oriented Real-Time De-
pendable Systems (WORDS 1997), Newport Beach, California (1997)

	Using UML 2.1 to Model Multi-agent Systems
	Introduction
	What Is an Agent ?
	Characteristics of an Agent2
	Scope
	Agent Characteristics Modelled
	Sociable
	Goal-Driven

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

