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Abstract. In this paper we applied multilabel classification algorithms to the
EUR-Lex database of legal documents of the European Union. On this docu-
ment collection, we studied three different multilabel classification problems, the
largest being the categorization into the EUROVOC concept hierarchy with al-
most 4000 classes. We evaluated three algorithms: (i) the binary relevance ap-
proach which independently trains one classifier per label; (ii) the multiclass
multilabel perceptron algorithm, which respects dependencies between the base
classifiers; and (iii) the multilabel pairwise perceptron algorithm, which trains
one classifier for each pair of labels. All algorithms use the simple but very ef-
ficient perceptron algorithm as the underlying classifier, which makes them very
suitable for large-scale multilabel classification problems. The main challenge we
had to face was that the almost 8,000,000 perceptrons that had to be trained in
the pairwise setting could no longer be stored in memory. We solve this prob-
lem by resorting to the dual representation of the perceptron, which makes the
pairwise approach feasible for problems of this size. The results on the EUR-Lex
database confirm the good predictive performance of the pairwise approach and
demonstrates the feasibility of this approach for large-scale tasks.

1 Introduction

The EUR-LEX text collection is a collection of documents about European Union law.
It contains many several different types of documents, including treaties, legislation,
case-law and legislative proposals, which are indexed according to several orthogonal
categorization schemes to allow for multiple search facilities. The most important cat-
egorization is provided by the EUROVOC descriptors, which is a topic hierarchy with
almost 4000 categories regarding different aspects of European law.

This document collection provides an excellent opportunity to study text classifica-
tion techniques for several reasons:

– it contains multiple classifications of the same documents, making it possible to
analyze the effects of different classification properties using the same underlying
reference data without resorting to artificial or manipulated classifications,

– the overwhelming number of produced documents make the legal domain a very
attractive field for employing supportive automated solutions and therefore a ma-
chine learning scenario in step with actual practice,
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– the documents are available in several European languages and are hence very in-
teresting e.g. for the wide field of multi- and cross-lingual text classification,

– and, finally, the data is freely accessible (at http://eur-lex.europa.eu/)

In this paper, we make a first step towards analyzing this database by applying mul-
tilabel classification techniques on three of its categorization schemes. The database is
a very challenging multilabel scenario due to the high number of possible labels (up to
4000), which, for example, exceeds the number of labels in the REUTERS databases
by one order of magnitude.

We evaluated three methods on this task:

– the conventional binary relevance approach (BR), which trains one binary classifier
per label

– the multilabel multiclass perceptron (MMP), which also trains one classifier per
label but does not treat them independently, instead it tries to minimize a ranking
loss function of the entire ensemble [3]

– the multilabel pairwise perceptron (MLPP), which trains one classifier for each pair
of classes [12]

Previous work on using these algorithms for text categorization [12] has shown that
the MLPP algorithm outperforms the other two algorithms, while being slightly more
expensive in training (by a factor that corresponds to the average number of labels for
each example). However, another key disadvantage of the MLPP algorithm is its need
for storing one classifier for each pair of classes. For the EUROVOC categorization,
this results in almost 8,000,000 perceptrons, which would make it impossible to solve
this task in main memory.

To solve this problem, we introduce and analyze a novel variant that addresses this
problem by representing the perceptron in its dual form, i.e. the perceptrons are for-
mulated as a combination of the documents that were used during training instead of
explicitly as a linear hyperplane. This reduces the dependence on the number of classes
and therefore allows the Dual MLPP algorithm to handle the tasks in the EUR-Lex
database.

We must note that in this work we do not solve the entire multilabel classification
problem, but, following [3], we only provide a ranking of all possible labels. There are
three reasons for this: (i) the MMP and the pairwise method naturally provide such a
ranking, (ii) the ranking allows to evaluate the performance differences on a finer scale,
and (iii) our key motivation is to study the scalability of these approaches which is
determined by the rankings. However, there are several methods for finding a delimiter
between relevant and irrelevant labels within a provided ranking of the labels, a good
overview can be found in [17]. For the pairwise approach, we have recently introduced
the idea of using an artificial label that encodes the boundary between relevant and
irrelevant labels for each example [2], which has also been successfully applied to the
REUTERS text categorization task [7].

The outline of the paper is as follows: We start with a presentation of the EUR-
Lex respository and the datasets that we derived from it (Section 2). Section 3 briefly
recapitulates the algorithms that we study, followed by the presentation of the dual
version of the MLPP classifier (section 4). In Section 5, we compare the computational
complexity of all approaches, and present the experimental results in Section 6.

http://eur-lex.europa.eu/
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Title and reference
Council Directive 91/250/EEC of 14 May 1991 on the legal protection of computer
programs

Classifications

EUROVOC descriptor
– data-processing law, computer piracy, copyright, software, approximation of

laws
Directory code

– 17.20.00.00 Law relating to undertakings / Intellectual property law
Subject matter

– Internal market, Industrial and commercial property

Text
COUNCIL DIRECTIVE of 14 May 1991 on the legal protection of computer programs
(91/250/EEC)

THE COUNCIL OF THE EUROPEAN COMMUNITIES,

Having regard to the Treaty establishing the European Economic Community and in
particular Article 100a thereof, . . .

Fig. 1. Excerpt of a EUR-Lex sample document with the CELEX ID 31991L0250. The original
document contains more meta-information. We trained our classifiers to predict the EUROVOC
descriptors, the directory code and the subject matters based on the text of the document.

2 The EUR-Lex Repository

The EUR-Lex/CELEX (Communitatis Europeae LEX) Site1 provides a freely accessi-
ble repository for European Union law texts. The documents include the official Journal
of the European Union. They are available in most of the languages of the EU. We re-
trieved the HTML versions with bibliographic notes recursively from all (non empty)
documents in the English version of the Directory of Community legislation in force2,
in total 19,596 documents. Only documents related to secondary law (in contrast to
primary law, the constitutional treaties of the European Union) and international agree-
ments are included. The legal form of the included acts are mostly decisions (8,917
documents), regulations (5,706), directives (1,898) and agreements (1,597).

The bibliographic notes of the documents contain information such as dates of effect,
authors, etc. and classifications. The classifications include the assignment to several
EUROVOC descriptors, directory codes and subject matters, hence all classifications
are multilabel ones. EUROVOC is a multilingual thesaurus providing a controlled vo-
cabulary3. Documents in the documentation systems of the EU are indexed using this
thesaurus.The directory codes are classes of the official classification hierarchy of the

1 http://eur-lex.europa.eu
2 http://eur-lex.europa.eu/en/legis/index.htm
3 http://europa.eu/eurovoc/

http://eur-lex.europa.eu
http://eur-lex.europa.eu/en/legis/index.htm
http://europa.eu/eurovoc/
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Directory of Community legislation in force. It contains 20 chapter headings with up to
four sub-division levels.

The high number of 3,993 different EUROVOC descriptors were identified in the
retrieved documents, each document is associated to 5.37 descriptors on average. In
contrast there are only 201 different subject matters appearing in the dataset, with a
mean of 2.23 labels per document, and 412 different directory codes, with a label set
size of on average 1.29.

Figure 1 shows an excerpt of a sample document with all information that has not
been used removed. The full document can be viewed at http://eur-lex.europa.eu/
LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:NOT. We extracted the text
body from the HTML documents, excluding HTML tags, bibliographic notes or other
additional information that could distort the results. The text was tokenized into lower
case, stop words were excluded, and the Porter stemmer algorithm was applied. In or-
der to perform cross validation, the instances were randomly distributed into ten folds.
The tokens were projected for each fold into the vector space model using the com-
mon TF-IDF term weighting.In order to reduce the memory requirements, of the ap-
prox. 200,000 resulting features we selected the first 5,000 ordered by their document
frequency.

3 Preliminaries

We represent an instance or object as a vector x̄ = (x1, . . . , xM ) in a feature space
X ⊆ RN . Each instance x̄i is assigned to a set of relevant labels Y i, a subset of the
K possible classes Y = {c1, . . . , cK}. For multilabel problems, the cardinality |Y i| of
the label sets is not restricted, whereas for binary problems |Y i| = 1. For the sake of
simplicity we use the following notation for the binary case: we define Y = {1, −1} as
the set of classes so that each object x̄i is assigned to a yi ∈ {1, −1} , Y i = {yi}.

3.1 Ranking Loss Functions

In order to evaluate the predicted ranking we use different ranking losses. The losses
are computed comparing the ranking with the true set of relevant classes, each of them
focusing on different aspects. For a given instance x̄, a relevant label set Y , a negative
label set Y = Y\Y and a given predicted ranking r : Y → {1 . . .K}, with r(c) return-
ing the position of class c in the ranking, the different loss functions are computed as
follows:

ISERR . The is-error loss determines whether r(c) < r(c′) for all relevant classes
c ∈ Y and all irrelevant classes c′ ∈ Y . It returns 0 for a completely correct, perfect
ranking, and 1 for an incorrect ranking, irrespective of ‘how wrong’ the ranking is.

ONEERR . The one error loss is 1 if the top class in the ranking is not a relevant
class, otherwise 0 if the top class is relevant, independently of the positions of the
remaining relevant classes.

RANKLOSS . The ranking loss returns the number of pairs of labels which are not
correctly ordered normalized by the total number of possible pairs. As ISERR, it is

http://eur-lex.europa.eu/
LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:NOT
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0 for a perfect ranking, but it additionally differentiates between different degrees
of errors.

E
def= {(c, c′) | r(c) > r(c′)} ⊆ Y × Y δRANKLOSS

def=
|E|

|Y ||Y | (1)

MARGIN . The margin loss returns the number of positions between the worst ranked
positive and the best ranked negative classes. This is directly related to the number
of wrongly ranked classes, i.e. the positive classes that are ordered below a negative
class, or vice versa. We denote this set by F .

F
def={c ∈ Y | r(c) > r(c′), c′ ∈ Y} ∪ {c′ ∈ Y | r(c) > r(c′), c ∈ Y} (2)

δMARGIN
def= max(0, max{r(c) | c ∈ Y} − min{r(c′) | c′ /∈ Y}) (3)

AVGP . Average Precision is commonly used in Information Retrieval and computes
for each relevant label the percentage of relevant labels among all labels that are
ranked before it, and averages these percentages over all relevant labels. In order to
bring this loss in line with the others so that an optimal ranking is 0, we revert the
measure.

δAVGP
def= 1 − 1

Y

∑

c∈Y

|{c∗ ∈ Y | r(c∗) ≤ r(c)}|
r(c)

. (4)

3.2 Perceptrons

We use the simple but fast perceptrons as base classifiers [16]. As Support Vector
Machines (SVM), their decision function describes a hyperplane that divides the N -
dimensional space into two halves corresponding to positive and negative examples.
We use a version that works without learning rate and threshold:

o′(x̄) = sgn(x̄ · w̄) (5)

with the internal weight vector w̄ and sgn(t) = 1 for t ≥ 0 and −1 otherwise. If
there exists a separating hyperplane between the two set of points, i.e. they are linearly
separable, the following update rule provably finds it (cf., e.g., [1]).

αi = (yi − o′(x̄i)) w̄i+1 = w̄i + αix̄i (6)

It is important to see that the final weight vector can also be represented as linear com-
bination of the training examples:

w̄ =
M∑

i=1

αix̄i o′(x̄) = sgn(
M∑

i=1

αi · x̄ix̄) (7)

assuming M to be the number of seen training examples and αi ∈ {−1, 0, 1}. The per-
ceptron can hence be coded implicitly as a vector of instance weights α=(α1, . . . , αM )
instead of explicitly as a vector of feature weights. This representation is denominated
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Require: Training example pair (x̄, Y), perceptrons w̄1, . . . , w̄K

1: calculate x̄w̄1, . . . , x̄w̄K , loss δ
2: if δ > 0 then � only if ranking is not perfect
3: calculate error sets E, F
4: for each c ∈ F do τc ← 0, σ ← 0 � initialize τ ’s, σ

5: for each (c, c′) ∈ E do
6: p ← PENALTY(x̄w̄1, . . . , x̄w̄K)
7: τc ← τc + p � push up pos. classes
8: τc′ ← τc′ − p � push down neg. classes
9: σ ← σ + p � for normalization

10: for each c ∈ F do
11: w̄c ← w̄c + δ τc

σ
· x̄ � update perceptrons

12: return w̄1 . . . w̄K � return updated perceptrons

Fig. 2. Pseudocode of the training method of the MMP algorithm

the dual form and is crucial for developing the memory efficient variant in Section 4.
The main reason for choosing the perceptrons as our base classifier is because, con-
trary to SVMs, they can be trained efficiently in an incremental setting, which makes
them particularly well-suited for large-scale classification problems such as the Reuters-
RCV1 benchmark [10], without forfeiting too much accuracy though SVMs find the
maximum-margin hyperplane [5, 3, 18].

3.3 Binary Relevance Ranking

In the binary relevance (BR) or one-against-all (OAA) method, a multilabel training
set with K possible classes is decomposed into K binary training sets of the same
size that are then used to train K binary classifiers. So for each pair (x̄i,Y i) in the
original training set K different pairs of instances and binary class assignments (x̄i, yij )
with j = 1 . . .K are generated setting yij = 1 if cj ∈ Y i and yij = −1 otherwise.
Supposing we use perceptrons as base learners, K different o′j classifiers are trained in
order to determine the relevance of cj . In consequence, the combined prediction of the
binary relevance classifier for an instance x̄ would be the set {cj | o′j(x̄) = 1}. If, in
contrast, we desire a class ranking, we simply use the inner products and obtain a vector
ō(x̄) = (x̄w̄1, . . . , x̄w̄K). Ties are broken randomly to not favor any particular class.

3.4 Multiclass Multilabel Perceptrons

MMPs were proposed as an extension of the one-against-all algorithm with perceptrons
as base learners [3]. Just as in binary relevance, one perceptron is trained for each class,
and the prediction is calculated via the inner products. The difference lies in the update
method: while in the binary relevance method all perceptrons are trained independently
to return a value greater or smaller than zero, depending on the relevance of the classes
for a certain instance, MMPs are trained to produce a good ranking so that the relevant
classes are all ranked above the irrelevant classes. The perceptrons therefore cannot
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Require: Training example pair (x̄, Y),
perceptrons {w̄u,v | u < v, cu, cv ∈ Y}

1: for each (cu, cv) ∈ Y × Y do
2: if u < v then
3: w̄u,v ← TRAINPERCEPTRON(w̄u,v, (x̄, 1)) � train as positive example
4: else
5: w̄v,u ← TRAINPERCEPTRON(w̄v,u, (x̄, −1)) � train as negative example

6: return {w̄u,v | u < v, cu, cv ∈ Y} � updated perceptrons

Fig. 3. Pseudocode of the training method of the MLPP algorithm

be trained independently, considering that the target value for each perceptron depends
strongly on the values returned by the other perceptrons.

The pseudocode in Fig. 2 describes the MMP training algorithm. In summary, for
each new training example the MMP first computes the predicted ranking, and if there
is an error according to the chosen loss function δ (e.g. any of the losses in Sec. 3.1),
it computes the set of wrongly ordered class pairs in the ranking and applies to each
class in this set a penalty score according to a freely selectable function. We chose the
uniform update method, where each pair in E receives the same score [3]. Please refer
to [3] and [12] for a more detailed description of the algorithm.

3.5 Multilabel Pairwise Perceptrons

In the pairwise binarization method, one classifier is trained for each pair of classes, i.e.,
a problem with K different classes is decomposed into K(K−1)

2 smaller subproblems.
For each pair of classes (cu, cv), only examples belonging to either cu or cv are used to
train the corresponding classifier o′u,v . All other examples are ignored. In the multilabel
case, an example is added to the training set for classifier o′u,v if u is a relevant class
and v is an irrelevant class, i.e., (u, v) ∈ Y × Y (cf. Figure 4). We will typically assume
u < v, and training examples of class u will receive a training signal of +1, whereas
training examples of class v will be classified with −1. Figure 3 shows the training
algorithm in pseudocode. Of course MLPPs can also be trained incrementally.

In order to return a class ranking we use a simple voting strategy, known as max-
wins. Given a test instance, each perceptron delivers a prediction for one of its two
classes. This prediction is decoded into a vote for this particular class. After the evalua-
tion of all K(K−1)

2 perceptrons the classes are ordered according to their sum of votes.
Ties are broken randomly in our case.

Figure 5 shows a possible result of classifying the sample instance of Figure 4. Per-
ceptron o′1,5 predicts (correctly) the first class, consequently c1 receives one vote and
class c5 zero (denoted by o′1,5 = 1 in the first and o′5,1 = −1 in the last row). All 10
perceptrons (the values in the upper right corner can be deduced due to the symmetry
property of the perceptrons) are evaluated though only six are ‘qualified’ since they
were trained with the original example.

This may be disturbing at first sight since many ‘unqualified’ perceptrons are involved
in the voting process: o′1,2 is asked for instance though it cannot know anything relevant
in order to determine if x̄ belongs to c1 or c2 since it was neither trained on this example
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Fig. 4. MLPP training: training example x̄ belongs to Y = {c1, c2}, Y = {c3, c4, c5} are the
irrelevant classes, the arrows represent the trained perceptrons

o′
1,2 = 1 o′

2,1 = -1 o′
3,1 = -1 o′

4,1 = -1 o′
5,1 = -1

o′
1,3 = 1 o′

2,3 = 1 o′
3,2 = -1 o′

4,2 = -1 o′
5,2 = -1

o′
1,4 = 1 o′

2,4 = 1 o′
3,4 = 1 o′

4,3 = -1 o′
5,3 = -1

o′
1,5 = 1 o′

2,5 = 1 o′
3,5 = 1 o′

4,5 = 1 o′
5,4 = -1

v1 = 4 v2 = 3 v3 = 2 v4 = 1 v5 = 0

Fig. 5. MLPP voting: an example x̄ is classified by all 10 base perceptrons o′
u,v, u �= v , cu, cv ∈

Y . Note the redundancy given by o′
u,v = −o′

v,u. The last line counts the positive outcomes for
each class.

nor on other examples belonging simultaneously to both classes (or to none of both). In
the worst case the noisy votes concentrate on a single negative class, which would lead
to misclassifications. But note that any class can at most receive K − 1 votes, so that in
the extreme case when the qualified perceptrons all classify correctly and the unqualified
ones concentrate on a single class, a positive class would still receive at least K − |Y |
and a negative at most K − |Y | − 1 votes. Class c3 in Figure 5 is an example for this: It
receives all possible noisy votes but still loses against the positive classes c1 and c2.

The pairwise binarization method is often regarded as superior to binary relevance
because it profits from simpler decision boundaries in the subproblems [6, 8]. In the
case of an equal class distribution, the subproblems have 2

K times the original size
whereas binary relevance maintains the size. Typically, this goes hand in hand with
an increase of the space where a separating hyperplane can be found. Particularly in
the case of text classification the obtained benefit clearly exists. An evaluation of the
pairwise approach on the Reuters-RCV1 corpus [10], which contains over 100 classes
and 800,000 documents, showed a significant and substantial improvement over the
MMP method [12]. This encourages us to apply the pairwise decomposition to the
EUR-Lex database, with the main obstacle of the quadratic number of base classifier
in relationship to the number of classes. Since this problem can not be coped for the
present classifications in EUR-Lex, we propose to reformulate the MLPP algorithm in
the way described in the next section.

4 Dual Multilabel Pairwise Perceptrons

With an increasing number of classes the required memory by the MLPP algorithm
grows quadratically and even on modern computers with a large memory this problem
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becomes unsolvable for a high number of classes. For the EUROVOC classification,
the use of MLPP would mean maintaining approximately 8,000,000 perceptrons in
memory. In order to circumvent this obstacle we reformulate the MLPP ensemble of
perceptrons in dual form as we did with one single perceptron in Equation 7. In con-
trast to MLPP, the training examples are thus required and have to be kept in mem-
ory in addition to the associated weights, as a base perceptron is now represented as
w̄u,v =

∑M
i=1 αt

u,v x̄i. This makes an additional loop over the training examples in-
evitable every time a prediction is demanded. But fortunately it is not necessary to
recompute all x̄ix̄ for each base perceptron since we can reuse them by iterating over
the training examples in the outer loop, as can be seen in the following equations:

w̄1,2x̄ = α1
1,2x̄1x̄ + α2

1,2x̄2x̄ + . . . + αM
1,2x̄M x̄

w̄1,3x̄ = α1
1,3x̄1x̄ + α2

1,3x̄2x̄ + . . . + αM
1,3x̄M x̄

...

w̄1,K x̄ = α1
1,K x̄1x̄ + α2

1,K x̄2x̄ + . . . + αM
1,K x̄M x̄

w̄2,3x̄ = α1
2,3x̄1x̄ + α2

2,3x̄2x̄ + . . . + αM
2,3x̄M x̄

...

(8)

By advancing column by column it is not necessary to repeat the dot products compu-
tations, however it is necessary to store the intermediate values, as can also be seen in
the pseudocode of the training and prediction phases in Figures 6 and 7. Note also that
the algorithm preserves the property of being incrementally trainable. We denote this
variant of training the pairwise perceptrons the dual multilabel pairwise perceptrons
algorithm (DMLPP).

In addition to the savings in memory and run-time, analyzed in detail in Section 5, the
dual representation allows for using the kernel trick, i.e. to replace the dot product by a
kernel function, in order to be able to solve originally not linearly separable problems.
However, this is not necessary in our case since text problems are in general linearly
separable.

Note also that the pseudocode needs to be slightly adapted when the DMLPP algo-
rithm is trained in more than one epoch, i.e. the training set is presented to the learning
algorithm more than once. It is sufficient to modify the assignment in line 8 in Figure
6 to an additive update αt

u,v = αt
u,v + 1 for a revisited example x̄t. This setting is

particularly interesting for the dual variant since, when the training set is not too big,
memorizing the inner products can boost the subsequent epochs in a substantial way,
making the algorithm interesting even if the number of classes is small.

5 Computational Complexity

The notation used in this section is the following: K denotes the number of possible
classes, L the average number of relevant classes per instance in the training set, N the
number of attributes and N ′ the average number of attributes not zero (size of the sparse
representation of an instance), and M denotes the size of the training set. For each com-
plexity we will give an upper bound O in Landau notation. We will indicate the runtime
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Require: New training example pair (x̄M , Y),
training examples x̄1 . . . x̄M−1,
weights {αi

u,v | cu, cv ∈ Y, 0 < i < M}
1: for each x̄i ∈ x̄1 . . . x̄M−1 do
2: pi ← x̄i · x̄M

3: for each (cu, cv) ∈ Y × Y do
4: if αi

u,v �= 0 then
5: su,v ← su,v + αi

u,v · pt � note that su,v = −sv,u

6: for each (cu, cv) ∈ Y × Y do
7: if su,v < 0 then
8: αM

u,v ← 1 � note that αu,v = −αv,u

9: return {αM
u,v | (cu, cv) ∈ Y × Y} � return new weights

Fig. 6. Pseudocode of the training method of the DMLPP algorithm

Require: example x̄ for classification,
training examples x̄1 . . . x̄M−1,
weights {αi

u,v | cu, cv ∈ Y, 0 < i < M}
1: for each x̄i ∈ x̄1 . . . x̄M do
2: p ← x̄i · x̄
3: for each (cu, cv) ∈ Y i × Y t do
4: if αi

u,v �= 0 then
5: su,v ← su,v + αi

u,v · p

6: for each (cu, cv) ∈ Y × Y do
7: if u �= v ∨ su,v > 0 then
8: vu ← vu + 1
9: return voting v̄ = (v1, . . . , v|Y|) � return voting

Fig. 7. Pseudocode of the prediction phase of the DMLPP algorithm

complexity in terms of real value additions and multiplications ignoring operations that
have to be performed by all algorithms such as sorting or internal real value operations.
Additionally, we will present the complexities per instance as all algorithms are incre-
mentally trainable. We will also concentrate on the comparison between MLPP and the
implicit representation DMLPP.

The MLPP algorithm has to keep K(K−1)
2 perceptrons, each with N weights in

memory, hence we need O(K2N) memory. The DMLPP algorithm keeps the whole
training set in memory, and additionally requires for each training example x̄ access
to the weights of all class pairs Y × Y . Furthermore, it has to intermediately store the
resulting scores for each base perceptron during prediction, hence the complexity is
O(MLK + MN ′ + K2) = O(M(LK + N ′) + K2).4 We can see that MLPP is

4 Note that we do not estimate L as O(K) since both values are not of the same order of mag-
nitude in practice. For the same reason we distinguish between N and N ′ since particularly in
text classification both values are not linked: a text document often turns out to employ around
100 different words whereas the size of the vocabulary of a the whole corpus can easily reach
100,000 words (although this number is normally reduced by feature selection).
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Table 1. Computational complexity given in expected number of addition and multiplication
operations. K: #classes, L: avg. #labels per instance, M : #training examples, N : #attributes,
N ′: #attributes�= 0, δ̂: avg. Loss, δ̂per, δ̂ISERR ≤ 1, δ̂MARGIN < K.

training time testing time memory requirement
MMP, BR O(KN ′) O(KN ′) O(KN)
MLPP O(LKN ′) O(K2N ′) O(K2N)
DMLPP O(M(LK + N ′)) O(M(LK + N ′)) O(M(LK+N ′)+K2)

applicable especially if the number of classes is low and the number of examples high,
whereas DMLPP is suitable when the number of classes is high, however it does not
handle huge training sets very well.

For processing one training example, O(LK) dot products have to be computed by
MLPP, one for each associated perceptron. Assuming that a dot product computation
costs O(N ′), we obtain a complexity of O(LKN ′) per training example. Similarly,
the DMLPP spends M dot product computations. In addition the summation of the
scores costs O(LK) per training instance, leading to O(M(LK +N ′)) operations. It is
obvious that MLPP has a clear advantage over DMLPP in terms of training time, unless
K is of the order of magnitude of M or the model is trained over several epochs, as
already outlined in the previous Section 4.

During prediction the MLPP evaluates all perceptrons, leading to O(K2N ′) com-
putations. The dual variant again iterates over all training examples and associated
weights, hence the complexity is O(M(LK + N ′)). At this phase DMLPP benefits
from the linear dependence of the number of classes in contrast to the quadratic rela-
tionship of the MLPP. Roughly speaking the breaking point when DMLPP is faster in
prediction is approximately when the square of the number of classes is clearly greater
than the number of training documents. We can find a similar trade-off for the mem-
ory requirements with the difference that the factor between sparse and total number
of attributes becomes more important, leading earlier to the breaking point when the
sparseness is high. A compilation of the analysis can be found in Table 1, together with
the complexities of MMP and BR. A more detailed comparison between MMP and
MLPP can be found in [12].

In summary, it can be stated that the dual form of the MLPP balances the relationship
between training and prediction time by increasing training and decreasing prediction
costs, and especially benefits from a decreased prediction time and memory savings
when the number of classes is large. Thus, this technique addresses the main obstacle
to applying the pairwise approach to problems with a large number of labels.

6 Experiments

For the MMP algorithm we used the ISERR loss function and the uniform penalty func-
tion. This setting showed the best results in [3] on the RCV1 data set. The perceptrons
of the BR and MMP ensembles were initialized with random values. We performed
also tests with a multilabel variant of the multinomial Naive Bayes (MLNB) algorithm
in order to provide a baseline.
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6.1 Ranking Performance

The results for the four algorithms and the three different classifications of EUR-Lex are
presented in Table 2. MLPP results are omitted since they are equal to those of DMLPP.
The values for ISERR, ONEERR, RANKLOSS and AVGP are shown ×100% for better
readability, AVGP is also presented in the conventional way (with 100% as the optimal
value) and not as a loss function. The number of epochs indicates the number of times
that the online-learning algorithms were able to see the training instances. No results
are reported for the performance of DMLPP on EUROVOC for more than two epochs
due to time restrictions.

The first appreciable characteristic is that DMLPP dominates all other algorithms on
all three views of the EUR-Lex data, regardless of the number of epochs or losses. For
the directory code DMLPP achieve a result in epoch 2 that is still beyond the reach of
the other algorithms in epoch 10, except for MMP’s ISERR. Especially on the losses
that directly evaluate the ranking performance the improvement is quite pronounced
and the results are already unreachable after the first epoch.

It is also interesting to compare the performances of MMP and BR as they have still
the advantage of reduced computational costs and memory requirements in comparison
to the (dual) pairwise approach and could therefore be more applicable for very complex
data sets such as EUROVOC, which is certainly hard to tackle for DMLPP (cf. Section
6.2). Please refer to [13] for a more detailed comparison between MMP and BR.

The fact that in only approximately 4% of the cases a perfect classification is achieved
and in only approx. 60% the top class is correctly predicted (MMP) should not lead to an
underestimation of the performance of these algorithms. Considering that with almost
4000 possible classes and only 5.3 classes per example the probability of randomly
choosing a correct class is less than one percent, namely 0.13%, the performance is
indeed substantial.

6.2 Computational Costs

In order to allow a comparison independent from external factors such as logging ac-
tivities and the run-time environment, we ignored minor operations that have to be
performed by all algorithms, such as sorting or internal operations. An overview over
the amount of real value addition and multiplication computations is given in Table 3
(measured on the first cross validation split, trained for one epoch), together with the
CPU-times on an AMD Dual Core Opteron 2000 MHz as additional reference infor-
mation. We included in this table also the results for the non-dual MLPP, however no
values have been received for the EUROVOC problem due to the discussed memory
space problem: MLPP requires 539 MB memory for the subject matter and already
1825 MB for the directory code problem, whereas DMLPP consumes 203 MB and
resp. 217 MB It is remarkable that MMP uses similar MMP 151 MB resp. 165MB.
Also for EUROVOC the usage of 1143 MB is comparable to DMLPP’s 2246 MB.

We can observe a clear advantage of the non-pairwise approaches on the subject mat-
ter data especially for the prediction phase, however the training costs are in the same
order of magnitude. Between MLPP and DMLPP we can see an antisymmetric be-
havior: while MLPP requires only almost half of the amount of the DMLPP operations
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for training, DMLPP reduces the amount of prediction operations by a factor of more
than 4. For the directory code the rate for MMP and BR more than doubles in corre-
spondence with the increase in number of classes, additionally the MLPP testing time
substantially increases due to the quadratic dependency, while DMLPP profits from the
decrease in the average number of classes per instance. It even causes less computa-
tions in the training phase than MMP/BR. The reason for this is not only the reduced
maximum amount of weights per instance (cf. Section 5), but particularly the decreased
probability that a training example is relevant for a new training example (and conse-
quently that dot products and scores have to be computed) since it is less probable that
both class assignments match, i.e. that both examples have the same pair of positive and
negative classes. This becomes particularly clear if we observe the number of non-zero
weights and actually used weights during training for each new example. The classifier
for subject matter has on average 21 weights set per instance out of 443 (= L(K − L))
in the worst case (a ratio of 4.47%), and on average 5.1% of them are required when a
new training example arrives. For the directory code with a smaller fraction L/K 35.5
weights are stored (3.96%), of which only 1.11% are used when updating. This also
explains the relatively small number of operations for training on EUROVOC, since
from the 1,802 weights per instance (8.41%), only 0.55% are relevant to a new training
instance. In this context, regarding the disturbing ratio between real value operations
and CPU-time for training DMLPP on EUROVOC, we believe that this is caused by a
suboptimal storage structure and processing of the weights and we are therefore con-
fident that it is possible to reduce the distance to MMP in terms of actual consumed
CPU-time by improving the program code.

Note that MMP and BR compute the same amount of dot products, the computa-
tional costs only differ in the number of vector additions, i.e. perceptron updates. A
deeper analysis of the contrary behavior of both algorithms when the number of classes
increases can be found in [11].

7 Conclusions

In this paper, we introduced the EUR-Lex text collection as a promising test bed for
studies in text categorization. Among its many interesting characteristics (e.g., multi-
linguality), our main interest was the large number of categories, which is one order of
magnitude above other frequently studied text categorization benchmarks, such as the
Reuters-RCV1 collection.

On the EUROVOC classification task, a multilabel classification task with 4000 pos-
sible labels, the DMLPP algorithm, which decomposes the problem into training clas-
sifiers for each pair of classes, achieves an average precision rate of slightly more than
50%. Roughly speaking, this means that the (on average) five relevant labels of a docu-
ment will (again, on average) appear within the first 10 ranks in the relevancy ranking
of the 4,000 labels. This is a very encouraging result for a possible automated or semi-
automated real-world application for categorizing EU legal documents into EUROVOC
categories.

This result was only possible by finding an efficient solution for storing the approx.
8,000,000 binary classifiers that have to be trained by this pairwise approach. To this
end, we showed that a reformulation of the pairwise decomposition approach into a



64 E. Loza Mencı́a and J. Fürnkranz

dual form is capable of handling very complex problems and can therefore compete
with the approaches that use only one classifier per class. It was demonstrated that de-
composing the initial problem into smaller problems for each pair of classes achieves
higher prediction accuracy on the EUR-Lex data, since DMLPP substantially outper-
forms all other algorithms. This confirms previous results of the non-dual variant on the
large Reuters Corpus Volume 1 [12]. The dual form representation allows for handling a
much higher number of classes than the explicit representation, albeit with an increased
dependence on the training set size. Despite the improved ability to handle large prob-
lems, DMLPP is still less efficient than MMP, especially for the EUROVOC data with
4000 classes. However, in our opinion the results show that DMLPP is still compet-
itive for solving large-scale problems in practice, especially considering the trade-off
between runtime and prediction performance. Additionally, we are currently investigat-
ing hybrid variants to further reduce the computational complexity. The idea is to use a
different formulation in training than in the prediction phase depending on the specific
memory and runtime requirements of the task. In order e.g. to combine the advantage of
MLPP during training and DMLPP during predicting on the subject matter subproblem,
we could train the classifier as in the MLPP (with the difference of iterating over the
perceptrons first so that only one perceptron has to remain in memory) and than convert
it to the dual representation by means of the collected information during training the
perceptrons. The use of SVMs during training is also an interesting option.

For future research, on the one hand we see space for improvement for the MMP
and pairwise approach for instance by using a calibrated ranking approach [2]. The
basic idea of this algorithm is to introduce an artificial label which, for each example,
separates the relevant from irrelevant labels in order to return a set of classes instead
of only a ranking. On the other hand, we see possible improvements by exploiting
advancements in the perceptron algorithm and in the pairwise binarization, e.g. by using
one of the several variants of the perceptron algorithm that, similar to SVMs, try to
maximize the margin of the separating hyperplane in order to produce more accurate
models [4, 9], or by employing a voting technique that takes the prediction weights into
account such as the weighted voting technique by Price et al. [15]. Finally, we note that
we are currently working on an adaptation of the efficient voting technique introduced
in [14] to the multilabel case, of which a further significant reduction in classification
time can be expected.
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