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Abstract. We introduce the problem of learning the parameters of the
probabilistic database ProbLog. Given the observed success probabilities
of a set of queries, we compute the probabilities attached to facts that
have a low approximation error on the training examples as well as on un-
seen examples. Assuming Gaussian error terms on the observed success
probabilities, this naturally leads to a least squares optimization prob-
lem. Our approach, called LeProblLog, is able to learn both from queries
and from proofs and even from both simultaneously. This makes it flexi-
ble and allows faster training in domains where the proofs are available.
Experiments on real world data show the usefulness and effectiveness of
this least squares calibration of probabilistic databases.

1 Introduction

Many real-world application today depend on managing enormous volumes of
uncertain data. Such ”dirty” databases arise for example when integrating data
from various sources, when analyzing social, biological, and chemical networks,
within privacy-preserving data mining where only aggregated data is available,
and within pervasive computing. These are only some of the many real-world
applications showing the abundance of uncertain data and the need for prob-
abilistic databases, i.e., generalizations of traditional relational databases that
can deal with uncertainty.

Over the last years, the statistical relational learning community has devoted
a lot of attention to learning both the structure and parameters of probabilistic
logics, cf. [TI2], but so far seems to have devoted little attention to the learning of
probabilistic database formalisms. Probabilistic databases [3[4] associate prob-
abilities to facts, indicating the probabilities with which these facts hold. This
information is then used to define and compute the success probability of queries
or derived facts or tuples, which are defined using background knowledge (in the
form of predicate definitions). As one example, imagine a life scientist mining
a large network of biological entities in an interactive querying session. The bi-
ological network is a probabilistic graph, in which the edges are represented
by probabilistic facts about the biological entities [4]. Interesting questions can
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then be asked about the probability of the existence of a connection between
two nodes, or the most reliable path between them.

The key contribution of the present paper is the introduction of a novel setting
for learning the parameters of a probabilistic database from examples together
with their target probability. The task then is to find those parameters that
minimize the least squared error w.r.t. these examples. The examples themselves
can either be queries or proofs, where a proof is a conjunction of all facts in
the database needed to proof a query by SLD-resolution. This learning setting
is then incorporated in the probabilistic database ProbLog [4], though it can
easily be integrated in other probabilistic databases as well. This yields the
second key contribution of the paper, namely an effective learning algorithm
called LeProbLogEl. It performs gradient-based optimization utilizing advanced
data-structures for efficiently computing the gradient. This efficient computation
of the gradient allows us to estimate a ProbLog program from a large real-world
network of biological entities in our experiments, which can then be used for
example by a life scientist in interactive querying sessions.

We proceed as follows. After reviewing related work in Section 2 and ProbLog
in Section 3, we will formally introduce the parameter estimation problem for
probabilistic databases in Section 4. Section 5 will then present our least-squares
approach LeProbLog for solving it. Before concluding, we will present the results
of an extensive set of experiments on a real-world data set.

2 Related Work

The probabilistic database setting differs from the usual statistical relational
learning approach in that there is no underlying generative model. Indeed, con-
sider for instance the learning of stochastic logic programs (SLPs) [B], PRISM
programs [6], probabilistic relational models (PRMs) [7] or Bayesian logic pro-
grams (BLPs) [§]. In all these approaches, a generative model is assumed. For
SLPs (and stochastic context-free grammars) as well as for PRISM, the learning
procedure assumes that ground atoms for a single predicate (or in the grammar
case, sentences belonging to the language) are sampled and that the sum of the
probabilities of all different atoms obtainable in this way is at most 1. Recently,
Chen et al. [9] also proposed a learning setting similar to ours. The probabilities
associated with examples, however, are viewed as specifying the degree of being
sampled from some distribution specified by a generative model, which does not
hold in our case. Furthermore, they only provide an algorithm for learning from
probabilistic facts and not queries and proofs as we do. PRMs and BLPs are
relational extensions of Bayesian networks using entity relationship models or
logic programming respectively. In both frameworks, possible worlds, i.e. inter-
pretations, are sampled, and the sum of the probabilities of such worlds is 1.
Consider now learning in the probabilistic network sketched above. It is unclear
how different paths could be sampled and, clearly, the sum of the probabilities
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of such paths need not be equal to 1. These difficulties explain — in part — why so
far only few learning techniques for probabilistic databases have been developed.

The learning setting, however, is in line with the general theory of probabilistic
logic learning [I0] and inductive logic programming. From an inductive logic
programming perspective, a query corresponds to a formula that is entailed
by the database, and hence, queries correspond to well-known learning from
entailment setting. On the other hand, a proof does not only show what was
proven but also how this was realized. An analogy with a probabilistic context-
free grammar is useful here. One can learn the parameters of such a grammar
starting from sentences belonging to the grammar (learning from entailment
/ from queries), or alternatively, one could learn it from parse-trees (learning
from proofs), cf. the work on tree-bank grammars [ITJI2]. The former setting is
typically a lot harder than the later one because one query may have multiple
proofs, which introduces hidden parameters into the learning setting, which are
not present when learning from parse-trees. In the present paper, both types of
examples can be combined, and as far as the authors are aware, it is the first
time within relational learning and inductive logic programming that learning
from proofs is integrated with learning from entailment.

Within the probabilistic database community, parameter estimation has re-
ceived surprisingly few attention. Nottelmann and Fuhr [I3] consider learning
probabilistic Datalog rules in a similar setting where the underlying distribution
semantics is similar to ProbLog. However, their setting and approach also signif-
icantly differ from ours. First, a single probabilistic target predicate only is esti-
mated whereas we consider estimating the probabilities attached to definitions
of multiple predicates. Second, their approach employs the training probabilities
only. Specifically, they generate training examples labeled with 0/1 randomly
according to the observed probabilities whereas we use the observed probabili-
ties directly. Finally, whereas LeProbLog follows a principled gradient approach
employing (in principle) all combinations of proofs or explanations, they fol-
low a two-steps bootstrapping approach first estimating parameters as empirical
frequencies among matching rules and then selecting the subset of rules with
the lowest expected quadratic loss on an hold-out validation set. Gupta and
Sarawagi [I4] also consider a closely related learning setting but only extract
probabilistic facts from data.

Finally, the new setting and algorithm compromise a natural and interest-
ing addition to the existing learning algorithms for ProbLog. It is most closely
related to the theory compression setting of [I5]. There the task was to re-
move all but the k best facts from the database (that is to set the probability
of such facts to 0), which realizes an elementary form of theory revision. The
present task extends the compression setting in that parameters of all facts
can now be tuned starting from evidence. This realizes a more general form of
theory revision [16], albeit that only the parameters are changed and not the
structure.
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Fig. 1. (a) Example of a probabilistic graph, where edge labels indicate the probability
that the edge is part of the graph. (b) Binary Decision Diagram encoding the DNF
formula acV (ab A bc), corresponding to the two proofs of query path(a,c) in the graph.
An internal node labeled xy represents the Boolean variable for the edge between x
and y, solid/dashed edges correspond to values true/false.

3 ProblLog

As one example of a probabilistic database, we employ ProbLog, a simple prob-
abilistic extension of Prolog introduced in []. Alternatively, the database for-
malism of [3] or [I3] could be used. A ProbLog program consists — as Prolog —
of a set of definite clauses. However, in ProbLog every fact ¢; is labeled with
the probability p; that its instances c¢;6 are true. It is also assumed that the
probabilities of each ground instance ¢;0 (that is, each instance not containing
variables) are assumed to be mutually independent. In the following we repeat
the main ideas of ProbLog, see [] for a more detailed explanation.

For ease of illustration, we will consider probabilistic graphs encoded in ProbLog,
but the entire discussion carries over to arbitrary ProbLog programs. Figure
shows a small example that can be encoded in ProbLog as follows:

0.8 : edge(a, c). 0.7 : edge(a,b). 0.8 : edge(c,e).
0.6 : edge(b, c). 0.9 : edge(c,d). 0.5 : edge(e,d).

It is straightforward to sample subgraphs of a probabilistic graph by tossing
a biased coin for each edge. The corresponding ProbLog program T = {p; :
€1, ,Pn : Cn} therefore defines a probability distribution over subgraphs L C
Ly ={c1, -+ ,cn} in the following way:

P(LIT) = Hc-GLpi Hc-ELT\L(l —pi).

It is straightforward to add background knowledge in the form of Prolog clauses,
say, the definition of a path by combining edges. We can then ask for the prob-
ability that there exists e.g. a path between nodes a and ¢ in our probabilistic
graph, i.e. the probability that a randomly sampled subgraph contains the edge
from a to ¢, or the path from a to ¢ via b (or both of them). Formally, the
success probability Ps(q|T) of a query ¢ in a ProbLog program T is defined as

PidT) =3, PlgL) P(LIT), (1)
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where P(gq|L) = 1 if there exists a 6 such that L |= ¢, and P(q|L) = 0 otherwise.
In other words, the success probability of query ¢ corresponds to the probability
that the query ¢ is provable in a randomly sampled logic program.

As a consequence, the probability of a specific proof, also called explanation,
corresponds to that of sampling a logic program L that contains all the facts
needed in that explanation or proof. The explanation probability P,(q|T) is then
defined as the probability of the most likely explanation or proof of the query g:

Pm(Q|T) = MaXee B(q) P(6|T) = MaXec E(q) HC’_Eepi (2)

where E(q) is the set of all explanations for query ¢ [17].

For our example graph and query path(a,c), the set of all explanations contains
the edge from a to ¢ (with probability 0.8) as well as the path consisting of the
edges from a to b and from b to ¢ (with probability 0.7 - 0.6 = 0.42). Thus,
P, (path(a,c)|T) = 0.8.

Calculating the explanation probability can easily be realized using a best-first
search — guided by the probability of the current derivation — through standard
logic programming techniques based on the SLD-tree [I8]. On the other hand,
evaluating the success probability of ProbLog queries is computationally hard,
as different proofs of a query are not independent in general. As shown in [4],
the problem can be tackled by reducing the problem to that of computing the
probability of a monotone DNF formula, an NP-complete problem.

Ps(q|T) = P(\/eeE(q) /\aied(e) ai) ®)

This DNF formula describes each proof in E(g) as a conjunction of Boolean
variables, and the entire set as disjunction of these conjunctions. The formula
corresponding to our example query path(a,c) is acV (ab A be), where we use zy
as Boolean variable representing edge(x,y). To effectively calculate the proba-
bility of such a monotone DNF formula, we employ Binary Decision Diagrams
(BDDs) [19], an efficient graphical representation of a Boolean function over a
set of variables, see Section [ for more details.

As the size of the DNF formula grows with the number of proofs, its evalua-
tion can become expensive. For instance, when searching for paths in graphs or
networks, even in small networks with a few dozen edges there are easily O(10)
possible paths between two nodes. In [4], an approximation algorithm is pro-
posed that computes both an upper and a lower bound on the probability of a
query and searches for more explanations until the difference between the upper
and the lower bound becomes sufficiently small.

When learning parameters, we will have to repeatedly evaluate BDDs for all
examples. In this context, using a fixed number of proofs allows better con-
trol of the overall complexity. We therefore introduce the k-probability Py (¢|T),
which approximates the success probability by using the k best (that is, most
likely) explanations instead of all proofs when building the DNF formula used

in Equation
Pk(Q‘T) = P( \/GEEk(q) /\aiECZ(e) CM) (4)
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where Ei(q) = {e € E(q)|Ps(e) > Py(er)} with e; the kth element of E(q)
sorted by non-increasing probability. Setting k& = oo and & = 1 leads to the
success and the explanation probability respectively. Using & = 1 in parameter
learning has also been called Viterbi learning. Finding the k& best proofs can be
realized using a simple branch-and-bound approach (cf. also [20]).

To illustrate k-probability, we consider again our example graph, but this time
with query path(a,d). This query has four proofs, represented by the conjunctions
acAed, abNbeNed, acN\ce ANed and abAbcAceAed, with probabilities 0.72, 0.378,
0.32 and 0.168 respectively. As P; corresponds to the explanation probability P,
we obtain P (path(a,d)) = 0.72. For k = 2, overlap between the best two proofs
has to be taken into account: the second proof only adds information if the
first one is disconnected. As they share edge cd, this means that edge ac has to
be missing, leading to Px(path(a,d)) = P((ac A ed) V (mac A ab A be A cd)) =
0.72 + (1 — 0.8) - 0.378 = 0.7956. Similarly, we obtain Ps(path(a,d)) = 0.8276
and Py (path(a,d)) = 0.83096 for k > 4. For reasons of memory-efficiency, the
implementation used in our experiments below employs iterative deepening for
the calculation of lower and upper bounds as well as for Py with finite k.

4 Parameter Learning in Probabilistic Databases

When new data is added to a database, there is often uncertainty about the data.
Text extraction algorithms return the confidence, experimental data is averaged
over several runs and so on. Consider for instance populating a probabilistic
database of genes from MEDLINE B abstracts using off-the-shelves information
extraction tools. For example, we could extract that gene a is located in region
b and interacting with c. State-of-the art extraction tools, however, often ad-
ditionally provide a sound probability distribution over the possible outcomes.
Hence, we should deal with weighted examples such as 0.6:locatedIn(a,b) and
0.7:interacting(a,c) as already argued e.g. by Gupta and Sarawagi [14] and Chen
et al. [9]. The situation fits the general learning setting stated in [21]:

Given is a set of examples E, a probabilistic coverage relation P(e|D)
that denotes the probability that the database D covers the example
e € E, a theory T in a probabilistic logic, and a scoring function score.
The goal is to find parameters of T such that the score function yields
an optimal value.

Concretely instantiating this definition to ProbLog requires us to determine
what the examples will be, which probabilistic coverage relation shall be em-
ployed, and also determining the scoring function to be optimized. We shall
address each of these in turn.

In probabilistic inductive logic programming, examples can be available in
different forms. [2I] show how one can learn from entailment, from proofs and
from interpretations. When learning from entailment, examples are atoms or

2 http://medline.cos.com/
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clauses that are logically entailed by a theory, and in the case of a probabilistic
logic, assigned a non-zero probability value. Transforming this setting to ProbLog
leads to examples that are logical queries. When learning from proofs, examples
are proofs, which correspond to concrete explanations in the ProbLog setting.
Learning from interpretation in the ProbLog setting is less natural because it
requires interpretations containing all the facts that logically follow from the
theory. On the other hand, the former two settings can easily be incorporated
and actually integrated in ProbLog. The reason is that the logical form of the
example will be translated to the monotone DNF formula and it is this last form
that is employed by the learning algorithm anyway. The key difference between
learning from entailment and learning from proofs in ProbLog is that the DNF
formula is a conjunction when learning from proofs and a more general DNF
formula when learning from queries. So, using the query path(a,c) as example
results in ac V (ab A be), whereas the explanation edge(a,b),edge(b,c) results in
abAbc only. To the best of our knowledge, this is the first time that an integrated
learning from proofs / entailment setting is considered within (probabilistic)
inductive logic programming.

Before determining the scoring function and learning setting, it is important
to realize that there is also a major difference between probabilistic databases
and alternative probabilistic logics, such as PRISM [6] and SLPs [5], even though
the probabilistic database semantics seems closely related at first sight. To see
this, assume that we now want to estimate the parameters of a ProbLog program
starting from example queries, possibly together with their target probability.
Continuing our illustration, assume that we are given a number of path queries
together with their true probabilities. It is important to observe that the prob-
abilistic database model does not provide a generative model for sampling such
queries because the sum of the probabilities of all path queries is not equal
to 1 (and in general will be a lot higher). Therefore, we cannot directly apply
standard maximum likelihood techniques for parameter estimation based on the
EM algorithm as is usually done for statistical relational learning models [IJ.
The learning mechanisms developed for both PRISM and SLPs assume that
there is a generative model from which the examples (ground atoms for a single
predicate) can be sampled and the probability mass associated to the set of all
examples is maximum 1. This observation explains also why we consider a dif-
ferent setting for probabilistic databases, in which parameter learning is viewed
as a function optimization problem. The problem then is that we seek a set of
parameters that approximates the actual query probabilities as close as possible,
which in turn explains why rather than maximizing the likelihood of the data,
we shall minimize the least squared error between the target probabilities of the
examples and the probability of the model, but see below.

Finally, let us remark that the choice of probabilistic coverage relation is open,
and that therefore, within ProbLog we choose the k-probability as this allows
for maximal flexibility. By now we can instantiate the above definition to obtain
the problem-setting tackled in this paper:
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Definition 1 (Parameter Learning in Probabilistic Databases). Given
a set of training exzamples {qi,pi}M,, M > 0, where each q; € H is a query or
proof and p; is the k-probability of ¢;, find a function h : H — [0,1] with low
approximation error on the training examples as well as on unseen examples. H
comprises all parameter assignments for a given database T .

This framework allows to naturally combine learning from entailment and learn-
ing from proofs, two learning settings that so far have been considered separately.
In ProbLog, proofs correspond to conjunctions of probabilistic facts, and can be
seen as a conjunction of queries. Therefore, a learning algorithm can use examples
of both forms, (atomic) queries and proofs, at the same time. To realize learn-
ing from interpretations, probability estimates could be obtained using simple
counting. However, this is infeasible for domains where interpretations contain
high fractions of facts assigned value true. Finally, the error function that we
want to minimize is the mean squared error:

MSE(T MZK oy (PolailT) = Bi)” ()

It is easy to see that minimizing the squared error corresponds to finding
a maximum likelihood hypothesis, provided that each training example (g;, ;)
is disturbed by a Gaussian error p;, i.e. p; = p(q;) + e€;, with p(g;) the actual
probability of query ¢; and e; drawn independently from a zero-mean Gaussian.
See [22, Chapter 6.4] for a detailed derivation.

Gradient descent is a standard way of minimizing a given error function. The
tunable parameters are initialized randomly. Then, as long as the error did not
converge, the gradient of the error function is calculated, scaled by the learning
rate 1, and subtracted from the current parameters. In the following sections,
we derive the gradient of the MSE and show how it can be computed efficiently.

5 Gradient of the Mean Squared Error

Applying the sum and chain rule to Eq. (@) yields the partial derivative

OMSE(T 2 _\ 0 Py(q;|T
SEDZ 2 Y (R - p) O D) ()
Dj 1isM Y~ T 3] -
Part 2

Part 1 can be calculated by a ProbLog inference call computing (). It does not
depend on j and has to be calculated only once in every iteration of a gradient
descent algorithm. Part 2 can be calculated as following

aP qZ‘T Z 5]5 H Pz H ]- _pw) ’ (7)

9p;j SCLy €S ca€LT\S
Sk=qi T#j Tr#j
where d;5 := 11if ¢; € S and d;5 := —1if ¢; € Ly \ S. It is derived by first

deriving the gradient OP(S|T")/dp; for a fixed subset S C L of facts, which is
straight-forward, and then summing over all subsets S where ¢; can be proven.
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Algorithm 1. Evaluating the gradient of a query efficiently by traversing the
corresponding BDD, calculating partial sums, and adding only relevant ones
function GRADIENT(BDD b, fact to derive for n;)
(val, seen) = GRADIENTEVAL(root(b),n;)
If seen = 1 return val - o(a;) - (1 — o(ay))
Else return 0
function GRADIENTEVAL(node n, target node n;)
If n is the 1-terminal return (1,0)
If n is the 0-terminal return (0, 0)
Let h and [ be the high and low children of n
(val(h), seen(h)) = GRADIENTEVAL(h, n;)
(val(l), seen(l)) = GRADIENTEVAL(l, n;)
If n =n; return (val(h) — val(l),1)
Elself seen(h) = seen(l) return (o(an) - val(h) + (1 — o(axn)) - val(l), seen(h)))
Elself seen(h) = 1 return (o(ax) - val(h),1)
Elself seen(l) =1 return ((1 — o(an)) - val(l),1)

To ensure that all p; stay probabilities during gradient descent, we reparam-
eterize the search space and express each p; €]0,1[ in terms of the sigmoid
functior] pj = o(a;) :=1/(1+exp(—a;)) applied to a; € R. This technique has
been used for Bayesian networks and in particular for sigmoid belief networks
[23]. We derive the partial derivative Ps(g;|T)/0a; in the same way as (7)) but
we have to apply the chain rule one more time due to the o function

o(a;)- (1=ola)- Y &s [] olar) J] (1-o(an)).

SCLr cz €S ca€LT\S
Li=g; TH] TH#j

We also have to replace every p; in Eq. () by o(p;). Going over all subprograms
S in the last equation is infeasible. But there is an efficient algorithm to compute
Py (q;|T) relying on BDDs [4]. In the following section we update this towards the
gradient and introduce LeProbLog, the gradient descent algorithm for ProbLog.

6 LeProbLog

To compute the success probability P., for a query ¢ efficiently, De Raedt et al. [4]
collect all proofs and compactly represent them in a Binary Decision Diagram
(BDD) [19]. BDDs are one of the best understood data structures today. They
have been used to solve a wide variety of computer science problems. Given a
fixed variable ordering, a Boolean function f can be represented as a full Boolean
decision tree where each node on the ¢th level is labeled with the ith variable

3 The sigmoid function can induce plateaus which might slow down a gradient-based
search. However, it is unlikely that a plateau will spread out over several dimensions
and we did not observe such a behavior in our experiments. If it happens though,
one can take standard counter measures like simulated annealing or random restarts.
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Algorithm 2. LeProbLog, the algorithm takes a program without probabilities
as input, minimizes the MSE on the training set by gradient descent and returns
a ProbLog program with probabilities
Require: a ProbLog program without probabilities L

training set ¢;,p; 1 <j < M

learning rate n

k, the number of proofs used to generate the BDDs
Ensure: parameters p; 1 <i<n

initialize all a; randomly
while not converged do
Aa:=0
for 1<i< M do
find k£ best proofs and generate BDD; for ¢;
y:= 4 (Po(a|T) — Bi)
for 1 <j<ndo

Aaj = Aa; +vy - GP%(Z;\T) {call GRADIENT(BDD;, node;)}
a:=a—n-Aa
return 7', that is {o(a;) : ¢j | ¢; € L7} {A ProbLog program with probabilities}

and has two children called low and high. Leaves are labeled by the outcome
of f for the variable assignment corresponding to the path to the leaf, where
in each node labeled z, the branch to the low (high) child is taken if variable
x is assigned 0 (1). Starting from such a tree, one obtains a BDD by merging
isomorphic subgraphs and deleting redundant nodes until no further reduction
is possible. A node is redundant if the subgraphs rooted at its children are
isomorphic. Figure shows the BDD for the existence of a path between a
and c¢ in our earlier example.

The algorithm of De Raedt et al. [4] calculates the probability of a Boolean
formula by traversing the BDD bottom-up, in each node summing the probability
of the high and low child, weighted by the probability of the node’s variable being
assigned true and false respectively. We extended this to the computation of the
gradient (7). Both algorithms have a time and space complexity of O(number of
node in the BDD) when intermediate results are cached.

Let us first consider a full decision tree instead of a BDD. Each branch in
the tree represents a product ni - no - ... - n;, where the n; are the probabilities
associated to the corresponding variable assignment of nodes on the branch. The
gradient of such a branch b with respect to n; is gy = ni-ng-...nj_1-Njp1-...-7
if n; is true, and —g, if n; is false in b. As all branches in a full decision tree are
mutually exclusive, the gradient w.r.t. n; can be obtained by simply summing the
gradients of all branches ending in a leaf labeled 1. In BDDs however, isomorphic
sub-parts are merged, and obsolete parts are left out. This implies that some
paths from the root to the 1-terminal may not contain n;, therefore having a
gradient of 0. So, when calculating the gradient on the BDD, we have to keep
track of whether n; appeared on a path or not. Given that the variable order is
the same on all paths, we can easily propagate this information in our bottom-
up algorithm. This is exactly what is described in Algorithm [l Specifically,
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GRADIENTEVAL(n,n;) calculates the gradient w.r.t. n; in the sub-BDD rooted
at n. It returns two values: the gradient on the sub-BDD and a Boolean indicating
whether or not the target node n; appears in the sub-BDD. When at some node
n the indicator values for the two children differ, we know that n; does not
appear above the current node, and we can drop the partial result from the child
with indicator 0. The indicator variable is also used on the top level: GRADIENT
returns the value calculated by the bottom-up algorithm if n; occurred in the
BDD and 0 otherwise.

LeProbLog combines the BDD-based gradient calculation with a standard
gradient descent search. Starting from parameters a = aq, ..., a, initialized ran-
domly, the gradient Aa = Aay, ..., Aa, is calculated, parameters are updated
by subtracting the gradient, and updating is repeated until convergence. When
using the k-probability with finite k, the set of k best proofs may change due to
parameter updates. After each update, we therefore recompute the set of proofs
and the corresponding BDD. Algorithm [2 shows the pseudocode of LeProbLog.

7 Experiments

We set up experiments to investigate the following questions:

Q1 Does our approach reduce the mean squared error on training and test data?
Q2 Is our approach able to recover the original parameters?

Answering these first questions will serve as a sanity check for the algorithm and
our implementation.

Q3 Is it necessary to update the set of k best proofs in each iteration?

As building BDDs for all examples is expensive, building BDDs once and using
them during the entire learning process can save significant amounts of resources
and time. We are therefore interested in the effects this strategy has on the
results.

Q4 Can we obtain good results approximating P, by Py for finite (small) k?

Given that using BDDs to calculate P, is infeasible for huge sets of proofs,
as they occur in our application, where we easily get hundreds of thousands of
proofs, we are interested in fast, reliable approximations.

Q5 Do the results improve when parts of the training examples are given as
proof?

Here we are interested in exploring the effects of providing more information in
the form of proofs, which is one of the main distinguishing features of LeProbLog.

To answer these questions, we extracted graphs around both Alzheimer dis-
ease and asthma from a collection of databases. For each disease, we obtained
a set of related genes by searching Entrez for human genes with the relevant
annotation (AD or asthma); corresponding phenotypes for the diseases are from
OMIM. Most of the other information comes from EntrezGene, String, UniProt,
HomoloGene, Gene Ontology, and OMIM databases. Weights were assigned to
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Fig.2. VM SEres for asthma and Alzheimer using the 5 best proofs (k = 5); when
the BDDs and proofs are not updated (left column); when they are updated every
iteration (right column) (Q2 and Q3)

edges as described in [24]. In the experiments below, we used a fixed number
of randomly chosen (Alzheimer disease or asthma) genes for graph extraction.
Subgraphs were extracted by taking all acyclic paths of no more than length 4,
with a probability of at least 0.01, between any given gene and the corresponding
phenotype. Some of the genes did not have any such paths to the phenotype and
are thus disconnected from the rest of the graph. The resulting graph around
Alzheimer contains 122 nodes and 259 edges, that around Asthma 127 nodes
and 241 edges. From these graphs we generated 3 sorts of training sets:

1. We sampled 500 random node pairs from the asthma and Alzheimer graph
and estimate the query probability for path(a,b) using Ps, the probability of
the 5 best proofs. These two sets are used to answer Q1, Q2, and Q3.

2. We sampled 200 random node pairs from the asthma graph and estimated
P (path(a,b)) using the lower bound of the approximative inference algo-
rithm [4] with interval width § = 0.01. This set is used to answer Q4.

3. We sampled 300 random node pairs and calculated P; for path(a,b), the
probability of the best path between a and b. We then build several sets
where different fractions of the examples where given as proof, the edges of
the best path, instead of the path(a,b) query, and used them to answer Q5.

To assess results, we use the root mean squared error on the test data /M S Eieqt,
and the mean absolute difference M ADg,qts between learned p; and original fact
probabilities pi°: M ADracts 1= n~t Z;l:l lpj — p§™"°|. We always sampled the
initial fact parameters uniformly in the interval [—0.5,0.5]. Applying the sigmoid
function yields probability values with mean 0.5 4+ 0.07. The datasets used, had
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Fig. 3. M ADsacts for asthma and Alzheimer using the 5 best proofs (k = 5); when the
BDDs and proofs are not updated (left column); when they are updated every iteration
(right column) (Q2 and Q3)

fact probabilities in this range and we therefore got lower initial errors than by
completely random initialization. In general, one can utilize prior knowledge to
initialize the parameters. We perform 10-fold crossvalidation in all experiments.
The learning rate n was always set to the number of training examples. LeP-
robLog was implemented in Prolog (Yap-5.1.3) using CUDD for BDD operations.

Q1, Q2: Sanity Check. We attach probabilities to queries in the training set
based on the best & = 5 proofs. The same approximation is used in the gradient
descent algorithm, where the set of proofs to build the BDD is determined anew
in every iteration as stated in Algorithm 2l We repeated the experiment using a
total of 100, 300, and 500 examples, which we each split in ten folds for cross-
validation. We thus use 90, 270, and 450 training examples. The more training
examples are used, the more time each iteration takes. In the same amount of
time, the algorithm therefore performs less iterations when using more training
examples. The right column of Figure [2 shows the evolvement of the root mean
squared error on the test data during learning. The gradient descent algorithm
reduces the MSE on both training and test data, with significant differences in
all cases (two-tailed t-test, & = 0.05). These results affirmatively answer Q1.

The M ADyg,ts error is reduced as can be seen in the right column of Figure Bl
Again, all differences are significant (two-tailed t-test, & = 0.05). Using more
training examples results in faster error reduction. This answers Q2 affirmatively.
It should be noted however that in other domains, especially with limited or noisy
training examples, minimizing the MSE might not reduce M A Dy, s, as the MSE
is a non-convex non-concave function with local minima.
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Fig. 4. M ADjacts and VM S Erest after 50 iterations for different k& (number of best
proofs used) on the asthma graph where training examples carry Pso probabilities (Q4)

Q3: Error made when the best proofs are not updated. We repeated
the same series of experiments, but without updating the set of proofs used for
constructing the BDDs. The evolvement of \/M S Ere as well as of M ADgpacts
is plotted in the left column of Figures 2] and [3 respectively.

The plots for the asthma graph are hardly distinguishable and there is indeed
no significant difference (two-tailed t-test, o = 0.05). However, the runtime de-
creases by orders of magnitude, since searching for proofs and building BDDs are
expensive operations which had to be done only once in the current experiments.
Not updating the BDDs gave a speedup of 10 for the Alzheimer graph. For the
Alzheimer graph there is no significant difference for the MSFE}qq (two-tailed
t-test, & = 0.05), but M ADxgacs is reduced a little slower (in terms of iterations)
when the BDDs are kept constant. However, in terms of time this is not the
case. These results indicate that BDDs can safely be kept fixed during learning
in this domain which affirmatively answers Q3.

Q4: Less proofs, more speed, and still the right results?. In the next
experiment, we studied the influence of the number k of best proofs used dur-
ing learning on the results. We consider the asthma graph with the second
dataset, where training example probabilities are lower bounds obtained from
the approximation algorithm with interval width 0.01. During learning, Py is
employed to approximate probabilities.

We ran LeProbLog on this dataset and used different values of k between
10 and 5000. We thus aim at learning parameters using an underestimate of
the true function, as k best proofs may ignore a potentially large number of
proofs used originally. Figure @] shows the results for this experiment after 50
iterations of gradient descent. As can be seen, the average absolute error per
fact (M ADgaets) goes down slightly with higher k. The difference is statistically
significant for £ = 10 and k£ = 100 (two-tailed t-test, « = 0.05), but using more
than 200 proofs has no significant influence on the error. The MSE also decreases
significantly (two-tailed t-test, @« = 0.05) comparing the values for k¥ = 10 and
k = 200, but using more proofs has no significant influence. It takes more time
to search for more proofs and to build the corresponding BDDs. These results
indicate that using only 100 proofs is a sufficient approximation in this domain
and affirmatively answer Q4.
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Fig. 5. MADs,ts and /M SEres after 40 iterations on the asthma graph when dif-
ferent fractions of the data are given as proof (Q5)

Q5: Learning from Proofs and Queries. To investigate the effect of using both
proofs and queries as examples, we compute the best proof and its probability for
300 examples per graph. For each example, we either use the query or the best proof,
both with the probability of the best proof. Learning uses k = 1. We use proofs for
0,50, ...,300 examples and queries for the remaining ones, and perform stratified
10-fold crossvalidation, that is the ratio of examples given as queries and as proofs
was the same in every fold. We updated BDDs in every iteration. Figure[5] shows
the results of this experiment. The curve on the left side indicates that the error
per fact (M ADgacts) goes down faster in terms of iterations when increasing the
fraction of proofs. Furthermore, the plot on the right side shows that the root MSE
on the test set decreases. These results answer Q5 affirmatively.

8 Conclusions

We have introduced an approach to learning the parameters of the probabilis-
tic database ProbLog and successfully shown it at work on a real biological
application. Interesting directions for future research include conjugate gradient
techniques and regularization-based cost functions. Those enable domain experts
to successively refine probabilities of a database by stating training examples.
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