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Abstract. IT-operational risk management consists of identifying, as-
sessing, monitoring and mitigating the adverse risks of loss resulting
from hardware and software system failures. We present a case study in
IT-operational risk measurement in the context of a network of Private
Branch eXchanges (PBXs). The approach relies on preprocessing and
data mining tasks for the extraction of sequential patterns and their ex-
ploitation in the definition of a measure called ezpected risk.
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1 Introduction

According to the International Convergence of Capital Measurement and Capi-
tal Standards, known as Basel II [B], operational risk is “the risk of loss resulting
from inadequate or failed internal processes, people and systems, or from ex-
ternal events”. In the specific event of business disruption and system failures
(e.g., hardware and software failures), the term Information-Technology (IT)
operational risk is adopted.

Operational risk management consists of identifying, assessing, monitoring
and mitigating the most potentially adverse risks [247]. On the basis of the risk
management evaluation of an organization, the board of directors, regulations,
shareholders, or the highly competitive market may require the organization to
revise its internal processes, to set aside capital, to subscribe insurance policies,
or to make investments in order to cover the residual risk.

Risk identification and assessment is conducted at the level of business units
or processes by self-assessment against a checklist of potential vulnerabilities, or
by collecting a set of statistics or metrics called risk indicators, or — by increasing
the sophistication level — by formal risk quantification against measures of the
distributions of frequency and impact of losses. In this sense, the risk of an event
is formally defined as the “probability of the event” x “loss due to the event”.

Risk monitoring and mitigation consists of regularly monitoring operational
loss events, providing early warning indicators of an increased risk of future
losses, and promptly mitigating the risk by reducing the exposure to, or the
frequency and/or the impact of loss events.
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The literature on operational, financial and market risk assessment accounts
for contributions from statistics and simulation. Statistical models are based on
the characterization of loss distributions or, at least, of certain parameters such
as the expected loss and the tail loss. High frequency low impact risks (such as
transaction processing errors) are modelled by the expected loss and the standard
deviation of loss. Risk mitigation consists of acting on the organization processes,
infrastructure and personnel. Low frequency high impact risks (such as frauds
or earthquakes) are modelled by the tail of the loss distribution. Risk mitigation
consists of setting aside capital or to subscribe an insurance. Existing statistical
approaches consider mainly the low frequency high impact risks, such as in
the approaches of Value at Risk [8], coherent measures [3], and extreme value
theory [9]. Bayesian Networks have been adopted [2, Chapter 14] [6] as a powerful
tool to cope with shortage of data (as in rare events), to integrate qualitative
prior knowledge (such as expert opinions), and to make what-if scenario analyses.

In this paper, we concentrate on the high frequency low impact class of risk by
reporting a case study in IT-operational risk in the context of a network of Pri-
vate Branch eXchanges (PBX). We adopt sequential pattern mining on weighted
sequences for the purpose of defining and validating the notion of expected risk
as a predictive measure of the risk in managing the network of PBX’s. We report
the problems found and the solutions adopted both in the data preprocessing
task and in the sequential pattern extraction and deployment task. To the best
of our knowledge, this is the first paper reporting the implementation of a KDD
process in the IT-operational risk context.

2 Case Study Specification

2.1 Monitoring a Network of PBX’s

We introduce a case study concerning the management of a network of PBX’s
by a Communication Service Provider (CSP). The customers of the CSP are
small-medium enterprisers requiring both voice and data lines at their premises
at different contractually agreed quality of services. The customers externalize
to the CSP the maintenance of the PBX’s and the actual management of the
communication services. When a malfunctioning occurs, customers refer to the
CSP call center, which can act remotely on the PBX, e.g., to reboot the system.
If the problem is not recoverable remotely, as in the case of hardware failure, a
technician is sent on-site. Both call center contacts and technician reports are
logged in the CSP customer relationship management database.

A PBX is doubly redundant, i.e., it actually consists of two independent
communication apparatuses and a self-monitoring software. Automatic alarms
produced by the equipment are recorded in the PBX system log. Call center
operators can access the system log to control the status of the PBX. Also, a
centralized monitoring software collects on a regular basis system logs from all
the installed PBX’s.

Among the operational risk events, PBX malfunctioning may have different
impact on the CSP. At one extreme, the call center operator can immediately
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Table 1. [TECH-DB] Log of technician on-site interventions

Attribute Description

Date Problem opening date and time
PBX-ID Unique ID of the Private Branch eXchange
CType Customer line of business

Tech-ID  Unique ID of technician’s intervention
Severity Problem severity recorded after problem solution
Prob-ID  Problem type recorded after problem solution

solve the problem. At the other extreme, a technician intervention may be re-
quired, with the customer’s offices inoperative in the meantime, and the risk
that the agreed quality of service could not be guaranteed. To record the impact
of a malfunctioning, the severity level of the problem occurred is evaluated and
documented by the technician. In this context, our case study aims at:

— the Extraction, Transformation and Loading (ETL) into a merged database
of the available sources of data, including customer type information, call
center logs, technicians reports, and PBX system logs;

— the characterization of early warnings of problems in terms of typical se-
quences of alarms that lead to them;

— the exploitation of the sequential patterns extracted for automatic on-line
malfunctioning prediction and risk quantification.

2.2 Data Sources

Data has been provided by a leading regional CSP. The CSP’s customer re-
lationship management system records in the [TECH-DB] table the history of
technician interventions at the customer premises. For each problem, at least the
following attributes of information are available.

The Date attribute consists of the problem opening date and time, defined as
the time the call center receives a customer call reporting the notice of a mal-
functioning. The PBX-ID is a unique identifier of the involved PBX. If a customer
has installed more than one PBX, this is determined by the call center operator
based on the customer description of the problem and the available configura-
tion of PBX’s installed at the customer premise. CType is the customer line of
business, accordingly to a CRM categorization including: banks, health care, in-
dustry, insurance and telecommunication businesses. The Tech-ID attribute is a
unique identifier of the technician intervention: during a same intervention one
or more problems may be tackled. Severity is a measure of the impact of the
problem. It is defined on a scale from 1 to 3 as follows:

& critical, service unavailable;
2 medium, intermittent service interruptions;
1 low level problem.

Finally, the Prob-ID attribute is a coding of the malfunctioning solved by the
technician. Two hundred problem descriptions are codified.
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Fig. 1. A hierarchy of problem types for PBX malfunctioning

Table 2. [ALARM-DB]| Log of PBX alarms

Attribute Description

PBX-ID Unique ID of the Private Branch eXchange
TestDate Date and time log was downloaded

Alarms Sequence of alarms raised since last log download

The second data source is the collection of logs generated by PBX’s. Logs
are downloaded into a centralized repository, called [ALARM-DB], on a regular
round-robin basis.

For a given PBX identifier PBX-ID and date-time of log download TestDate,
[ALARM-DB] stores the set of alarms raised by the PBX since the previous log
download. Sixteen distinct alarms are available in the data. Unfortunately, the
precise time an alarm is raised is not stored in the PBX log.

3 Preprocessing I'T-Operational Logs

PBX logs stored in the [ALARM-DB] table and technician’s reports stored in
the [TECH-DBJ table are not directly suitable as an input for sequential pattern
mining. In this section, we report two main issues with pre-processing those data



428 V. Grossi, A. Romei, and S. Ruggieri

in order to yield a database of sequences. The first issue is concerned with the
granularity level in the analysis of PBX problem types. The second one with
the problem of building the sequences of alarms related to a PBX problem.
Preprocessing has been automated as a collection of ETL data flows developed
using the data integration module of the Pentaho suite [I1]. A GUI written in
Java puts together the various data flows in a stand-alone application.

3.1 A Hierarchy of Problem Types

Since two hundred problem types it is too fine-grained detail, problem types
are organized in a three level hierarchy, which is partly shown in Figure [
The lowest level is the problem type. The highest level (EC1) consists of the
Basel II event categories for IT-operational risk: software, hardware, interface,
security and network communications. The middle level (EC2) is an intermediate
categorization left at the choice of the user during the preprocessing phase.
Every problem type readily falls in one of the five EC1 level members. How-
ever, the mapping cannot be automated for a new problem type, and then the
preprocessing GUI asks the user to provide the EC1 and EC2 levels for a pre-
viously unseen problem type. In the rest of this paper, we will concentrate our
attention at the level of EC1, but we point out that, if large volume of data is
available, the overall approach can be followed at finer levels of detail.

3.2 An Heuristics for Joining Alarm and Problem Logs

For a technician intervention, the sequence of alarms generated by the involved
PBX has to be reconstructed in order to relate a malfunctioning of the PBX with
the alarms raised by it. Unfortunately, the problem cannot be directly solved.
While a technician intervention records the timestamp it occurred, the alarm log
contains the timestamp an alarm is downloaded to the central repository, not
the timestamp the alarm is raised. Since alarm log collection may occur once
every a few days, this is an issue.

We adopt the following heuristics. Let Opening be the timestamp a problem
for a PBX is opened. This is available in the [TECH-DB] table. We leave the user
the choice to join the problem with the sequence of alarms collected in the time
interval [Opening-Diff1, Opening+ Diff2], where Diff1 and Diff2 are parameters
of the preprocessing procedure.

3.3 A Database of Sequences

The preprocessing of available input produced a database of 1899 sequences,
spanning over a period of four months, of the form:

Date: 22/02/2007 8.36

CType: Bank

PBX-ID: 90333

Prob-ID: Hardware

Severity: 2
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AlarmSequence:
{CARD}:19/02/2007 18:34:01;
{}:20/02/2007 18:12:53;
{PCM TIME SLOT}:21/02/2007 17:15:21

Date: 21/02/2007 16.54

CType: Health

PBX-ID: 91993

Prob-ID: Security

Severity: 2

AlarmSequence:
{DIGITAL TRUNK CARD,DKT SUBUNIT}:19/02/2007 17:56:47;
{POWER SUPPLY}:21/02/2007 09:10:07

The attributes Date, CType, PBX-ID and Severity are directly taken from
[TECH-DB]. Prob-1ID is obtained by lifting the problem description to its EC1
category in the hierarchy of Figure[Il Finally, the sequence of sets of alarms, la-
belled by the date each set is collected, is obtained by joining alarm and problem
logs. In the first sequence above, a CARD alarm is raised on 19/02/2007, then no
alarm on the next day, a PCM TIME SLOT alarm on the 21/02/2007, and finally a
malfunctioning is reported to the call center on 22/02/2007. As parameters for
the joining heuristics, we have set Diff1 to three months and Diff2 to one day.
Setting Diff! as large as possible is desirable, but it is important not to overlap
with the time interval of a past problem for the same PBX. Concerning Diff?2, it
should be set to the average period that alarms are collected into the centralized
repository. Assuming the period is one day, an alarm raised the same day of a
customer call could or could not be already processed by ETL flows at the time
of the call. Without any further information, and considering that such alarms
are the most valuable for prediction, we assume they have been processed.

4 Sequential Pattern Mining for Risk Assessment

4.1 Sequences and Sequential Patterns

Let us recall a few standard definitions [IT0]. Given a finite set Z of items, an
itemset T is a subset of Z. A sequence is an ordered list of itemsets (T1,...,Ty).
For brevity, we write (t1,...,t,) if for i = 1...n, T; = {t;}, i.e., all T;’s are
singletons. A sequence s; = (T1,...,T,,) is a sub-sequence of another sequence
s2 = (S1,...,Sm) (or sz is a super-sequence of s1), denoted as s; C so, if
there exists 1 < p; < ... < p, < m such that for7 =1...n, T; C §5,,. The
concatenation of two sequences s; and ss is denoted by s; - s2. A sequence
database D is a collection of sequences. The (relative) support (w.r.t. D) of a
sequence s is defined as the fraction of sequences in D which are sub-sequences
of s, ie., supp(s) = |{s’ € D | s’ C s}|/|D|. A sequential pattern is a sequence
SP = (Ty,...,T,) such that supp(SP) > &£, where £ is a fixed minimum support
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threshold. For notational purposes, it is convenient to label sequential patterns
with their support, and to differentiate them from sequences. Therefore, we write
the sequential pattern SP in the form Ty — Ty — ... T,[s], where s = supp(SP).
A sequence s € D supports SP if SP C s. A sequential pattern is maximal if
there is no other sequential pattern that is a super-sequence of it. We denote
by Max S the set of maximal sequential patterns in S. Restricting to maximal
sequential patterns alleviates the problem of dealing with an exponential number
of extracted patterns. Several algorithms have been proposed in the literature
to extract (maximal) sequential patterns [10].

4.2 Adapting Sequences and Sequential Patterns

For the problem under consideration, we will make use of a variant of sequential
pattern mining, where sequences and sequential patterns are weighted.

In our context, we fix the set of items Z to include alarms identifiers, problem
type items Prob-ID= (3 and business line items CType= «, where 3 is an EC1-
level problem type and « is the customer line of business. A sequence is now of
the form:

CType = o , AlarmSet; , ...AlarmSety , Prob-ID = [ [sev]

For an occurrence of a PBX problem recorded in the technician’s database,
a sequence models the temporal succession of alarms AlarmSet; raised by the
PBX. The heuristics described in Sect. is adopted in order to join a problem
occurrence with the succession of alarms related to it.

A sequence starts with CType = a, ends with Prob-ID = 3, and it is labelled
with the problem severity sev:

— Starting with CType = « is a work-around to differentiate the sequences
on the basis of the type of business of customers. This is motivated by the
requirement that risk management has to differentiate risk for line of busi-
ness or processes. Therefore, we are interested in modeling specific patterns
of problems due to the different usages of the PBX network by different
businesses.

— Similarly, ending the sequence with Prob-ID = (3 allows for isolating patterns
that lead to a specific problem from patterns that hold in general.

— Labelling the sequence with the problem severity is a weighting strategy,
based on the impact of the problem occurred. For a sequence s, we write
SEV (s) to denote its severity label.

As a result of the above definition of sequences, we are interested in extracting
from a database of sequences 78, which we call the training set, sequential
patterns S P of the form:

CType = @ — AlarmSet; — ...AlarmSet,, — Prob-ID = [supp,sev] (%)
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where:

— the severity label sev is (Xse7s,spcsSEV(s))/|{s € TS| SP C s}|, i.e., the
average severity of sequences in the training set supporting the sequential
pattern;

— the support label supp is supp(SP)/supp({CType = «, Prob-ID= f3)), i.e.,
the relative support of the sequential pattern w.r.t. the number of sequences
starting with CType = a and ending with Prob-ID = f.

Sequential patterns of the form (%) can be extracted by the following proce-
dure. First, split the sequence database into one database for each distinct pair
(CType = a, Prob-ID = (3); then run any sequential pattern extraction algorithm
from the literature on each sequence database and for a specified minimum sup-
port threshold; then remove extracted sequential patterns not including an item
Prob-ID as the last item; finally, calculate severity of a sequential pattern by
averaging severities of the sequences supporting it. Alternatively, multidimen-
sional [I2] or context-based [I3] approaches to sequential pattern mining could
be adapted.

4.3 Mean Risk

Consider an initial fragment s; = (CType= 1, AlarmSet; , ..., AlarmSety) of a
sequence. Assume for the moment that we do not or cannot exploit any sequential
pattern. How can we then define the risk that s is followed by Prob-ID = 7
Since the risk of an event is “probability of the event” x “loss due to the event”,
we approximate:

— the “probability of the event” as the ratio:
supp((CType = o, Prob-1D = [3))
supp({CType = «))

i.e., the confidence that a sequence in the training set starting with CType =
a will be followed by Prob-ID = (3;

— the “loss due to the event” as the average severity of sequences in the training
set starting with CType = a and ending with Prob-ID = j:

Pa,p =

)

EseTS, (CType=a,Prob-ID=p)Cs SEV(S)

laﬁ = |{s cTS | <CType = «,Prob-ID = ﬁ) C S}|

We define the mean risk that the initial fragment s; starting with CType = «
will end with Prob-ID = 3 as pa,g X la,g. If 51 does not start with CType = a,
i.e. @1 # «, then the mean risk is zero, as one could expect. Formally:

if (CType = ) C 51

«@ X lOé’
MRIsK(a, 3,s1) = {g 7 ’ otherwise.

Summary mean risk for a line of business w.r.t. all problem types is defined as
the sum of the risk for individual problem types:

SMRISK(a, 1) = X3¢ dom Prob-10) MRISK (a, 3, 51).
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YeeTs, (ctype=a) L SEV(5)
|[{s€TS | (CType=a)Cs}| "’
ability of any problem” x “average severity” for the line of business. Similarly,

we define the summary mean risk for a problem type w.r.t. all lines of business:

When a = a1, it can be rewritten as: 1 x namely “prob-

SMRISK(, s1) = MRISK (a1, 8, $1) = Xocdom(CType) MRISK (v, 3, 51).

The three definitions above extend to a set S of initial fragments by summing
up the individual risk of each element in S.

4.4 From Sequential Patterns to Expected Risk

Consider now a specific initial fragment s = (CType=Bank, CARD , CARD SUBUNIT,
DIGITAL TRUNK CARD) of a sequence. We would like to adopt the sequential
patterns extracted from the training set to the purpose of enhancing the notion
of mean risk to a notion called expected risk. Intuitively, we start by looking at
the sequential patterns supported by s (with the exclusion of the last item in
the sequential pattern — i.e., of the Prob-ID item). Assume that the set SP of
such sequential patterns consists of:

SPy CType=Bank — CARD SUBUNIT — Prob-ID=Software [0.4, 3]

SP; CType=Bank — CARD — Prob-ID=Hardware [0.2, 2]

SP, CType=Bank — CARD SUBUNIT — Prob-ID=Hardware [0.3, 3]

SP;3; CType=Bank — CARD — CARD SUBUNIT — Prob-ID=Hardware [0.1, 3]
SP4 CType=Bank — DIGITAL TRUNK CARD — Prob-ID=Hardware [0.2, 2]

For Prob-ID=Software, there is only one supported sequential pattern, namely
SPg. By recalling that the risk of an event is “probability of the event” x “loss
due to the event”, we set the expected risk (to have a problem with software) to
0.4x3=1.2.

Consider now Prob-ID=Hardware. First, we observe that SP; is a sub-sequence
of SP3, hence it is superseded by SP3, and similarly for SPs. Therefore, we restrict
to maximal sequential patterns in SP, namely to SP3 and SP4. We now define the
expected risk to have a hardware problem by averaging the severities of SP3 and
SP,4 based on their support, i.e., as (0.1 x3+0.2x2)/(0.1+0.2) = 0.7/0.3 = 2.33.
Notice that we scale the average severity by dividing by the sum of the supports
of the maximal sequential patterns. The motivation is twofold. On the one side,
two (maximal) sequential patterns may have some common supporting sequence,
hence the sum of their supports can be strictly greater than one. On the other side,
the set of maximal sequential patterns may not cover all possible sequences (rare
ones cannot be modeled by sequential patterns by definition), i.e., the sum of their
supports can be strictly lower than one.

Finally, let us consider Prob-ID=Interface. There is no sequential pattern
supported by s, at least for the fixed minimum support threshold. Therefore,
the reasoning followed so far cannot be applied. Intuitively, we fall in the case
that no sequential information is available, i.e., on the notion of mean risk, and
then we set the expected risk to the mean risk.

Let us introduce some notation. Let SP be the set of sequential patterns
extracted from the training set 7S. For a given initial fragment s; and problem
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type 3, we define the set of sequential patterns supported by s; and that are
maximal as:

M(s1,8) = Maz{SP € SP | SP C s; - (Prob-ID = 3)}.
The expected risk is then defined as:

ESPGM(sl,,B)SUpp(SP) x sev(SP) if M(sy,) # 0

ERISK(Q,IB, 51) = ZJSPE./\/I(51,,Go’)supp(S]D)
MRisk(q, (3, s1) otherwise.

The definition readily extends to a set S of initial fragments, to summaries for
line of business and problem type as follows:

ERIsK(w, 3, 5) = X, e sERISK (v, 3, $1)
SERISK(a, S) = YgcgomProb-10) ERISK (0, 3, S)
SERISK(/Ba S) = Eaedom(CType)ERISK(aa /67 S)

Notice that in the special case that there is no sequential pattern, i.e. SP = 0,
these definitions collapse to the ones for the mean risk.

One could consider removing non-maximal sequential patterns off-line when
sequential patterns are extracted, whilst now they are removed on-line when the
expected risk is calculated. Unfortunately, this approach does not lead to the
same results. In fact, consider an initial fragment s = (CType=Bank, ALARM;). If
non-maximal sequential patterns are removed off-line, then SP; above could not
be taken into consideration. Moreover, no maximal sequential pattern SP3-SP4
is supported by s. Summarizing, we have no sequential pattern to exploit in
defining the expected risk of s.

4.5 Actual Risk

Once an initial fragment completes to a full sequence s, i.e., it is terminated
by a problem type item Prob-ID = ( and labelled by severity SEV(s), it is
easy to calculate the involved risk. We define the actual risk of the sequence as
1 x SEV(s), and this value contributes only to problem type 3:

SEV (s if (CType = a,Prob-ID= () C s
ARISK(a, 6, 5) = {O ) otfler\Z/};se. g

The measure readily extends to sets of sequences, and to summaries for lines of
business and problem types as done for mean risk and expected risk.

5 Deploying Sequential Patterns

5.1 Application Scenario

Consider a set of sequential patterns extracted from a training set of past se-
quences. How can the notion of expected risk be turned into practice for risk
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Prob-ID = Network
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Fig. 3. Expected risk vs. actual risk: detail for Network problem type

assessment and mitigation? Of course, the analysis of the sequential patterns by
a domain expert might highlight previously unknown patterns of alarms leading
to malfunctioning with high average severity.

Besides this descriptive usage, we concentrate here on the deployment of ex-
tracted patterns in on-line risk assessment. Let us assume an application scenario
where a call center operator receives a call from a customer reporting a malfunc-
tioning. A ticket is open for dealing with the malfunctioning. At the time of
the call, the following information is known: the customer (line of business), the
involved PBX, the sequence of alarms of that PBX collected up to that time. In
other words, an initial fragment s; is available, as assumed in Section [£.4]

A decision support system can then exploit the notion of expected risk to
estimate the overall risk of the currently open tickets. This information is useful
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to assess the current level of risk for the various customer lines of business and
problem types. Operatively, it can help in determining the needed effort in terms
of required expertise for technician’s interventions, e.g., how many software and
hardware technicians should be alerted.

When the tickets are closed and the technician reports are available, the actual
risk can be calculated. The comparison between the expected risk and the actual
risk provides a measure of the accuracy of the notion of expected risk. Also, since
expected risk is a refinement of mean risk, it is worth evaluating the improvement
of accuracy of expected risk over mean risk. The next two subsections report
experimental results on those two accuracy issues.

In particular, the experimental results are obtained by partitioning the avail-
able database of sequences (see Section B3] into temporally separated training
set 78 and test set 7&. The split date-time was set to obtain about a 75%-25%
partitioningEl. Moreover, we set the minimum support threshold in the sequential
pattern extraction (see Section [d2)) to 5%.

5.2 Expected Risk vs Mean Risk vs Actual Risk

The overall expected risk for a business line « is represented as an histogram
chart with the distinct values § for problem type Prob-ID on the X-axis and the
value of ERISK(«, 3, TE) on the Y-axis. The distributions of the mean risk and
of the actual risk measures are represented in the same manner. The difference
area between the expected and the actual risk histograms measures the error of
adopting expected risk for estimating actual risk. More formally, the absolute
error is defined as:

Eﬂédom(Prob—ID)abs(ERISK(av ﬁv Tg) - AR‘ISK(av ﬁv Tg))

and the relative error is its ratio over X3¢ jomProb-10) ARISK(a, 3, 7E). Similar
definitions can be stated for the mean risk.

Figure 2] shows the histogram charts of mean, expected and actual risks
for CType=Bank, namely for the bank subnetwork of PBX’s. Apart from the
Interface problem type, the expected risk measure provides a much better es-
timation of actual risk than the mean risk. The relative errors for the various
business lines are summarized in the following table:

Relative Error
CType No. Seq. Actual Risk Mean Risk Expected Risk

Bank 51 98 19.5% 9.3%
Health 185 306 17.0% 9.4%
Industry 159 289 6.8% 4.9%
Insurance 68 127 47.5% 25.0%
TelCo 47 91 31.6% 16.8%

1 We observe that, in a more realistic scenario, the number of open tickets at a certain
time is typically low, especially if compared to closed ones, since problems are usually
solved within 48 hours time.
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Fig. 4. Expected risk vs. actual risk: summary for lines of business

As a general observation, the relative error of expected risk is near the half of
the error of the mean risk. FigureBlshows the histogram charts of mean, expected
and actual risks for Prob-ID=Network, namely for the problem types related to
the communication network of PBX’s, and for the various customer business
lines. Expected risk turns out to improve over mean risk for all business lines.
Now the difference area between expected and actual risk charts is obtained as:

Yaedom(CType)abs(ERISK (o, B, TE) — ARISK (v, 3, 7E)).
The relative errors for the various problem types are summarized next:

Relative Error
Prob-ID Actual Risk Mean Risk Expected Risk

Hardware 35 20.6% 27.3%
Interface 24 42.6% 69.0%
Network 374 16.1% 4.5%
Security 241 28.2% 11.0%
Software 237 14.5% 12.5%

For the problem types Hardware and Interface there is a degradation of
performances of expected risk over mean risk, whilst for the other problem types
there is a gain. Notice, however, that there is a very low actual risk for Hardware
and Interface, and hence a low number of sequences.

Consider now the summary measure SERISK(«, 7€), which provides for a
business line « the expected total risk w.r.t. all problem types. Figure[dshows the
histogram charts of mean, expected and actual risks. By averaging over a whole
line of business, the predictive power of mean risk improves, and its refinement
to expected risk yields no additional benefit. As stated in the introduction, this
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Fig. 5. Expected risk vs. actual risk: summary for problem types

confirms that simple statistics, such as mean and standard deviation, are enough
to deal with high-frequency (and necessarily low impact) loss events. As soon
as we go into the details of a specific line of business, frequency decreases, and
then sequential information leads to better predictive power.

Finally, Figure [l shows the charts for the summary measure SERISK (3,7 ),
which provides for a problem type ( the expected total risk w.r.t. all business
lines. By averaging on the problem type, expected risk improves over mean risk
considerably.

5.3 Tuning the Parameters

Let us consider here a few issues concerning the choice of parameters in pattern
extraction and deployment. Figure[flshows how the expected risk error is affected
by the minimum support threshold. The figure reports the relative error:

abs(ERISK(Health, 3, 7&) — ARIsk(Health, 3,7¢E))
ARiIsK(Health, 3,7¢)

for two sample 3, and the total relative error:

Y 3cdom(Prob-1p)abs(ERISK(Health, 3, 7€) — ARISK(Health, 3,7¢€))
Y 4cdom(Prob-1D)ARISK (Health, 3, 7€)

for various minimum support thresholds. It is immediate to observe that lower
minimum supports lead to lower errors. However, after reaching some minimum,
the error does not improve and it eventually starts increasing.

Another choice we made was to partition the training set based on pairs
(CType = «, Prob-ID = f3), and to extract sequential patterns from each parti-
tion. An alternative choice is to partition with respect to CType = « only, i.e.,
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CType = Health
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Fig. 6. Expected risk relative error by varying the minimum support

not forcing the extraction of sequential patterns for every problem type. This al-
ternative leads to extract sequential patterns where only frequent problem types
appear. We are more accurate for them, but less accurate for minority problem
types. As an example, the relative error of expected risk for the Bank line of
business in Figure 2 degrades to 23.2%.

Moreover, we have also conducted experiments on the maximum number of
sequential patterns to be considered for a pair (CType = «, Prob-ID = [3) among
those having a minimum support. In the experiments reported so far, the number
was set to the top 5 (w.r.t. the support) for all pairs. Extensive experimentation
shows that, for a same minimum support threshold, a large number of sequential
patterns (> 20) leads to poorer performances, and that the optimal number
might vary for each pair (CType = «, Prob-ID = [3). Therefore, a form of self-
tuning of parameters might improve the reported results.

6 Conclusions

Is data mining suitable for IT-operational risk management? We believe that
we provided an affirmative answer to the question — yet, preliminary and for a
specific case study. For high frequency - low impact loss events, the extraction of
frequent (sequential) patterns from past log of data can improve basic measures
of risk, which rely only on simple statistics, such as in the case of the mean
risk. The improvement consists of more accurate predictions for lower frequency
events, as in the case of a specific line of business or problem type. Nevertheless,
a frequent pattern approach, like the one proposed here, cannot deal with very
low frequency events, which have very few occurrences in databases or none at
all. Hence, our approach is complementary to the ones proposed in the statistical
and simulation literature for low frequency - high impact loss events.

A further work we intend to pursue is to enhance the basic statistics with
a classification based approach: all in all, the mean risk measure is a “decision
stump” classifier on the CType attribute. A better classifier could be trained
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by using additional predictive attributes, such as the PBX hardware/software
version, or, in order to evaluate the gain due to sequential information, the
presence/absence of alarms.
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