
On the Equivalence of the SMO and MDM
Algorithms for SVM Training

Jorge López, Álvaro Barbero, and José R. Dorronsoro�

Dpto. de Ingenieŕıa Informática and Instituto de Ingenieŕıa del Conocimiento
Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract. SVMtraining is usually discussed under twodifferent algorith-
mic points of view. The first one is provided by decomposition methods
such as SMO and SVMLight while the second one encompasses geometric
methods that try to solve a Nearest Point Problem (NPP), the Gilbert–
Schlesinger–Kozinec (GSK) and Mitchell–Demyanov–Malozemov (MDM)
algorithms being the most representative ones. In this work we will show
that, indeed, both approaches are essentially coincident.More precisely, we
will show that a slight modification of SMO in which at each iteration both
updating multipliers correspond to patterns in the same class solves NPP
and, moreover, that this modification coincides with an extended MDM
algorithm. Besides this, we also propose a new way to apply the MDM al-
gorithm for NPP problems over reduced convex hulls.

1 Introduction

Given a sample S = {(Xi, yi) : i = 1, . . . , N} with yi = ±1, the standard
formulation of SVM for linearly separable problems seeks [1,2] to maximize the
margin of a separating hyperplane by solving the problem

min
1
2
‖W‖2 with yi(W · Xi + b) ≥ 1, i = 1, . . . , N. (1)

Any pair (W, b) verifying the restrictions in (1) is said to be in canonical form.
In practice, however, the problem actually solved is the simpler dual problem of
minimizing

W (α) =
1
2

∑

i,j

αiαjyiyjXi · Xj −
∑

i

αi with αi ≥ 0,
∑

i

αiyi = 0. (2)

The optimal weight W o can be then written as W o =
∑

αo
i yiXi and patterns for

which αo
i > 0 are called support vectors (SV). There are quite a few proposals

of algorithms to solve (2); many of them can be broadly classified into two
categories that usually are discussed as independent procedures, decomposition
� All authors have been partially supported by Spain’s TIN 2007–66862. The second

author is kindly supported by the FPU–MEC grant reference AP2006–02285.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 288–300, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Equivalence of the SMO and MDM Algorithms for SVM Training 289

algorithms and geometrically inspired methods. Many decomposition algorithms
can be traced to Platt’s SMO [3] or Joachims’s SVM–Light [4] algorithms. SMO,
one of the most popular methods, proceeds iteratively, working at each step with
a reduced set of only two multipliers, αi1 , αi2 and solving problem (2) exactly
for them while keeping fixed all others. To stop training, SMO looks at the
KKT conditions for the dual of (2). At the optimal W o =

∑
αo

i yiXi, they imply
αo

i yi(W o · Xi + bo − yi) = 0 and, thus, we have

αo
i > 0 ⇒ yi(W o · Xi + bo − yi) = 0,

αo
i = 0 ⇒ yi(W o · Xi + bo − yi) ≥ 0. (3)

Hence, during training there might be two kinds of violations of these KKT
conditions. The first one happens when αi > 0 but yi(W · Xi + b − yi) �= 0. The
second one takes place if αi = 0 but yi(W ·Xi+b−yi) < 0. Platt’s SMO algorithm
essentially tries to choose i2 as the index of the pattern Xi that somehow most
violates these conditions for the current W and i1 as the index that gives then
a maximum decrease in W (α). However, and as pointed out in [5], this may
lead to some difficulties as the KKT conditions only hold approximately during
training. To avoid this Keerthi et al. propose in [5] two modifications to SMO
and recommend the second one, Modification 2, as the most effective (see also
[6], where it is shown to be equivalent to 2–vector SVM–Light); we will briefly
describe it in section 2.

Turning our attention to geometric algorithms, they are usually motivated
through another way of setting up SVM training, the Nearest Point Problem
(NPP; see [7]) in which we want to find the nearest points W ∗

+ and W ∗− of the
convex hulls C(S±) of the positive S+ = {Xi : yi = 1} and negative S− =
{Xi : yi = −1} sample subsets. The maximum margin hyperplane is then W ∗ =
W ∗

+−W ∗− and the optimal margin is given by ‖W ∗‖/2. If we write a W+ ∈ C(S+)
as W+ =

∑
αpXp, with

∑
αp = 1 and a W− ∈ C(S−) as W− =

∑
αqXq, with∑

αq = 1 we have W = W+ − W− =
∑

αiyiXi with Xi ∈ S = S+
⋃

S−. We
can thus state the NPP problem as follows:

min
1
2
‖W‖2 =

1
2

∑

i,j

αiαjyiyjXi · Xj , with αi ≥ 0,
∑

i

αiyi = 0,
∑

i

αi = 2,

(4)
where we assume again a linearly separable training sample. In [8,9] specific algo-
rithms have been proposed for NPP that originate in the more classical Gilbert–
Schlesinger–Kozinec (GSK; [10,11]) and Mitchell–Demyanov–Malozemov (MDM;
[12]) algorithms to find the minimum norm vector of a convex set. While the GSK
algorithm can be very slow, the MDM algorithm and some improvements (see [8])
are quite efficient.

While, as mentioned before, decomposition and geometric algorithms are usu-
ally discussed as independent procedures, we shall give in section 2 a new deriva-
tion of the MDM algorithm and show that for linearly separable problems, it

290 J. López, Á. Barbero, and J.R. Dorronsoro

essentially coincides with a slight variant of SMO in which we require that both
updating vectors belong to the same class. Although SVM algorithms for lin-
early separable problems extend immediately to non separable ones if square
penalties C

∑
ξ2
i are applied to margin slacks ξi [13], a different set up has to be

pursued if linear penalties C
∑

ξi are considered. For SVM training this implies
a restriction αi ≤ C for the multipliers αi while NPP has to be solved over
the so–called μ–Reduced Convex Hulls, where an extra restriction αi ≤ μ has
to be added to those in (4). It is well known that both problems are equiva-
lent [7], but in the Appendix we will give a new, short proof of this fact. In
section 3 we will extend to these settings the equivalence between SMO and
MDM already proved for linearly separable problems in section 2. We will briefly
compare numerically the performance of basic versions of the SMO and MDM
algorithms in section 4 and show that, for square penalties, the final models they
arrive at are essentially the same, as they have similar test accuracies and num-
bers of support vectors. SMO, however, needs less iterations than MDM, some-
thing to be expected, as it has to meet less restrictions when iteratively looking
for maximum gains. The comparison for linear penalties is somewhat more in-
volved, but the faster convergence of SMO still holds. A brief discussion ends the
paper.

2 The SMO–MDM Equivalence for Linearly Separable
Problems

2.1 Keerthi et al.’s Modification 2

Writing F o
i = W o · Xi − yi, the KKT conditions (3) at the optimal W o, bo can

be expressed as

yi(F o
i + bo) = 0 if αo

i > 0, yi(F o
i + bo) ≥ 0 if αo

i = 0. (5)

Thus, if we define first the index sets I+ = {i : yi = 1}, I− = {i : yi = −1}
and then InSV = {i : αi = 0}, ISV = {i : αi > 0} (I0 in the notation of [5]),
I+
nSV = I+ ⋂

InSV (I1 in Keerthi’s notation), I−nSV = I−
⋂

InSV (I4 in Keerthi’s
notation), the preceding conditions can be written as

F o
i + bo ≥ 0 for i ∈ ISV

⋃
I+
nSV , F o

i + bo ≤ 0 for i ∈ ISV

⋃
I−nSV .

In particular, we will have F o
i ≥ −bo for i ∈ ISV

⋃
I+
nSV and −bo ≥ F o

j for
j ∈ ISV

⋃
I−nSV . Thus, if we write Fi = W · Xi − yi and define

blow = max{Fj : j ∈ ISV

⋃
I−nSV }, bup = min{Fi : i ∈ ISV

⋃
I+
nSV },

we must have blow ≤ −bo ≤ bup at the optimum. In practice one has to relax these
conditions to blow − ε/2 ≤ −bo ≤ bup + ε/2 for some ε > 0. These observations

On the Equivalence of the SMO and MDM Algorithms for SVM Training 291

motivate Keerthi et al.’s Modification 2 in [5]. More precisely, they define at each
step two indices

ilow = arg max {Fj : j ∈ ISV

⋃
I−nSV },

iup = arg min {Fi : i ∈ ISV

⋃
I+
nSV }, (6)

and propose to take i2 = ilow and i1 = iup in SMO. We then have blow = Filow
,

bup = Fiup and training will continue while blow > bup+ε or, in other words, while
the i2, i1 indices violate the KKT conditions. As the experiments reported in [5]
illustrate, these choices can significantly speed up Platt’s original algorithm.

2.2 An Alternative Motivation for Choosing i2 and i1

Keerthi’s heuristics are motivated by an attempt to simplify Platt’s original ones
but we will show next how they also arise if we try to choose directly the updating
indices i2, i1 so that they maximize the gain in the dual cost function W (α) (see
also the Appendix A in [6] for another way to arrive at these selections). Notice
first that for any such pair (i2, i1) the new multipliers α′ to be considered are
α′

i1
= αi1 +δi1 , α′

i2
= αi2 +δi2 while α′

j = αj for all others. The new W ′ has thus
the form W ′ = W + δi1yi1Xi1 + δi2yi2Xi2 . Taking into account the restriction∑

i αiyi = 0, we must have yi1δi1 + yi2δi2 = 0 and, therefore, δi1 = −yi1yi2δi2

and

W ′ = W + δi2yi2(Xi2 − Xi1) = W + δi2yi2Zi2,i1 ,

where Zj,k = Xj − Xk. Thus, W (α′) = 1
2‖W ′‖2 −

∑
α′

i is just a function Φ(δi2)
of δi2 , and we have

Φ(δi2) =
1
2
‖W‖2 + δi2yi2W · Zi2,i1 +

δ2
i2

2
‖Zi2,i1‖2 −

∑
αi − δi1 − δi2

= W (α) + δi2yi2W · Zi2,i1 +
δ2
i2

2
‖Zi2,i1‖2 − δi2y

2
i2 + yi1yi2δi2

= W (α) + δi2yi2 (W · Zi2,i1 − (yi2 − yi1)) +
δ2
i2

2
‖Zi2,i1‖2. (7)

Solving Φ′(δ∗i2) = 0 to obtain the optimal δ∗i2 yields

δ∗i2 = −yi2 (W · Zi2,i1 − (yi2 − yi1))
‖Zi2,i1‖2 = −yi2

Δ

‖Zi2,i1‖2 , (8)

where Δ = W · Zi2,i1 − (yi2 − yi1), and, in turn, δ∗i1 = −yi1yi2δ
∗
i2

= yi1
Δ

‖Zi2,i1‖2 .
Moreover, we have

Φ(δ∗i2) = W (α) − 1
2

[yi2 (W · Zi2,i1 − (yi2 − yi1))]
2

‖Zi2,i1‖2 = W (α) − 1
2

Δ2

‖Zi2,i1‖2 .

292 J. López, Á. Barbero, and J.R. Dorronsoro

Now, to maximize the decrease in W (α′) we should choose (i2, i1) so that

(i2, i1) = arg maxi,j

{
(W · Zi,j − (yi − yj))

2

‖Zi,j‖2

}
.

Such a choice of i2, i1 is sometimes called a second order working set selection
[14]. If we simply ignore the ‖Zi,j‖2 denominator, we can choose instead

(i2, i1) = arg maxi,j{|W · Zi,j − (yi − yj)|}. (9)

It is clear that the maximum in (9) is attained at

max
i

{W · Xi − yi} − min
j

{W · Xj − yj},

which tells us to choose in principle (i2, i1) as

i2 = arg maxj{W · Xj − yj}, i1 = arg mini{W · Xi − yi}. (10)

These choices imply Δ ≥ 0 and we note in passing that there is a gain in W (α)
whenever Δ > 0 or, stated equivalently, whenever there is a violating pair; this
gives a new and simple derivation of a well known result of Hush and Scovel (see
Theorem 3 in [15]). Now, notice that if yi2 = 1, δi2 < 0 and, hence, we must
have αi2 > 0. On the other hand, if yi1 = −1, δi1 < 0 and, hence, we must have
αi1 > 0. As a consequence, we must refine our previous choices of i2 and i1 in
(10) to

i1 = arg mini{Fi : i ∈ I+
⋃

I−SV }, i2 = arg maxj{Fi : i ∈ I−
⋃

I+
SV }. (11)

with I±SV = I±
⋂

ISV and Fi = W · Xj − yj again. Now it can be easily seen
that I+ ⋃

I−SV = ISV

⋃
I+
nSV and, similarly, I−

⋃
I+
SV = ISV

⋃
I−nSV . It is thus

clear that these are the same selections done in Modification 2 of [5] as given
in (6).

2.3 Solving NPP a la SMO

As discussed in section 1 there are several procedures for the NPP problem
that have their origin in the MDM algorithm. In its original formulation as
a minimum norm problem, the MDM algorithm selects at each step updating
indices i2 = arg minj{W · Xj}, i1 = arg maxi{W · Xi : αi > 0}. While the
algorithm’s objective is to update the current weight W with the one in the line
segment between W and W + αi2 (Xi2 − Xi1) with minimum norm, it is clear
that the i2 and i1 choices also maximize Δ2 = (W · (Xi − Xj))

2 (the condition
αi > 0 for i1 candidates is needed, as the W update will decrease αi1). While
the approach in [8] to NPP is closer to the original MDM one as given in [12],
the one in [9] does in fact try to maximize Δ2.

On the Equivalence of the SMO and MDM Algorithms for SVM Training 293

In any case the above index choices are clearly related to the previous discus-
sion for SMO and their minimization of Δ suggests to solve NPP as just done
in the preceding section, that is, to work at each step with just two multipliers
αi1 and αi2 and update a given W =

∑
αiyiXi to another one of the form

W ′ = W + δi1yi1Xi1 + δi2yi2Xi2 so that the minimization in the norm ‖W ′‖2 is
largest. The restrictions in (4) imply 2 =

∑
α′

i =
∑

αi + δi1 + δi2 = 2+ δi1 + δi2

and 0 =
∑

yiα
′
i =

∑
yiαi+yi1δi1+yi2δi2 = yi1δi1+yi2δi2 . The second one implies

that yi1δi1 = −yi2δi2 and, since the first one gives δi1 = −δi2 , we must also have
yi1 = yi2 . As a consequence, W ′ = W + δi2yi2 (Xi2 − Xi1) = W + δi2yi2Zi2,i1 ,
where again Zi,j = Xi − Xj ; thus, ‖W ′‖2 is a function of δi2 and we have

Φ(δi2) = ‖W ′‖2 = ‖W‖2 + 2δi2yi2W · Zi2,i1 + δ2
i2‖Zi2,i1‖2.

As done before, solving Φ′(δ∗i2) = 0 gives

δ∗i2 = −yi2

Δ

‖Zi2,i1‖2 , δ∗i1 = yi2

Δ

‖Zi2,i1‖2 ,

where now Δ = W · Zi2,i1 and, in turn,

Φ(δ∗i2) = ‖W‖2 − Δ2

‖Zi2,i1‖2 . (12)

Thus, just as before, if we ignore the ‖Zi2,i1‖2 denominator, we can maximize
the gain in Φ by selecting i1 and i2 so that Δ is maximized. We do so setting
first

i+2 = arg maxi{W · Xi : yi = 1}, i+1 = arg minj{W · Xj : yj = 1},

i−2 = arg maxi{W · Xi : yi = −1}, i−1 = arg minj{W · Xj : yj = −1}, (13)

and deciding next which one of the pairs (i±2 , i±1) to choose, for which we compute

Δ+ = W ·
(
Xi+2

− Xi+1

)
, Δ− = W ·

(
Xi−

2
− Xi−

1

)
,

(notice that both are positive) and take i2 = i+2 , i1 = i+1 if Δ+ > Δ− and
i2 = i−2 , i1 = i−1 otherwise. We observe that the corresponding index choices in
the extension of MDM to NPP are

i+2 = arg maxi{W · (Xi − W−) : yi = 1},

i+1 = arg minj{W · (Xj − W−) : yj = 1},

i−2 = arg maxi{W · (Xi − W+) : yi = −1},

i−1 = arg minj{W · (Xj − W+) : yj = −1},

which are obviously equivalent to the previous ones.
In any case, and just as it was done for SMO, we must make sure that the

updated coefficients remain positive. Just as before we have Δ± > 0. Thus, if
yi2 = 1, δi+2

< 0 and, hence, we must have αi+2
> 0. On the other hand, if

294 J. López, Á. Barbero, and J.R. Dorronsoro

yi1 = −1, δi−
1

< 0 and, hence, we must have αi−
1

> 0. As a consequence, we
refine our previous choices of i+2 and i−1 in (13) to

i−1 = arg mini{W · Xi : i ∈ I−SV }, i+2 = arg maxj{W · Xi : i ∈ I+
SV }. (14)

As we show next, these choices coincide with those made in a slight variant of
SMO.

2.4 Enforcing yi1 = yi2 in SMO

Although in standard SMO the yi1 and yi2 values do not have to be equal, let
us discuss SMO’s formulation when at each iteration we force yi1 = yi2 (the
use of updates where all patterns used belong to the same class has also been
proposed for ν–SV training [16]). We then have δi1 = −yi1yi2δi2 = −δi2 and
W ′ = W + δi2yi2Xi2 − δi2yi2Xi1 = W + δi2yi2Zi2,i1 . Furthermore, (7) becomes
now

Φ(δi2) = W (α′) = W (α) + yi2W · Zi2,i1δi2 +
δ2
i2

2
‖Zi2,i1‖2, (15)

equation (8) for the optimum δ∗i2 becomes

δ∗i2 = −yi2

W · Zi2,i1

‖Zi2,i1‖2 = −yi2

Δ

‖Zi2,i1‖2 ,

where here Δ = W · Zi2,i1 , and, again, we have

Φ(δ∗i2) = W (α) − 1
2

Δ2

‖Zi2,i1‖2 ,

which has the same form that (12). Ignoring once more the denominator ‖Zi2,i1‖2,
this also suggests to take i2, i1 so as to maximize |Δ|, which leads to the same index
choices as done for MDM in the previous section.

Moreover, enforcing yi2 = yi1 implies that δi1 = −δi2 and also that, after ini-
tialization, the multipliers’ sum

∑
αi remains constant at each iteration. Thus,

in this setting, minimizing the dual criterion W (α) = ‖W‖2/2 −
∑

αi reduces to
minimize just ‖W‖2 and if the αi are initialized so that

∑
αi = 2, the problem

that this SMO variant solves coincides with NPP. Moreover, since the updating
indices’ choices are the same in both cases, we can conclude that after a proper
initialization, enforcing yi2 = yi1 in SMO is equivalent to using MDM to solve
NPP.

3 SMO and MDM for Non–linearly Separable Problems

In the preceding discussion we have assumed that the original sample classes
were linearly separable. This assumption must be relaxed in practice allowing

On the Equivalence of the SMO and MDM Algorithms for SVM Training 295

for margin slacks that are penalized using either a linear or a quadratic cost func-
tion. The theory for the linearly separable case extends easily to the quadratic
cost setting [13], but for a linear penalty we want to solve now the quadratic
minimization problem

min
W,b,ξ

1
2
‖W‖2 + C

∑

i

ξi, (16)

subject to the linear restrictions yi(W · Xi + b) + ξi ≥ 1, i = 1, . . . , N . Its Wolfe
dual is now

W (α) =
1
2

∑

i,j

αiαjyiyjXi · Xj −
∑

i

αi, (17)

where 0 ≤ αi ≤ C,
∑

i αiyi = 0. If NPP is to be considered, the alternative to
(16) would be to consider it for the so–called μ–Reduced Convex Hulls, defined
as Cμ(S±) = {

∑
αiXi : Xi ∈ S±,

∑
αi = 1, 0 ≤ αi ≤ μ}. We shall refer to this

new problem as RCHμ–NPP (see [7] for more details).
Considering first SMO, the only difference with respect the discussion in sec-

tion 2 is the restriction αi ≤ C, which forces the δi increments to be positive
only when αi < C. Thus, if yi2 = −1 we must have αi2 < C and if yi1 = 1 we
must have αi1 < C. As a consequence, in the non–linearly separable setting we
must refine the i2 and i1 choices in (11) to

i1 = arg mini{Fi : i ∈ I+
nBC

⋃
I−SV }, i2 = arg maxj{Fi : i ∈ I−nBC

⋃
I+
SV }.(18)

where now I±nBC
= {i : yi = ±1, αi < C}. It can be easily checked that these are

the same selections done in Modification 2 of [5]. Turning our attention to the
MDM algorithm for RCHμ–NPP, the situation is quite similar to the one just
discussed for SMO, as we have to make sure that when α = μ, decrementing
α is then the only option. As a consequence, we must now refine our previous
choices of i−2 and i+1 in (13) to

i+1 = arg mini{W · Xi : i ∈ I+
nBμ

}, i−2 = arg maxj{W · Xi : i ∈ I−nBμ
}, (19)

where now I±nBμ
= {i : yi = ±1, αi < μ}. Arguing as before, initializing the αi

and scaling C adequately, enforcing yi1 = yi2 results in SMO solving RCHμ–
NPP. We finally note that MDM–type algorithms for RCHμ–NPP have been
recently proposed [17] but they are conceptually more involved and computa-
tionally costlier than our just explained proposal.

4 Numerical Experiments

We shall compare the performance of the most basic versions of the SMO and
NPP algorithms over 10 of the datasets provided in G. Rätsch’s Benchmark
Repository [18]. We employed the same experimental set–up described in the
data site; in particular we used the provided 100 partitions (with about 40%
training and 60% test patterns) to compute the test accuracies and the num-
ber of final SVs and training iterations, as well as the corresponding standard

296 J. López, Á. Barbero, and J.R. Dorronsoro

Table 1. Average test accuracies, number of support vectors and number of iterations
given by the CH-MDM and 2-SMO algorithms, with ε = 10−8

Test err. # SVs # iters.
Dataset SMO MDM SMO MDM SMO MDM

Titanic 22.8±1.2 22.8±1.2 150.0±0.0 150.0±0.0 363.1±20.2 402.1±16.7
Heart 15.7±3.2 15.7±3.2 163.3±2.4 163.3±2.4 338.9±13.0 399.1±14.9
Diabetes 23.1±1.6 23.1±1.6 412.7±7.7 412.7±7.7 1565.7±45.1 1666.1±38.2
Cancer 26.5±4.8 26.5±4.8 179.3±5.9 179.3±5.9 1140.6±52.0 1226.2±54.3
Thyroid 4.3±1.9 4.3±1.9 87.4±3.0 87.4±3.0 226.7±10.3 243.6±9.9
Flare 33.5±1.7 33.5±1.7 664.5±0.7 664.5±0.7 1398.4±53.1 1652.6±51.2
Splice 10.6±0.7 10.6±0.7 728.6±12.7 728.7±12.8 4402.3±635.8 4835.6±667.7
Image 2.9±0.5 2.9±0.5 215.5±11.5 215.3±11.5 34447.9±2117.9 39560.6±3203.9
German 23.56±2.0 23.5±2.0 590.22±12.4 590.0±12.4 19099.1±971.7 20441.6±711.3
Banana 10.4±0.4 10.4±0.4 230.9±14.0 230.9±14.0 1313.0±83.1 1364.6±91.3

deviations. Before giving the concrete results, we briefly comment on some imple-
mentation details. First, and as usual, all algorithms only involve dot products,
that can be replaced through an appropriate positive definite kernel K. Next, we
notice that many improvements have been made to the basic SMO and MDM al-
gorithms, such as Platt’s type I and type II updates or support vector shrinking.
We will not consider them in our experiments as they are more or less applicable
to both procedures and likely to have similar effects. We also point out that we
must make sure that, for instance, 0 ≤ αi + δi ≤ C for linear penalties’ SMO
and that 0 ≤ αi + δi ≤ μ for RCHμ–NPP. This means that the δi will have to
be adequately bounded from above and below as necessary. Finally, the bo and
b∗ bias values are also different in SMO and MDM. For SMO we will take, as
usual,

bo =
1

NSV

∑

i∈ISV

(yi − W o · Xi) =
1

NSV

⎛

⎝
∑

i∈ISV

yi −
∑

i,j∈ISV

αjyjXj · Xi

⎞

⎠

=
1

NSV

⎛

⎝
∑

i∈ISV

yi −
∑

i,j∈ISV

αjyjK
′(xj , xi)

⎞

⎠ ,

with NSV the number of support vectors. For quadratic penalties we will use
K ′(xj , xi) = K(xj , xi)+ δij/C as the square penalty–adjusted version of a stan-
dard positive definite kernel K while we just take K ′ = K for linear penalties.
A simple geometric reasoning implies that the MDM bias will be

b∗ = −W ∗ ·
(
W ∗

+ + W ∗
−

)

2
= −1

2

∑

i,j∈ISV

αiαjyiK
′(xi, xj).

On the Equivalence of the SMO and MDM Algorithms for SVM Training 297

Table 2. Average test accuracies, number of support vectors and number of iterations
given by the RCH-MDM and 1-SMO algorithms, with ε = 10−8. For test errors a ∗

stands for a statistically significant difference in a Wilcoxon rank test.

Test err. # SVs # iters.
Dataset SMO MDM SMO MDM SMO MDM

Titanic 24.1±8.0 24.0±7.4 67.2±11.3 113.9±8.8 156.6±32.7 164.2±28.7
Heart 15.8±3.2 16.0±3.1 82.4±5.4 82.4±5.4 217.1±63.6 306.2±59.6
Diabetes 23.4±1.6∗ 23.7±1.8 264.9±7.2 264.8±7.2 464.7±91.5 741.4±81.9
Cancer 27.3±5.9∗ 28.9±4.8 113.6±6.5 113.8±6.3 1705.3±897.4 3352.7±3841.2
Thyroid 4.4±2.1 4.2±2.0 25.3±5.7 25.3±5.7 328.2±124.4 398.9±117.1
Flare 32.7±1.6∗ 32.8±1.6 477.1±12.2 508.9±9.9 862.2±391.0 1401.4±881.5
Splice 10.7±0.6 10.8±0.6 620.2±14.2 629.2±13.6 2569.6±177.4 2797.4±290.5
Image 3.0±0.4 3.0±0.5 167.6±9.2 172.0±8.8 47972.5±11219.0 56169.9±10309.4
German 23.62±2.1∗ 24.0±2.1 407.6±10.7 407.7±10.8 1660.6±149.2 1884.5±144.8
Banana 11.5±0.6∗ 11.6±0.6 89.6±10.1 89.5±10.0 38236.0±14307.7 43449.9±25339.9

4.1 Quadratic Penalties

It is well known that SVM algorithms for linearly separable problems extends
immediately to non separable ones if square penalties C

∑
ξ2
i are applied to

margin slacks ξi [13]. We shall use a common initialization for both SMO and
MDM choosing a single vector from each class and setting αi1 = αi2 = 1. As
mentioned in section 2, the usual SMO stopping condition is blow ≤ bup + ε;
for the MDM algorithm one might use either Δ ≤ ε or also Δ ≤ ε‖W‖2/2.
While these conditions look similar, the norms of the SMO and MDM W vec-
tors involved are very different. Thus, in order to make more homogeneous
performance comparisons, we will use in both cases a similar relative preci-
sion criterion, stopping SMO when W (α) − W (α′) ≤ εW (α) and MDM when
‖W‖2 − ‖W ′‖2 ≤ ε‖W‖2.

We will compare the performance of the basic SMO and MDM implementa-
tion over three values: the number of training iterations they need, the number of
support vectors the final SVMs have and the test accuracies of the final models.
We will do so for a relative ε = 10−8 precision and the results of each method are
shown in table 1. In all cases we have used Gaussian kernels exp

(
−‖x‖2/2σ2

)

and optimal σ and C have been estimated by cross–validation. It can be seen in
the table that SMO is faster, as it needs less iterations to achieve the desired pre-
cisions. This is quite natural, as it has greater freedom when choosing at each
iteration the maximum gain multipliers. On the other hand, the final models
obtained seem to be very similar, as they essentially have the same accuracies
and support vector numbers; moreover, after the appropriate scaling, the corre-
sponding optimal dual function values were essentially the same. A ∗ superscript
for the test errors indicates a significant difference in a Wilcoxon rank test at
the 10% level; the final test error values are similar to those in [18].

298 J. López, Á. Barbero, and J.R. Dorronsoro

4.2 Linear Penalties

While for square penalties SMO and MDM use the same C parameter, the
situation for linear penalty SMO and RCH–MDM is more complex. In fact, and
as shown in the Appendix, the relationship between the C and μ parameters is
now μ = 2C/ρo, with ρo = ‖W o‖2+C

∑
ξo
i . Hence C and μ are not independent,

and they should be chosen differently depending on which algorithm is to be used.
In our experiments we have chosen for C the values proposed in [18] and once
SMO finishes for each training–test pair, we have subsequently trained RCH–
MDM using a μ value computed as just explained. Moreover, while the previous
two vector initialization for SMO is still possible, this is not so for RCH–MDM
and in this case we have chosen each sample barycenters as the initial W±
vectors. All this makes final model comparisons somewhat less homogeneous
than the square penalty ones, as shown in table 2, where now final accuracies
are similar for both methods (but less so than in the square penalty case) and
SMO models clearly have less support vectors. This last fact is due, however, to
the different initializations used: if SMO is trained starting from the barycenters
(not a good idea anyway), its final models have more SVs, implying that RCH–
MDM is better at removing wrong initial SV choices (the algorithm is in some
sense designed for that to be true). In any case, and for the initializations used,
SMO is again faster than RCH–MDM.

5 Discussion

The SMO algorithm for SVM construction and, on the other hand, the geo-
metrically inspired NPP solving algorithms such as extended MDM are usually
discussed as different, independent methods. We have shown in this note that,
however, these two methods are in fact very closely related, as they can be seen
as maximum gain algorithms for working sets of 2 multipliers. More precisely,
the extended MDM algorithm typically used to solve NPP essentially coincides
with a restricted form of SMO in which the working set multipliers correspond
to sample patterns in the same class. As we have numerically illustrated for
quadratic penalties, the basic SMO and MDM algorithms seem to arrive at the
same models when a moderately high precision is imposed in their final minima.
However, SMO seems to be faster, something quite natural, as it has greater
freedom when choosing at each iteration the maximum gain multipliers. While
the linear penalty comparison is more involved, it seems clear that SMO is again
faster. Another contribution of the present work is a proposal of an MDM algo-
rithm for RCHμ–NPP considerably simpler than previous ones.

While this would seem to imply that there will not be great advantages from
the consideration of geometric algorithms for SVM construction, we point out
that the usual speed enhancements for SMO, such as shrinking, can also be
applied to the MDM algorithm. On the other hand, there has been a considerable
amount of work in efficient solutions of the Minimum Norm Problem (MNP) for
convex sets, the question that lies at the heart of the MDM algorithm. Given
the close relationship shown here between the SMO and MDM methods, it is

On the Equivalence of the SMO and MDM Algorithms for SVM Training 299

thus conceivable that insights gained for MNP algorithms can provide new ways
of accelerating SMO and other algorithms derived from it.

References

1. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
2. Schölkopf, B., Smola, A.: Learning with kernels support vector machines, regular-

ization, optimization, and beyond. MIT Press, Cambridge (2002)
3. Platt, J.: Fast training of support vector machines using sequential minimal opti-

mization. Advances in Kernel Methods - Support Vector Machines, 185–208 (1999)
4. Joachims, T.: Making large-scale support vector machine learning practical. Ad-

vances in Kernel Methods - Support Vector Machines, 169–184 (1999)
5. Keerthi, S., Shevade, S., Bhattacharyya, C., Murthy, K.: Improvements to platt’s

smo algorithm for SVM classifier design. Neural Computation 13(3), 637–649
(2001)

6. Fan, R., Chen, P.H., Lin, C.: Working set selection using second order information
for training support vector machines. Journal of Machine Learning Research 6,
1889–1918 (2005)

7. Bennett, K., Bredensteiner, E.: Duality and geometry in svm classifiers. In: Proc.
17th Int. Conf. Machine Learning, pp. 57–64 (2000)

8. Keerthi, S., Shevade, S., Bhattacharyya, C., Murthy, K.: A fast iterative nearest
point algorithm for support vector machine classifier design. IEEE Transactions on
Neural Networks 11(1), 124–136 (2000)

9. Franc, V.: Simple solvers for large quadratic programming tasks. In: Kropatsch,
W., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 75–84.
Springer, Heidelberg (2005)

10. Gilbert, E.: Minimizing the quadratic form on a convex set. SIAM J. Contr. 4,
61–79 (1966)

11. Franc, V., Hlavác̆, V.: An iterative algorithm learning the maximal margin clas-
siffier. Pattern Recognition 36, 1985–1996 (2003)

12. Mitchell, B., Dem’yanov, V., Malozemov, V.: Finding the point of a polyhedron
closest to the origin. SIAM J. Contr. 12, 19–26 (1974)

13. Shawe-Taylor, J., Cristianini, N.: On the generalisation of soft margin algorithms.
IEEE Transactions on Information Theory 48(10), 2711–2735 (2002)

14. Glasmachers, T., Igel, C.: Second order smo improves svm online and active learn-
ing. Neural Computation 20(2), 374–382 (2008)

15. Hush, D., Scovel, C.: Polynomial-time decomposition algorithms for support vector
machines. Machine Learning 51(1), 51–71 (2003)

16. Chang, C.C., Lin, C.J.: Training ν-support vector classifiers: Theory and algo-
rithms. Neural Computation 13(9), 2119–2147 (2001)

17. Tao, Q., Wu, G.W., Wang, J.: A general soft method for learning svm classifiers
with l1-norm penalty. Pattern Recogn. 41(3), 939–948 (2008)

18. Rätsch, G.: Benchmark repository,
ida.first.fraunhofer.de/projects/bench/benchmarks.htm

Appendix: The Equivalence between SVM and NPP

We will consider in what follows the linear penalty case, the arguments for the
penalty–free situation being similar and simpler. It is well known that the KKT

ida.first.fraunhofer.de/projects/bench/benchmarks.htm

300 J. López, Á. Barbero, and J.R. Dorronsoro

conditions for SVM imply that at the optimum W o =
∑

αo
i yiXi we have αo

i = C
if ξo

i > 0, and also

αo
i (yi (W o · Xi + bo) − 1 + ξo

i) = 0,

that is, αo
i = αo

i (yi (W o · Xi + bo) + ξo
i). Summing over i gives

∑
αo

i =
∑

αo
i yiW

o · Xi + bo
∑

αo
i yi +

∑
αo

i ξ
o
i

= ‖W o‖2 + C
∑

ξo
i ,

since
∑

αo
i yi = 0. If we write ρo = ‖W o‖2 + C

∑
ξo
i and define now

W ′ =
2
ρo

W o =
∑

i

2αo
i

ρo
yiXi =

∑

i

α′
iyiXi,

with α′
i = 2αo

i /ρo, we shall show that W ′ coincides with the optimal solution W ∗

to the RCHμ problem, with μ = 2C/ρo To prove it, notice first that
∑

i α′
iyi = 0,∑

i α′
i = 2 and α′

i ≤ μ. Thus, W ′ is a feasible solution of the RCHμ problem.
For any other RCHμ feasible W =

∑
αiyiXi, we have

W · W ′ =
∑

i

αiyiW
′ · Xi =

2
ρo

∑

i

αiyiW
o · Xi =

2
ρo

∑

i

αiyi (W o · Xi + bo)

≥ 2
ρo

∑

i

αi (1 − ξo
i) ≥ 2

ρo

(
∑

i

αi − 2C

ρo

∑

i

ξo
i

)

=
2
ρo

(
2 − 2C

ρo

∑

i

ξo
i

)
=

4
(ρo)2

(
ρo − C

∑

i

ξo
i

)

=
4

(ρo)2
‖W o‖2 = ‖W ′‖2.

By Schwarz’s inequality this implies ‖W‖ ≥ ‖W ′‖ and, in particular ‖W ∗‖ ≥
‖W ′‖, which by the uniqueness of the NPP solution implies W ′ = W ∗.

	On the Equivalence of the SMO and MDM Algorithms for SVM Training
	Introduction
	The SMO--MDM Equivalence for Linearly Separable Problems
	Keerthi et al.'s Modification 2
	An Alternative Motivation for Choosing i_{2} and i_{1}
	Solving NPP a la SMO
	Enforcing $y_{i_1} = y_{i_2}$ in SMO

	SMO and MDM for Non--linearly Separable Problems
	Numerical Experiments
	Quadratic Penalties
	Linear Penalties

	Discussion
	References

