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Abstract. Memory-based collaborative filtering aims at predicting the
utility of a certain item for a particular user based on the previous rat-
ings from similar users and similar items. Previous studies in finding
similar users and items are based on user-defined similarity metrics such
as Pearson Correlation Coefficient or Vector Space Similarity which are
not adaptive and optimized for different applications and datasets. More-
over, previous studies have treated the similarity function calculation
between users and items separately. In this paper, we propose a novel
adaptive bidirectional similarity metric for collaborative filtering. We au-
tomatically learn similarities between users and items simultaneously
through matrix factorization. We show that our model naturally extends
the memory based approaches. Theoretical analysis shows our model to
be a novel generalization of the SVD model. We evaluate our method
using three benchmark datasets, including MovieLens, EachMovie and
Netflix, through which we show that our methods outperform many pre-
vious baselines.

1 Introduction

Personalized services are becoming increasingly indispensable nowadays ranging
from providing searching result to product recommendation. Collaborative fil-
tering aims at predicting the preference of items for a particular user based on
the items previously rated by other users. Examples of successful applications of
collaborative filtering include recommending products at Amazon.com1, movies
by Netflix2, etc. Memory-based methods are a set of widely used approaches for
collaborative filtering which are simple and effective [1]. They usually fall into
two classes: user-based approaches [4,10] and item-based approaches [7,17]. To
predict a rating for an item from a user, user-based methods find other simi-
lar users and leverage their ratings to the item for prediction, while item-based
methods use the ratings to other similar items from the user instead.
1 http://www.amazon.com
2 http://www.netflix.com/
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Despite their success, memory-based methods suffer from several serious prob-
lems. First, missing data is a major problem in collaborative filtering, causing
the so-called sparseness problem [24]. This is because there are usually millions
of users and items in existence. But a single user can only rate a relatively small
number of items. When the data are extremely sparse, it is difficult to find simi-
lar users or items accurately. Second, in memory based approaches, similar users
and items are found by calculating a given similarity metric, including Pearson
Correlation Coefficient (PCC) [16] and Vector Space Similarity (VSS) [4]. How-
ever, these metrics are not adaptive to the application domains and the data
sets. Once given, they are not changeable. Third, the classical PCC and VSS
have trouble in distinguishing different importance of items. To cope with these
problems, many variations of similarity metrics, weighting approaches, combi-
nation measures, and rating normalization methods have been developed [9].
Although they can capture the correlation between users or items to a certain
extent, for these adaptations to work, there is no consensus as to which choice of
a technique is the most appropriate for a real world situation [9]. Finally, many
previous studies in collaborative filtering consider the similarities between users
and items separately. However, similarities between users and items in reality are
interdependent and can be used to reinforce each other. Therefore, it would be
more appropriate if the similarities between users and items be jointly learned
automatically.

In this paper, we propose a novel model to learn both the item and user sim-
ilarities together. Our model enables the similarity learning based collaborative
filtering (SLCF). We show that the joint similarity learning can be formulated as
a problem of matrix factorization with missing values. The learned similarities
between users as well as items can be regarded as being influenced by some latent
factors. Different from some previous latent factor models such as singular value
decomposition (SVD) [25] and Aspect Model [11], our model provides a more
flexible scheme that does not require the number of factors underling the user
space and the item space to be the same. Theoretical analysis shows that our
model corresponds to a novel generalization of the SVD model, thus allowing a
number of nice theoretical properties to be inherited from SVD research. In ad-
dition, we provide algorithms for rating prediction with different strategies based
on learned similarity. We evaluate our model using three widely used benchmark
datasets, the MovieLens, EachMovie and Netflix data sets. Experiment results
show that our method outperforms many of the well known baselines.

2 Related Work

In the past, many researchers have explored memory-based approaches to col-
laborative filtering. Many of them can be regarded as improving the definition
of similarity metric [4,6,9,14]. A drawback of these methods is that these simi-
larity metrics are not adaptive to different datasets or contain some parameters
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needed to be tuned but not learned. Another set of related work consider how
to utilize the user-based and item-based approaches together [14,21]. In [21],
Wang et al. proposed a probabilistic fusion model to combine user-based method
with item-based method. They found the fact that fusing all the ratings in the
user-item matrix can help solve the data sparseness problem. However, they still
estimate the user-based ratings and item-based ratings independently and omit
the relationship between them. Ma et al. in [14] proposed a method to fill in
the missing value first before prediction but it has the same drawback with [21].
One particular work which addressed learning similarity is in [12] where Jin
et al. proposed an automatic weighting scheme for items. Their method aims
at finding the optimal weights that can form a clustered distribution for user
vectors in the item space by bringing similar users closer and dissimilar users
far away. But they only considered the similarity weights for items, not users
simultaneously.

Model based approaches do not predict ratings based on some ad-hoc heuristic
rules, but rather, they are based on a model learned from the data using sta-
tistical and machine learning techniques. Viewed as a missing value prediction
problem, collaborative filtering can also be solved through matrix factorization.
SVD based approaches [3,20,25] can be regarded as latent factor models where
the eigenvectors correspond to the latent factors. Users and items are mapped
into a low dimensional space formed by the learned latent factors. Similar mod-
els also include [5,11]. A drawback of these models is that they all use the same
latent factors to model users and items. An underlying assumption is that the
numbers of latent factors that influence users and items are the same. Since a
user may have diverse interests and an item may have multiple aspects, it is
desirable to allow both items and users to be in a more flexible scheme. Si and
Jin in [19] proposed a flexible mixture model for collaborative filtering. They
are among the first to relax the restriction that users and items fall into the
same classes. However, their probabilistic model regarded the ratings as discrete
values. They also ignored the relation between ratings. As such, they did not
consider scores of 3 and 2 to be closer to each other than scores of 5 and 1.

2.1 Memory-Based Collaborative Filtering

We review memory-based and SVD-based approaches for collaborative filtering
(CF) in this and the next subsections. We construct a rating matrix R with
rows representing users and columns representing movies. Since only part of the
elements are known, we use X to denote the sparse matrix with elements known
and use Y to denote the sparse matrix with elements we want to estimate. Both
X and Y are subsets of rating matrix R. We define the problem of collaborative
filtering as predicting the values in Y based on X .

User-based collaborative filtering predicts a target user u’s interest in a test
item m based on rating information from similar users.

rum =
∑

v∈Cu

suvrvm for rum ∈ Y (1)
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where rum represents the rating for an item m from a user u and Cu is the set of
nearest neighbors of the user u within which a user v has influence weight suv on
u and suv can be calculated by normalizing Pearson Correlation Coefficient [16].
Hence suv = PPC(u, v)/

∑
w∈Cu

PPC(u, w), where

PCC(u, v) =

∑
i∈Ru∩Rv

(rui − ru) · (rvi − rv)√∑
i∈Ru∩Rv

(rui − ru)2 ·
√∑

i∈Ru∩Rv
(rvi − rv)2

(2)

or Vector Space Similarity [4], so suv = V SS(u, v)/
∑

w∈Cu
V SS(u, w), where

V SS(u, v) =

∑
i∈Ru∩Rv

rui · rvi√∑
i∈Ru∩Rv

r2
ui ·

√∑
i∈Ru∩Rv

r2
vi

(3)

where Ru is the set of items rated by the user u.
Similar to user-based approach, we write item-based approaches as

rum =
∑

n∈Cm

smnrun for rum ∈ Y (4)

where Cm is the set of nearest neighbors of the item m within which the item
n has influence weight smn on m and smn can also be calculated using PCC or
VSS as in the above equations.

2.2 SVD-Based Collaborative Filtering

Singular value decomposition (SVD)-based methods are also explored by many
researchers for collaborative filtering [3,20,25]. SVD seeks a low-ranked matrix
that minimizes the sum squared distance to the rating matrix R. Since most of
the entries in R are missing, the sum-squared distance is minimized with respect
to the partially observed entries of the rating matrix, which is X . So the loss
function we optimize is

l = |IX � (X − UV T )||2F + α(||U ||2F + ||V ||2F )

where � stands for element-wise multiplication, || · ||2F denotes the Frobenius
norm, and IX is the indicator function, with element IX(i, j) taking on value
1 if the user i rated the movie j, and 0 otherwise. U is a lower dimensional
representation for users and V is a lower dimensional representation for items.
The diagonal matrix Σ in traditional SVD is merged into U and V for simplicity.
The last term is a regularization term which prevents the model from overfitting.
Unobserved entries Y are then predicted by Y = IY � (UV T ). The regularized
SVD method has been shown to be successful in the competition of Netflix
Prize [8,22].

Another adaptation of SVD-based method is using the EM algorithm to solve
the missing value problem [25]. The basic idea is to iteratively estimate the
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missing ratings and conduct SVD decomposition. However, since the matrix is no
longer sparse in this approach, it quickly runs up against practical computational
limits.

3 Learning Similarity Functions

We present our main contributions in this section. To begin with, we consider
memory-based approaches in matrix form and extend it to one-directional simi-
larity learning.

3.1 One-Directional Similarity Learning

Memory-based collaborative filtering methods are usually separated from model-
based approaches and regarded as heuristic-based approaches [1]. In this paper
we provide a novel way to model memory-based methods from matrix point of
view.

Equation (1) can be written in a matrix form,

Y = Ŝ1X (5)

where Ŝ1 denotes the similarity matrix of row vectors corresponding to users
with Ŝ1(u, v) defined by

Ŝ1(u, v) =
{

suv, v ∈ Cu, (6)
0, otherwise. (6′)

Similar to the user-based approach, item-based methods can be represented in
matrix form as

Y = XŜ2 (7)

where Ŝ2 denotes the similarity matrix of the column vectors corresponding to
items with Ŝ2(m, n) defined by

Ŝ2(m, n) =
{

smn, n ∈ Cm, (8)
0, otherwise. (8′)

Noticing that X and Y are both subsets of the rating matrix R, Equations (5)
and (7) can actually be seen as matrix reconstruction equations with respect to
R. By replacing Y on the left side of the equation with R, we can obtain matrix
factorization formulas for similarity matrix learning.

R = S1X and R = XS2 (9)

In the above formulas, the similarity matrices S1 and S2 are no longer predefined
as in previous memory based approaches. Instead, they are the variables that
can be learned from the data.
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To reduce the number of parameters in a similarity matrix S, we can fac-
torize S with S = UV T . This means similarity matrices S1 and S2 can be
non-symmetric since the influence between users may not be symmetric. Then
we have a factorization problem with missing values,

R = UV T X (10)

If we ignore the missing values and replace R with X , this will lead to a new
factorization problem

X = UV T X (11)

Matrix factorization in this form is also discussed in [23] where it is solved for
document clustering.

If we assume the similarity matrices S1 and S2 are symmetric, we can reduce
the number of parameters further and reformulate Equation (10) as

R = UUT X (12)

This is one-directional similarity learning model. In next subsection we extend
it to bi-directional case.

3.2 Bi-Directional Similarity Learning

One-directional similarity learning considers users and items separately. In this
section, we extend the learning problem to a bi-directional similarity learning
problem that can learn the row and column similarities together. Recent stud-
ies [14,21] have found that the combination of user-based and item-based ap-
proaches can indeed boost the performance of collaborative filtering. However,
these recently proposed methods still conduct user-based prediction and item-
based prediction separately. In this section, we show how to integrate them
together to take the advantage of both.

Based on previous subsection, a natural way to combine user-based and item-
based approach can be stated as

rum =
∑

v,n

suvsmnrvn for rum ∈ Y (13)

In this formula, we extend the neighborhood to all users and all items. This
indicates that all ratings are interconnected: the prediction for a target user and
item can benefit from ratings of other users and items, and vice versa.

The above equation can be re-written in matrix form

Y = S1XS2 (14)

where S1 and S2 are also variables we need to learn. S1 represents the row (user)
similarity matrix and S2 represents the column (item) similarity matrix. Similar
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to one-directional similarity learning, we have a similarity learning problem in
matrix factorization form.

R = S1XS2 (15)

With the assumption that the similarity matrices S1 and S2 are symmetric, the
problem can be converted to

R = UUT XV V T (16)

where U is a rank-KU matrix and V is a rank-KV matrix with KU denoting the
number of latent factors for users and KV be the number of latent factors for
items.

We can also extend the model to nonsymmetric similarity matrix, but in that
case we have more parameters to learn. Symmetric assumption can significantly
decrease the number of variables we need to learn. Another advantage of using
this trick is that it guarantees the similarity matrix to be positive semi-definite
naturally. Therefore, we still follow the symmetric assumption in this paper.

3.3 Algorithms for Bi-directional Similarity Learning

Now the loss function we are going to minimize is

l = ||IX � (R − UUT XV V T )||2F + α(||U ||2F + ||V ||2F ) (17)

Since IX � R = IX � X , l can be converted to

l = ||IX � (X − UUT XV V T )||2F + α(||U ||2F + ||V ||2F )

The last term in l is a regularization term which prevents the model from over-
fitting. Let E = IX � (X − UUT XV V T ), then the loss function is simplified by

l = ||E||2F + α(||U ||2F + ||V ||2F ) (18)

We use gradient approaches to solve the minimization problem. We have the
derivation of U and V in matrix form:

∂l

∂U
= −2(EV V T XT U + XV V T ET U) + 2αU (20)

∂l

∂V
= −2(ET UUT XV + XT UUT EV ) + 2αV (20′)

There are a lot of gradient based algorithms which have been developed for op-
timization problems such as conjugate gradient [15] and SMD [18]. In this paper
we use adaptive gain gradient decedent algorithm [2] to minimize the loss func-
tion. The algorithm is described in Algorithm 1. The advantage of adaptive gain
gradient decedent algorithm includes easy implementation and fast convergence
speed.
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Algorithm 1. Bi-directional Similarity Learning using Adaptive Gain
Input: training data X, parameters μ, KU , KV and T
Output: U and V
Initialization: Random initialize U and V
FOR t = 1 TO T :

Update U : U (t+1) = U (t) − η
(t)
U � ∂l

∂U

(t)

Update V : V (t+1) = V (t) − η
(t)
V � ∂l

∂V

(t)

Update ηU :
η
(t)
U = η

(t−1)
U · max( 1

2 , 1 + μ · η
(t)
U � ∂l

∂U

(t−1) � ∂l
∂U

(t))
Update ηV :

η
(t)
V = η

(t−1)
V · max( 1

2 , 1 + μ · η
(t)
V � ∂l

∂V

(t−1) � ∂l
∂V

(t))

Another point we should notice is that although the similarity matrices S1
and S2 are large and dense, we can avoid computing them in the algorithm by
carefully choosing the order of matrices multiplication.

3.4 Relation to SVD

In this section, we discuss the relation between our model and SVD model.

Theorem 1. If we disregard the missing data and require that the ranks of U
and V are the same, SV D is the solution to X = UUT XV V T .

Proof. Suppose that X = UΣV T . By plugging it into UUT XV V T , we obtain
UUT XV V T = UUT UΣV T V V T = UΣV T = X .

The equivalence of our model and SVD models can be established under the
condition that there are no missing values and U and V have equal ranks. How-
ever, when there are missing values, the two models are not equivalent anymore
even when we have KU = KV = K. We can see this point in the experiment
part again.

Another difference between our model and SVD is seen from the rank of
approximation matrix. SVD seeks the optimal rank-K approximation to the
original matrix. But in our problem, we are not explicitly given rank restriction
of the reconstructed matrix. The rank of reconstructed matrix is determined by
the ranks of S1, S2 and X itself.

From the dimension-reduction point of view, SVD seeks a K dimensional
space for row vectors and column vectors. However, in our model, we look for two
different ranked spaces for row vectors and column vectors. Therefore, our model
can also be regarded as bi-dimension-reduction-based method for row vectors and
column vectors with different dimensions. We also can find the relation between
the two spaces as two basis sets satisfy the following equation

U · B1 = B2 · V (21)

where the users’ basis B1 = UT XV V T and the items’ basis B2 = UUT XV .
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4 Rating Prediction Based on Bidirectional Similarity
Learning

Different strategies can be used for collaborative filtering based on our learned
similarity. In this section, we discuss three types of similarity learning based
collaborative filtering strategies.

4.1 Matrix Reconstruction Strategy

Model-based approaches keep the user profiles in a more compressed data struc-
ture than memory based methods. The prediction for a user’s interests is based
on the user’s profile that is learned during a training process. In our model, the
user u’s profile corresponds to row u in matrix U denoted by Uu and the item
i’s profile corresponds to column i in V , i.e. V T

i . With our learned model, we
predict a rating to the item i by the user u,

rui =
∑

v,j

svusijrvj = UuUT XV V T
i for rui ∈ Y

This can be done when both u and i show up in the training data X . We refer to
this prediction strategy as matrix reconstruction strategy for SLCF (R-SLCF).

Matrix reconstruction strategy for collaborative filtering has the new user
and new item problem. It can only predict the rating for existing users and
items during training process. A naive solution to this problem is to retrain
the whole new dataset and then make prediction for the new users and items.
This procedure is clearly too time-consuming and often infeasible. In the next
sub-section, we will use another strategy to solve this problem.

4.2 Projection Strategy

In this section, we discuss projection based strategy P-SLCF in our new frame-
work which can bring new users and items into the model without retraining on
the whole dataset. The key issue is how to introduce new users and items into
the previous model and predict ratings for these new users and items based on
previous models.

Suppose that there are some new users who arrive with new rating information
Ŷ and Ŷ is to be included into the previous user rating matrix X . Then we have

a new rating matrix with X ′ =
(

X

Ŷ

)
. Let UY be a representation of new users.

Hence we have
Ŷ = U

�Y · UT XV V T = U
�Y · B1 (22)

By solving the above linear equation, we find U
�Y with

U
�Y = Ŷ · ((I

�Y � B1) · (I
�Y � B1)T + λI)−1 (23)

where I is identity matrix. We can regard the user as being projected to a lower
dimensional space spanned by the matrix B1. Then, all new users are projected
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into this space. The last term λI is introduced to guarantee that the inverse
operation is more stable [13].

Similar to adding new users, we can consider the new items as being projected
to a lower dimensional space spanned by B2. Suppose that there are some new
items that arrive with new rating information Ŷ and Ŷ is included into the
previous user rating matrix X to give X ′ = (X, Ŷ ). We can update V

�Y by

Ŷ = UUT XV · V T
�Y

= B2 · V T
�Y

(24)

U
�Y = Ŷ · ((I

�Y � B2) · (I
�Y � B2)T + λI)−1 (25)

Then similar to R-SLCF, we can predict the rating by

R
�Y = U

�Y UT XV V T
�Y

Although we need to calculate inverse of matrices in projection based strategy,
but since the matrices are of rather small scale and can be computed efficiently.

4.3 Improved Memory-Based Strategy

Memory-based methods can also be adapted to use our learned similarity. The
idea is to use the learned similarity matrices S1 and S2 to find the nearest
neighbors. Then we can use the memory based methods for prediction. We refer
to this strategy as M-SLCF. This strategy is especially helpful for comparing
our learned similarity with the user-defined similarity such as PCC. We show
the results of comparison in Section 5.3.

5 Experiment

In this section, we will introduce data sets, evaluation metric and experiment
results of our similarity learning-based collaborative filtering. In Section 5.3, M-
SLCF is used and in Section 5.4, P-SLCF is used for comparison purpose. In
other parts, R-SLCF is used for experiments.

5.1 Datasets

Three benchmark datasets are used in our experiments.

– MovieLens3 is a widely used movie recommendation dataset. It contains
100,000 ratings with scale 1-5. The ratings are given by 943 users on 1,682
movies. The public dataset only contains users who have at least 20 ratings.

– EachMovie4 is another popular used dataset for collaborative filtering. It
contains 2,811,983 ratings from 72,916 users on 1,628 movies with scale 1-6.

3 http://www.grouplens.org/
4 http://www.cs.cmu.edu/ lebanon/IR-lab.htm
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Table 1. Optimal KV Given KU

KU 5 6 7 8 9 10 11 12 13 14 15
Opt KV 14 14 14 14 12 10 8 8 8 6 5
MAE 0.7611 0.7606 0.7606 0.7607 0.7604 0.7606 0.7605 0.7603 0.7606 0.7607 0.7608

Table 2. Optimal KU Given KV

KV 5 6 7 8 9 10 11 12 13 14 15
Opt KU 13 13 12 12 12 11 9 9 9 7 6
MAE 0.7608 0.7607 0.7606 0.7603 0.7606 0.7606 0.7606 0.7604 0.7607 0.7606 0.7610
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– Netflix5 is a pubic dataset used in Netflix Prize competition. It contains
ratings from 480,000 users on nearly 18,000 movies with scale 1-5. In this
paper, we use a subset of 367,348 ratings from 5,000 users and 2,000 movies
for our experiments.

5.2 Evaluation Metrics

In this paper, we use Mean Absolute Error (MAE) for experiment evaluation.

MAE =

∑
u,m |rum − r̂um|

N

where rum denotes the rating of the user u for the item m, and r̂um denotes the
predicted rating for the item m of the user u. The denominator N is the number
of tested ratings. Smaller MAE score corresponds with better prediction.
5 http://www.netflixprize.com
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5.3 Empirical Study of our Approach

Impact of KU and KV . Two important parameters of our SLCF methods are
the user similarity matrix rank KU and the item similarity matrix rank KV . In
this experiment, we run experiments on MovieLens dataset to study the impact
of KU and KV . Figure (1) shows the three dimensional MAE surface with KU

and KV being changed simultaneously. We find that the best prediction result is
achieved when KU and KV are neither too small nor too large. Table (1) shows
the best KV for given KU and Table (2) shows the best KU for given KV . An
interesting observation is that most of the best prediction results are achieved
when KU + KV ≈ 20. This means that the inherent information conveyed by
latent user factors and item factors are complementary to each other. When
fewer user factors are available, more item factors are required to characterize
the inherent structure of rating matrix, and vice versa. From the MAE surface
of Figure (1), the best result is obtained when both user and item factors are
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considered (KU = 12, KV = 8 ). This verifies our motivation that user and item
spaces should be modeled with different numbers of factors. Another parameter
in our model is α which controls the balance between prediction error on training
data and model complexity. After testing on different values, we use α = 0.0001
in our experiments.

The Difference of R-SLCF and P-SLCF. Since it is costly to retrain the
model when new users or items come, we provide the P-SLCF algorithm in
Section 4.2. In this experiment, we compare the accuracy of prediction by R-
SLCF and P-SLCF. Figure (2) shows the comparison results on MovieLens. In
this experiment, we use 200 users as testing data. When training users are very
few, P-SLCF is not as good as R-SLCF. But as the number of training users
increases, the performances of P-SLCF and R-SLCF become very close.

An important parameter in P-SLCF is λ. Figure (3) shows the influence of λ
to the prediction accuracy. After testing different values of λ, we find that λ = 1
to be a good choice which we use in our experiments.

Impact of Data Sparseness. In this sub-section, we show experiments on the
impact of data sparseness on similarity learning using M-SLCF. For comparison
purpose, we also use the predefined similarity PCC (Equation (2)) for selecting
neighbors which we refer to as M-PCC. In both cases, Equation (1) with equal
weights for neighbors is used for making predictions.

We first filter the EachMovie dataset by keeping the users who have rated
different number of movies (from less than 50 to less than 5 in this experiment).
In this way, we construct datasets with different degree of sparseness. We use user
based method with neighbors found by SLCF and compare it with PCC. When
the data are not that sparse, PCC can do good job in finding nearest neighbors.
However, when the degree of sparseness increases, it does not work anymore. In
Figure (4), we can clearly see that SLCF is able to find more accurate neighbors
with the degree of sparseness increased. Figure (5) verifies our conclusion from
the other side. It shows how SLCF and PCC perform with different number of
nearest neighbors. We can see that PCC is good at finding the most similar users
but SLCF has the advantage of finding the potentially similar users. That is, we
can improve the recall of finding similar users. Therefore, when more nearest
neighbors are used, our model performs much better.

5.4 Comparison with Other Approaches

The baselines we use include user-based method using PCC, item-based method
using PCC and regularized SVD method. We also compare our method with an-
other recent proposed state-of-the-art method [21] which also fusions the similar-
ities of users as well as items. Although we also conduct experiments on Netflix
dataset, our results are not comparable with the top results on the leaderboard
since they are hybrid methods. We should notice regularized SVD, which is one
of the best algorithms in the Netflix Prize competition [8], is also included in
our baselines.
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Table 3. MAE comparison of R-SLCF
with SVD for different K. For R-SLCF1
we require KU = KV = K. For R-SLCF2
we require KU + KV = 2K.

Dataset K SVD R-SLCF1 R-SLCF2

MovieLens

K=5 0.7665 0.7534 0.7534
K=10 0.7676 0.7517 0.7516
K=15 0.7785 0.7533 0.7523
K=20 0.7906 0.7554 0.7532

EachMovie

K=5 0.8023 0.7902 0.7901
K=10 0.8272 0.7855 0.7845
K=15 0.8317 0.7920 0.7912
K=20 0.8127 0.7932 0.7920

Netflix

K=5 0.7557 0.7505 0.7501
K=10 0.7640 0.7490 0.7480
K=15 0.7737 0.7498 0.7498
K=20 0.7835 0.7571 0.7569

Table 4. MAE comparison of R-SLCF
with memory-based method and item-
based method. N = 30 means only users
with ratings no larger than 30 are in-
cluded.

Dataset #Rating I-based U-based R-SLCF

MovieLens

N=30 1.0936 0.8785 0.8418
N=40 0.9587 0.8527 0.8113
N=50 0.9144 0.8451 0.8104
N=60 0.8648 0.8239 0.8056

EachMovie

N=30 1.7238 0.9919 0.9347
N=40 1.6437 0.9908 0.9297
N=50 1.7792 0.9836 0.9338
N=60 1.6656 0.9886 0.9327

Netflix

N=30 0.9568 0.8804 0.7974
N=40 0.8647 0.8390 0.7782
N=50 0.8293 0.8114 0.7672
N=60 0.7934 0.7774 0.7439

Table 5. Compare with results of SF on MovieLens

Num. of Training Users 100 200 300
Num. of Ratings Given 5 10 20 5 10 20 5 10 20
P-SLCF 0.838 0.770 0.771 0.799 0.768 0.763 0.787 0.753 0.739
SF 0.847 0.774 0.792 0.827 0.773 0.783 0.804 0.761 0.769

Comparison with SVD-Based Approaches. Since our model is similar to
SVD, in this section, we carefully compare our model with the regularized SVD
model we introduced in Section 2.2 in different aspects. Figure (6) shows the
convergence curves of our approach compared with regularized SVD. In this ex-
periment, we use the same optimization algorithm (adaptive gain) with the same
initial point6 for U and V to run the algorithms and tune the best step length
for each algorithm. We can see our approach converges faster than regularized
SVD and finds better solution. It is also worthy to notice that in the last several
iterations regularized SVD has smaller MAE on training data but larger MAE
on test data when compared with R-SLCF. This indicates regularized SVD is
more likely to be overfitting than our model. This may be due to that regularized
SVD requires a strict rank-K approximation but we do not.

Table (3) shows a performance comparison of our model and regularized SVD
model with various Ks. In this experiment, R-SLCF uses the same number of
variables with regularized SVD for the fair of comparison. We can see our method
clearly outperforms regularized SVD model. This experiment also indicates that

6 Although the initial points are the same, the initial performance can be different.
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when there are missing values our model is different from regularized SVD even
KU = KV .

Comparison with Memory-Based Approaches. We compare our method
with user-based(U-based) and item-based(I-based) approaches with results
shown in Table (4). The experiment is carried out with different sparseness
condition with N = 30 meaning only users who have ratings less than or equal
to 30 are used. From this table we can see that our method clearly outperforms
the baselines.

We also compare our method with another stat-of-the-arts algorithm Similar-
ity Fusion (SF) [21] which also utilizes both user side and item side information.
The difference between our approach and SF is that the similarities used in our
algorithm is automatically learned rather than defined heuristically. To compare
with their algorithm, we followed the exactly same experiment settings in the
paper. Then, for the performance of their method, we quote their results from
their publication. We can see that our approach outperforms SF significantly.

6 Conclusion and Future Work

We proposed a novel model learning user and item similarities simultaneously
for collaborative filtering. We showed that our model can be regarded as a gen-
eralization of SVD model. We developed an efficient learning algorithm as well
as three prediction strategies. The experiments showed our method could out-
perform baselines including memory-based approaches and SVD.

For future work, we plan to develop more efficient algorithms to learn our
model in larger scale datasets. We also plan to relax the symmetry assumption.
Although it brings more variables to learn, it is a more reasonable assumption.
Although focused on collaborative filtering in this paper, our model is very gen-
eral for sparse data which has matrix form. Therefore, we plan to apply our
model to other kinds of data sets and tasks such as document clustering.
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