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Abstract. Kernel canonical correlation analysis (KCCA) is a dimen-
sionality reduction technique for paired data. By finding directions that
maximize correlation, KCCA learns representations that are more closely
tied to the underlying semantics of the data rather than noise. However,
meaningful directions are not only those that have high correlation to an-
other modality, but also those that capture the manifold structure of the
data. We propose a method that is simultaneously able to find highly
correlated directions that are also located on high variance directions
along the data manifold. This is achieved by the use of semi-supervised
Laplacian regularization of KCCA. We show experimentally that Lapla-
cian regularized training improves class separation over KCCA with only
Tikhonov regularization, while causing no degradation in the correlation
between modalities. We propose a model selection criterion based on
the Hilbert-Schmidt norm of the semi-supervised Laplacian regularized
cross-covariance operator, which we compute in closed form.

1 Introduction

Kernel canonical correlation analysis (KCCA) is a fundamental technique for
dimensionality reduction that relies on paired data to learn directions that max-
imize correlation between the projected representations in each space [1,2]. Tech-
niques based on only one space are susceptible to failure in the event that there
are high-variance, semantically meaningless noise directions. KCCA overcomes
this weakness by requiring that the projected data be correlated to a projection of
the other modality, and has been shown to increase class separability when com-
pared to single modality dimensionality reduction [3]. While KCCA often gives
superior results to single modality dimensionality reduction techniques, correla-
tion with some output modality may not be the only criterion of interest. We
wish to find directions that not only relate the two modalities, but also lie along
the data manifold, in order to better represent the structure of the data and im-
prove class separability. In this work, we describe a method to incorporate these
two goals into a common optimization by employing semi-supervised Laplacian
regularization. This method gives an embedding of the data that makes use of
the information between modalities, as well as the information within each single
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modality. By using Laplacian regularization, we are able to learn directions that
tend to lie along the data manifold estimated from a much larger set of data [4].
This gives us greater confidence that the learned directions represent the un-
derlying statistical structure of the data and that we have not been misled by
small sample effects. We show experimentally that learning along the manifold
results in increased performance, even in the fully supervised setting, in that the
learned embeddings give better class separability on a variety of datasets.

One way to evaluate the performance of KCCA is to take the sum of the
squared correlations that it reveals. This quantity turns out to be the Hilbert-
Schmidt norm of the normalized covariance operator between the feature repre-
sentations of each modality, and is referred to as the Hilbert-Schmidt normalized
independence criterion [5]. The underlying concept of semi-supervised Laplacian
regularization of KCCA can also be applied to an empirical estimate of this op-
erator, and therefore also to the independence criterion. Here, we make use of
this Laplacian regularized estimate to define a model selection criterion for the
regularization parameters that can be computed in closed form from the kernel
matrices and Laplacian.

The rest of the paper is organized as follows. We discuss related work in
Section 2 and give a review of KCCA in Section 3. In Section 4 we present the
semi-supervised Laplacian regularization of KCCA. In Section 4.3 we discuss the
relationship between the proposed algorithm and a recently introduced semi-
supervised Fisher linear discriminant analysis algorithm. We describe our model
selection criterion in Section 5 and also introduce the semi-supervised Lapla-
cian regularized estimate of the HSNIC. Experimental results are presented in
Section 6. Finally, we conclude in Section 7.

2 Related Work

Although KCCA has been applied in many situations, including cross media
information retrieval [2,6], multi-modal data clustering [3], analysis of fMRI
data [7], extraction of gene clusters [8], testing for independence [9,10], and
ICA [11], to our knowledge there have been no semi-supervised extensions of the
algorithm. Laplacian regularization is a common technique for semi-supervised
learning [4,12]. [13] have recently proposed a semi-supervised Fisher linear dis-
criminant analysis algorithm based on Laplacian regularization, which we show
in Section 4.3 to be a special case of the algorithm proposed here.

In our experiments, we will perform model selection by making use of var-
ious statistics computed on the correlation operator spectrum (see Section 5):
we therefore provide a brief overview of methods used to evaluate and sum-
marize this spectrum. A variety of statistics on the correlation operator spec-
trum are presented in [9] (for the spline kernel RKHS), where these are used
for independence testing. Statistics on the correlation operator used for inde-
pendent component analysis in [11] include the maximum singular value and
kernel generalized variance, where the latter is an upper bound near indepen-
dence on the mutual information [14]. Finally, a closed form expression for the
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Hilbert-Schmidt norm of the correlation operator is provided in [5], where it is
shown that this norm is an estimate of the mean squared contingency. Finally,
the spectrum of two correlation operators can be compared directly for model
selection, as in [2].

3 A Review of Kernel Canonical Correlation Analysis

3.1 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) seeks to utilize paired datasets to simul-
taneously find projections from each feature space that maximize the correla-
tion between the projected representations [1]. Given a sample from a paired
dataset1 {(x1, y1), . . . , (xn, yn)} we would like to simultaneously find directions
wx and wy that maximize the correlation of the projections of x onto wx with the
projections of y onto wy. This is expressed as

max
wx,wy

Ê [〈x, wx〉〈y, wy〉]√
Ê [〈x, wx〉2] Ê [〈y, wy〉2]

, (1)

where Ê denotes the empirical expectation. We denote the covariance matrix of
(x, y) by C and use the notation Cxy (Cxx) to denote the cross (auto) covariance
matrices between x and y. Equation (1) is equivalent to

max
wx,wy

wT
x Cxywy√

wT
x Cxxwx wT

y Cyywy

. (2)

This Rayleigh quotient can be optimized as a generalized eigenvalue problem, or
by decomposing the problem using the Schur complement as described in [2].

There is a natural extension of CCA in the event where there are more than
two modalities. This can be written as a generalized eigenvector problem that
subsumes two-way CCA as a special case

⎛
⎜⎝

C11 . . . C1k

...
. . .

...
Ck1 . . . Ckk

⎞
⎟⎠

⎛
⎜⎝

w1
...

wk

⎞
⎟⎠ = λ

⎛
⎜⎝

C11 . . . 0
...

. . .
...

0 . . . Ckk

⎞
⎟⎠

⎛
⎜⎝

w1
...

wk

⎞
⎟⎠ . (3)

3.2 Kernel Canonical Correlation Analysis

We can extend CCA, e.g. to non-vectorial domains by defining kernels over x and
y: kx(xi, xj) = 〈φx(xi), φx(xj)〉 and ky(yi, yj) = 〈φy(yi), φy(yj)〉, and searching

1 We assume the samples have zero mean for notational convenience.
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for solutions that lie in the span of φx(x) and φy(y): wx =
∑

i αiφx(xi) and
wy =

∑
i βiφy(yi). In this setting we use an empirical estimator for C:

Ĉxy =
1
n

n∑
i=1

φx(xi) · φy(yi)T , (4)

where n is the sample size, and φx(xi) and φy(yi) are assumed to have 0 mean.
Ĉxx and Ĉyy are defined similarly. Denoting the kernel matrices defined by our
sample as Kx and Ky, the solution of Equation (2) is equivalent to maximizing
the following with respect to coefficient vectors, α and β

αT 1
nKxKyβ√

αT 1
nK2

xαβT 1
nK2

yβ
=

αT KxKyβ√
αT K2

xαβT K2
yβ

. (5)

As discussed in [2] this optimization leads to degenerate solutions in the case that
either Kx or Ky is invertible so we maximize the following regularized expression

αT KxKyβ√
αT (K2

x + εxKx) αβT
(
K2

y + εyKy

)
β

, (6)

which is equivalent to Tikhonov regularization of the norms of wx and wy in the
denominator of Equation (2). In the limit case that εx → ∞ and εy → ∞, the
algorithm maximizes covariance instead of correlation.

The formulation of CCA in Equation (3) is also readily regularized and ker-
nelized, and allows one to take advantage of more than two modalities at a
time.

4 Semi-supervised Kernel Canonical Correlation Analysis

If we have additional data available that do not have correspondences to the
other modality, we can search for solutions that lie in the span of the larger set of
training points, and regularize using the additional data. We propose Laplacian
regularization, which tends to find solutions that lie along an empirical estimate
of the data manifold [4]. This gives increased robustness to the algorithm, and
increases class separability in the absence of label information.

4.1 The Two-Modality Case

We have training data {x1, . . . , xn} with corresponding data {y1, . . . , yn} as well
as additional training data {xn+1, . . . , xn+px} and {yn+1, . . . , yn+py} that do
not have correspondences. We use the variables mx = n + px (my = n + py)
to denote the total number of samples in modality x (y). We denote the d ×
n data matrix X = (x1, . . . , xn), and the matrix including all data with and
without correspondences X̂ = (x1, . . . , xn, xn+1, . . . , xn+px), and similarly for Y
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and Ŷ . Furthermore we denote kernel matrices between the various sets of data
as follows: Φx(X)T Φx(X) = Kxx, Φx(X̂)T Φx(X) = Kx̂x, Φx(X̂)T Φx(X̂) = Kx̂x̂,
etc.. Kernel matrices for Y are defined analogously. We wish to optimize the
following generalization of Equation (6)

αT Kx̂xKyŷβ√
αT (Kx̂xKxx̂ + Rx̂)αβT (KŷyKyŷ + Rŷ)β

, (7)

where Rx̂ = εxKx̂x̂ + γx

m2
x
Kx̂x̂Lx̂Kx̂x̂ and Lx̂ is the empirical graph Laplacian

estimated from the mx samples of labeled and unlabeled data.

4.2 The General Case

In the general case, we have more than two modalities. As a result, the data
that has correspondences between modalities 1 and 2 can be different than the
data that has correspondences between modalities 2 and 3, etc.. We abuse the
notation Kîj to denote the kernel matrix computed between all the data for
modality i and the data for modality i that also has correspondences to the data
in modality j. This matrix has dimensionality mi × nij , where mi is the total
number of training examples (with or without correspondences) for modality i,
and nij is the number of correspondences between modalities i and j.

The following generalizes Equations (3) and (7)

⎛
⎜⎝

0 . . . 1
n1k

K1̂kK1k̂
...

. . .
...

1
n1k

Kk̂1Kk1̂ . . . 0

⎞
⎟⎠

⎛
⎜⎝

β1
...

βk

⎞
⎟⎠ = (8)

λ

⎛
⎜⎝

1
m1

K1̂1K11̂ + R1̂ . . . 0
...

. . .
...

0 . . . 1
mk

Kk̂kKkk̂ + Rk̂

⎞
⎟⎠

⎛
⎜⎝

β1
...

βk

⎞
⎟⎠ .

4.3 Fisher Linear Discriminant Analysis

There is an intimate relationship between CCA and Fisher linear discriminant
analysis (LDA) [15]. LDA is a special case of CCA where the second modality is
the labels [16,17], consequently, any semi-supervised algorithm for CCA implies
a semi-supervised LDA algorithm as well. Recently [13] have proposed a semi-
supervised LDA approach. If we use the identity kernel on the labels, set the
label regularization parameters to 0, and set εx = 0, the directions learned from
Equation (7) are the same as those found using the method of [13].

Similarly, when one of the spaces is one-dimensional (i.e. the kernel matrix
is rank 1), Laplacian regularized KCCA gives a generalization of kernel ridge
regression.
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5 Model Selection

We propose a model selection algorithm based on the Hilbert-Schmidt normal-
ized information criterion (HSNIC). The HSNIC is closely related to KCCA and
is equivalent to the squared �2 norm of the spectrum of the normalized cross-
covariance operator, which in the limit is independent of the kernel2 used in
its estimation [5,10]. Because the spectrum of the normalized cross-covariance
operator is identical to the spectrum of the solutions to KCCA, this provides
us with a useful statistic upon which we can base our model selection. HSNIC
gives us access to the �2 norm of the spectrum, which is dominated by the first
KCCA directions for kernels with quickly decaying spectra, such as the Gaussian
kernel [11,18].

We first derive the semi-supervised empirical HSNIC estimate in Section 5.1
and then use this result to define our model selection criterion in Section 5.2.

5.1 Semi-supervised Empirical HSNIC Estimate

The HSNIC is the Hilbert-Schmidt norm of the normalized cross-covariance oper-
ator, Vxy, which we define to be regularized using the Laplace-Beltrami operators
on the manifolds of the data [4], ΔMx and ΔMy ,

Vxy =(Σxx + εxI + γxΔMx)−
1
2 Σxy

(
Σyy + εyI + γyΔMy

)− 1
2 . (9)

We estimate the normalized cross-covariance operator empirically using a finite
sample of data, yielding

V̂xy =
(

1
n

XXT + εxI +
γx

m2
x

X̂Lx̂X̂T

)− 1
2 1

n
XY T ·

(
1
n

Y Y T + εyI +
γy

m2
y

Ŷ LŷŶ T

)− 1
2

. (10)

The semi-supervised Laplacian regularized empirical estimate of the HSNIC is
therefore

‖V̂xy‖2
HS = Tr

[
V̂xyV̂ T

xy

]
= Tr [MxMy] , (11)

where

Mx =I − n

(
nI +

1
εx

Kxx − 1
εx

Kxx̂

(
m2

xεx

γx
I + Lx̂Kx̂x̂

)−1

Lx̂Kx̂x

)−1

, (12)

and My is defined analogously. See Section A for the derivation.

2 Assuming that the kernel comes from the class of characteristic kernels, as defined
in [10]. A Gaussian kernel is sufficient.
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5.2 HSNIC Model Selection Criterion

HSNIC is an interesting model selection criterion for many problems as it pro-
vides an estimate of the dependence between X and Y [10]. As discussed ear-
lier, KCCA in high dimensional feature spaces requires regularization to return
non-trivial projection directions: in the event that all regularization is set to 0,
HSNIC estimates perfect correlation if the kernel matrices, Kxx and Kyy, are
invertible. Since choosing the parameters that maximize HSNIC risks overfit-
ting, it is more meaningful to consider the amount by which the dependence
witnessed by HSNIC increases over its value at independence (i.e., in the ab-
sence of correlations between X and Y). We can simulate the latter quantity by
randomly permuting the labels relative to the data: if we were to average several
such permutations, we would obtain an estimate of HSNIC at independence.
The averaging procedure is computationally expensive, however: thus, we use
a single data permutation to approximate the HSNIC value at independence.
We observed on our data that the values of HSNIC for different permutations
were highly concentrated about their mean, which makes this a reasonable ap-
proximation. The model selection criterion consists of the ratio between the
non-permuted and the permuted HSNIC values. If this ratio is high, we are con-
fident that the correlation found is genuine and is not a result of overfitting. The
HSNIC estimate for the permuted dataset is easily computed using a random
permutation matrix, P ,

‖V̂xyR‖2
HS = Tr

[
MxPT MyP

]
, (13)

where V̂xyR is the empirical estimate computed using YR = Y P in place of Y
in Equation (10). This can be verified with an analogous derivation to that in
Section A. We denote the model selection criterion

ρ(εx, γx, εy, γy) =
‖V̂xy‖2

HS

‖V̂xyR‖2
HS

, (14)

and maximize with respect to its parameters. The cost of computing Equa-
tion (14) is only marginally higher than computing Equation (11) as we can
reuse the computation of Mx and My in the permuted version.

6 Experimental Results

6.1 Data

We have performed experiments on a number of datasets of images with asso-
ciated text. We have used the three datasets included in the UIUC-ISD collec-
tion [19]. These consist of images collected from search engines using ambiguous
search terms, “bass,” “crane,” and “squash,” the webpages in which the images
originally appeared, and an annotation of which sense of the word the image
represents, e.g. fish vs. musical instrument. There are 2881 images in the Bass
dataset which have been grouped into 6 categories, 2650 in the Crane dataset
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grouped into 9 categories, and 1948 images in the Squash dataset grouped into 6
categories. For all three datasets, we extracted 128 dimensional SURF descrip-
tors without rotation invariance and with the keypoint threshold set to 0 [20] and
constructed a codebook of 1000 visual words using k-means with 50000 sampled
descriptors. Images were represented by a normalized histogram of these visual
words. For the text representation, we used term frequency histograms extracted
from the webpage title, removing special characters and stop words using the
list from [21]. Both image and text similarities were computed using a χ2 kernel,

k(x, x′) = e
− 1

2A

�d
i=1

(xi−x′
i)

2

xi+x′
i , (15)

with normalization parameter A set to the median of the χ2 distances in the
training set.

Additionally, we have used the multimedia image-text web database used
in [2,22] which consists of samples from three classes: sports, aviation, and paint-
ball, with 400 image-text pairs each. Images were represented using HSV color
and Gabor textures as in [2,22]. Text was represented using term frequencies.
As in [2] we have used a Gaussian kernel for the image space, and a linear kernel
for text.

6.2 Evaluation Methodology

To evaluate the performance of the algorithm, the following evaluation is per-
formed. We randomly split the data into equally sized train and test portions.
The train portion is further split into data with and without correspondences be-
tween the different modalities. Semi-supervised Laplacian regularized KCCA is
trained using data with and without correspondences, using parameters learned
with grid search on the objective described in Section 5.2. Test data are em-
bedded using the learned parameters, and correlations are computed between
the embeddings of the two modalities. We repeat this procedure 40 times, and
evaluate the performance using two metrics: the mean �2 norm of the cross-
correlation coefficients, to determine how well the projected data are correlated;
and the ratio of the determinant of the total scatter matrix and the determinant
of sum of within class scatter matrices for each modality to determine how well
the within-class variation along the data manifold is captured:

|St|
|
∑c

i=1 Sci |
, (16)

where μ denotes the mean of the embedded test data, ci denotes the test data
that are in class i, μi denotes the mean of class i,

St =
∑

j∈test

(xj − μ)(xj − μ)T , (17)

and
Sci =

∑
j∈ci

(xj − μi)(xj − μi)T . (18)
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(d) Sports, Aviation, Paintball

Fig. 1. Experimental results for four different datasets. The first column is the �2 norm
of the cross correlations between the modalities of the held out data. The second and
third columns are the scatter ratios for images and text, respectively.
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Although class labels are available for the dataset, we only use them at test time
during this evaluation in order to measure the separation of semantic classes
achieved by the embeddings. We compute the embeddings without the semi-
supervised Laplacian regularization and also visualize the norm of the resulting
correlation coefficients, and scatter ratios.

In all experiments except for the “Sports Aviation Paintball” dataset, we
have defined the Laplacian using the similarity matrix, W , defined by the kernel
described in Section 6.1. In the “Sports Aviation Paintball” dataset, we use a
linear kernel on the text modality for consistency with previous publications [2,3].
Insted, we have used a Gaussian kernel to compute the Laplacian matrix for
the text modality. In all cases, we use the symmetric normalized Laplacian,
L = D− 1

2 (D − W )D− 1
2 , where D is the diagonal matrix whose entries are the

row sums of W .

6.3 Results

Figure 1 gives results for the four datasets described in Section 6.1. The plots
have been computed by varying the percentage of training data for which corre-
spondences between images and text have been provided to the algorithms. For
more pairs of data, we see that correlations are better represented for KCCA with
and without Laplacian regularization, as expected. The advantage of Laplacian
regularization is shown by improved class separability (as measured by scatter
ratios) for three of the four datasets. This indicates that the manifold structure
of these datasets is important for class separability, and that this is captured
without sacrificing performance on correlation.

Laplacian regularization slightly decreases cross-correlation and scatter ratios
in the “Sport, Aviation, Paintball” dataset (first column). This can be described
in part by the relatively simple structure of the “Sport, Aviation, Paintball”
dataset. PCA, kernel-PCA, and KCCA all give similar embeddings for this
dataset, with the majority of variance contained in only two dimensions [3].
The use of Laplacian regularization is therefore unnecessary as there is little
non-linearity in the data manifold; manifold structure is effectively captured
by linear high variance directions and non-parametric Laplacian regularization
degrades performance.

For the “Bass,” “Crane,” and “Squash” datasets, Laplacian regularization is
able to capture relevant discriminative structure that is available in each modal-
ity without sacrificing performance in finding directions that show correlation
between the modalities.

7 Conclusions and Future Work

In this work we have proposed the use of Laplacian regularized kernel canoni-
cal correlation analysis as a dimensionality reduction technique. Experimental
results show increased performance in class separation for datasets that have suf-
ficient nonlinear structure. We have proposed a model selection criterion based
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on the Hilbert-Schmidt norm of the Laplacian regularized normalized cross co-
variance operator and have derived its solution in closed form (Equation (11)).

The Hilbert-Schmidt normalized information criterion is an important statis-
tical object that can be used to test for independence of sets of variables, which
gives rise to many applications in machine learning. A promising area for future
work is to experimentally validate the benefit of using the Laplacian regularized
empirical estimate in applications where only Tikhonov regularization has been
previously applied. Examples include causality inference [10] and ICA [11].

All experiments here have been performed using only two modalities. Lapla-
cian regularization of KCCA for multiple modalities, as described in Equation (8)
warrants further experimental evaluation. This is particularly relevant, e.g., in
multi-language text corpora for which correspondences for some but not all doc-
uments are known. Laplacian regularization would allow better modeling of the
characteristics of each of the individual languages.

Finally, depending on the structure of a dataset, iterated Laplacian regular-
ization may be appropriate in some cases [23]. This gives stronger conditions on
the structure of the manifold which may help in avoiding overfitting.
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A Derivation of Semi-supervised Empirical HSNIC
Estimate

The measure of interest is the Hilbert-Schmidt norm of the semi-supervised
empirical estimate of the normalized cross-covariance operator

‖V̂xy‖2
HS =Tr

[
V̂xy · V̂ T

xy

]
(19)

=
1
n2 Tr

[
XT

(
1
n

XXT + εxI +
γx
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x

X̂Lx̂X̂T
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X

Y T

(
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n

Y Y T + εyI +
γy

m2
y

Ŷ LŷŶ T

)−1

Y

]
. (20)
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Using the Woodbury matrix identity, (A + BCD)−1 = A−1 − A−1B(C−1 +
DA−1B)−1DA−1, we substitute A = εxI + 1

nXXT , B = X̂, C = γx

m2
x
Lx̂, and

D = X̂T . The following holds
(

1
n
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x
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·
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(
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n

XXT

)−1

. (21)

We apply the same identity again with the substitution A = εxI, B = X ,
C = 1

nI, and D = XT to achieve the result

(
εxI +

1
n

XXT

)−1

=
1
εx

I − 1
ε2

x

X

(
nI +

1
εx

XT X

)−1

. (22)

Plugging in the results of Equations (21) and (22), along with the analogous
term for Y , into Equation (20), we achieve the result

‖V̂xy‖2
HS = Tr [MxMy] , (23)

where

Mx =
1
n

(
1
εx

Kxx − 1
ε2

x

Kxx

(
nI +

1
εx

Kxx

)−1

Kxx−
(

1
εx

Kxx̂ − 1
ε2

x

Kxx

(
nI +

1
εx

Kxx

)−1

Kxx̂

)
·

(
m2

x

γx
L−1

x̂ +
1
εx

Kx̂x̂−

1
ε2

x

Kx̂x

(
nI +

1
εx

Kxx

)−1

Kxx̂

)−1

·
(

1
εx

Kx̂x − 1
ε2

x

Kx̂x

(
nI +

1
εx

Kxx

)−1

Kxx

))
, (24)

and My is defined analogously. We can further simplify this expression by ap-
plying the Woodbury matrix identity in reverse twice, which results in

Mx = I − n

(
nI +

1
εx

Kxx − 1
εx

Kxx̂

(
m2

xεx

γx
I + Lx̂Kx̂x̂
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. (25)
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