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Abstract. We focus on confidence-bounded association rules; we model
a rather practical situation in which the confidence threshold is fixed by
the user, as usually happens in applications. Within this model, we study
notions of redundancy among association rules from a fundamental per-
spective: we discuss several existing alternative definitions and provide
new characterizations and relationships between them. We show that
these alternatives correspond actually to just two variants, which differ
in the special treatment of full-confidence implications. For each of these
two notions of redundancy, we show how to construct complete bases of
absolutely minimum size.

Keywords: association rules, redundancy, optimum bases.

1 Motivation and Related Work

Few, if any, data mining tasks have the relative importance within that field of
research as association rule mining. Whereas practitioners provide some success
stories in various fields, researchers have provided a wealth of algorithmic ideas
related to the task. Since the publication of the first proposal of confidence-
and support-bound-based association mining [2], many algorithms have been
designed. The interesting FIMI competition tested a wide family of these al-
gorithms (http://fimi.cs.helsinki.fi). Currently, the amount of knowledge
related to association rules has grown to the extent that the tasks of creating
complete surveys and websites that maintain pointers to literature on association
rules become daunting (a recent survey is [8] but additional materials appear
in http://wwwai.wu-wien.ac.at/˜hahsler/research/association rules/,
for instance, at the time of writing); see also [3], [26], [32], [33], and the ref-
erences and discussions in their introductory sections.

A close relative of the notion of association rule, namely, that of exact im-
plication, that is, an association rule that holds in 100% of the cases, had been
studied before in the research area of closure spaces, where a number of methods
have been found to construct, for every binary dataset, sets of implications (often
called “bases”) that are complete in the sense that all other implications can be
derived from them; some of these bases enjoy minimality properties depending on
the notion of derivation at hand [10], [12], [27], [31], in fact, such implications can
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be seen also as conjunctions of definite Horn clauses, and the closure under inter-
section that characterizes closures spaces corresponds to the fact, well-known in
logic and knowledge representation, that Horn theories are exactly those closed
under bitwise intersection of propositional models (see e.g. [17]). Thus, as a form
of knowledge gathered from a dataset, implications have several advantages: ex-
plicit or implicit correspondence with Horn logic, therefore a tight parallel with
functional dependencies and a simple and well-known calculus through the Arm-
strong axioms (explained below), whence a clear notion of redundancy.

However, the fact has been long acknowledged (e.g. already in [23]) that,
often, it is inappropriate to search only for absolute implications in the analysis
of real world datasets. There may be many reasons to consider interesting a
co-occurrence pattern, even if the perceived implication does not hold in all the
cases. Already in [23], partial rules are defined in relation to their so-called-there
“precision”, that is, the notion of intensity of implication now widely called
“confidence”: for a given rule X → Y , the ratio of how often X and Y are seen
together to how often X is seen. Many other alternative measures of intensity
of implication exist, and several sources describe them (see [13], [14]); we keep
our focus on confidence, which is among the most common ones, certainly the
first one proposed, and has a natural interpretation for educated users because
it corresponds to a lower bound to the observed conditional probability.

The first attempts at mining partial rules were also proposed in [23]; yet, the
process of searching for implications or for partial rules was not used on really
large datasets until the introduction of the support bound: a threshold on how
often the itemsets under analysis appear in the dataset. The idea of restricting
the exploration for association rules to frequent itemsets, with respect to a sup-
port threshold, gave rise to the most widely discussed and applied algorithm,
Apriori [3], and to an intense research activity. Unfortunately, if the combinato-
rial properties of implications are already nontrivial to handle, those of partial
rules are even harder. Already with full-confidence implications, the output of an
association mining process often consists of large sets of rules, and a well-known
difficulty in applied association rule mining lies in that, on large datasets, and
for sensible settings of the confidence and support thresholds, huge amounts of
association rules are often obtained, much beyond what any user of the data
mining process may be expected to look at; and the difficulty of studying the
formal properties of partial rules makes it very difficult to select in a principled,
provably optimal way, a subset of the rules without losing information.

Therefore, besides the interesting progress in the topic of how to organize and
query the rules discovered (see [21], [22], [28]), one research topic that has been
worthy of attention is the identification of patterns that indicate redundancy of
rules, and ways to avoid that redundancy [1], [9], [18], [19], [23], [26], [32] (see
also section 6 of [8] and the references therein). A major problem, open since
[23], would be to give a general method for constructing bases of minimum size:
a basis for a given dataset would be a subset of the rules that hold in the dataset,
that is complete, in the sense that it makes all the remaining rules redundant.
Therefore, restricting ourselves to the basis does not incur loss of information.
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But the very notion of completeness of a basis depends on the concrete ways
specified to construct “redundant” rules out of the basis. Therefore, we discuss
this point briefly now and propose one specific standpoint. Imagine that a stan-
dard association rule miner has been run on a given dataset, with user-specified
thresholds of support and confidence — a situation that fully matches most cases
of application; its output R is now available, in the form of a (probably large)
set of rules, each labeled with its confidence, all of these above the threshold.
We want to select a basis B ⊆ R, aiming at choosing it as small as possible and,
simultaneously, making sure that we do not lose information in doing so. (In
fact, we are after better algorithmics that obtain directly B instead of mining
for the whole of R and postprocessing it, but, for the sake of the properties of
the basis, the discussion is clearer if we assume R known.) Thus, we are to find
a subset of rules B ⊆ R such that all the rules in R become redundant; and, of
course, the crux now is how to define formally “redundant”.

For the case of exact implications, “redundancy” has several equivalent nat-
ural, robust logical formalizations, such as entailment among definite Horn
clauses. Alternatively, it also corresponds to derivability under the so-called
Armstrong axiom schemes [30]: Reflexivity (X → X), Augmentation (if X → Z
and Y → W then XY → ZW ) and Transitivity (if X → Y and Y → Z then
X → Z).

But, in our context of partial rules with a hard confidence threshold in place,
Augmentation and Transitivity, and also other natural inference schemes, are not
valid anymore: for instance, if most of the times X appears it comes with Z, but
it only comes with Y when Z is not present, then the confidence of X → Z may
be high whereas the confidence of XY → Z may be null; that is, Augmentation
(with W = ∅ here) is not valid. Neither is Transitivity: knowing that A → B
and B → C (or even AB → C) hold with confidence γ does not inform us about
whether A → C holds with confidence γ. Additionally, a rule with several items
in the consequent is not equivalent to the conjunction of the Horn-style rules
with the same antecedent and each item of the consequent separately, and, if we
look only into rules with singletons as consequents, we are almost certain to lose
information. Indeed, if the confidence of X → Y Z is high, it means that Y and
Z appear together in most of the transactions having X ; whereas the fact that
both Y and Z appear in fractions at least γ of the transactions having X does
not inform us that they show up together at a similar ratio of these transactions.
This is also a failing form of Augmentation, with X = Y this time.

Thus, we lack characterizations of derivability, and are left with the task of iden-
tifying, little by little, specific cases of redundancy, working them out, and seeing
whether they give us bases and with which properties. This task indeed has been
performed, and with great results already, but there is some progress to achieve
yet. Most notably for our work here, we find that [1], [19] [26], and [32] have all
proposed interesting notions of redundancy and methods to construct nonredun-
dant bases; some of them work (as does [23]) in a setting where all the partial rules,
plus their confidences, are to be inferred from the basis; and still the size of their
basis can be suboptimal. The basis of [1] and the representative rules of [19] are of
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minimum size in a well-defined sense, but this fact is a contribution of the present
paper. The “basic association rules” of [20] suffer a limitation that consequents
must be singletons, which loses information as indicated above (the same limi-
tation applies to the useful apriori implementation of Borgelt available on the
web [6]). Along a different avenue, some works are set up in a context of “using all
the information available”: namely, combining the supports of some sets in vari-
ous ways, one can determine, through short computations, the supports of many
other sets and the confidence of many rules. The “nonderivable” itemsets and rules
[7], [15], [25] and the “covering” scheme of [9] all refer to the possibility of deriv-
ing rules of confidence above the threshold from information about the supports of
specific sets. This seems a very effective approach, employing information about
actual supports, that depend on the dataset at hand. These works were inspiring,
and crucial to our research; however, we wish to study here a non-comparable ap-
proach: as discussed above, in our setting we are after a notion of redundancy based
only on little information, essentially as in [1] and [19]. Instead of considering a rule
redundant when its confidence can be somehow inferred from others, we take the
slightly different view that it is redundant when “the fact that its confidence is
above γ can be inferred from others”, where these other rules are known to have
confidence above γ but the inference process does not use their actual confidence
values. We believe that this approach will be a good complement to the existing
works, and expect that it would be particularly useful in cases where the user of the
data mining system is not familiar with inclusion-exclusion principles and similar
facts used in the “nonderivable itemsets” approach: only the rules (or almost only
the rules, as explained next) are brought to bear in the derivation of other rules.
We will see that this is possible, and indeed can be achieved through definitions
that are already in the literature [1], [18], of which we establish new, important
properties; and we will push this approach provably to the limit.

Then, we follow the proposals of [26], [32], and several other works, pushing
through beyond that limit by assuming that we are allowed one single additional
bit per rule: we will handle separately, to a given extent, full-confidence impli-
cations from lower-than-1-confidence rules, in order to profit from their very
different combinatorics. We discuss adequate notions of redundancy and com-
pleteness, prove new properties, and refine the existing basis constructions up
to a point where we can prove again that we attain the limit of the redundancy
notion. We close the paper with some empirical data regarding our proposals
(the author is grateful to Bart Goethals and Christian Borgelt for making their
respective implementations of fpgrowth and apriori so easily accessible) and
a short section of conclusions. Due to the space limits, here we defer the proofs
of the theorems and additional examples and discussions to an extended version
available from the author.

2 Preliminaries

A dataset D is given; it consists of transactions, each of which is an item-
set labeled by a unique transaction identifier. The identifiers allow for many
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transactions sharing the same itemset. Upper-case, often subscripted letters from
the end of the alphabet, like X1 or Y0, denote itemsets. Juxtaposition denotes
union of itemsets, as in XY ; and Z ⊂ X denotes proper subsets. For a transac-
tion t, we denote t |= X the fact that X is a subset of the itemset corresponding
to t.

From the given dataset we obtain a notion of support of an itemset: sD(X)
is the cardinality of the set of transactions that include it, {t ∈ D

∣

∣ t |= X},
sometimes, abusing language, we also refer to that set of transactions itself as
support. Whenever D is clear, we drop the subindex: s(X).

We immediately obtain by standard means (see, for instance, [12] or [32]) a
notion of closed itemsets, namely, those that cannot be enlarged while maintain-
ing the same support. The function that maps each itemset to the smallest closed
set that contains it is known to be monotonic, extensive, and idempotent, that
is, it is a closure operator. This notion will be reviewed in more detail later on.

Association rules are pairs of itemsets, denoted as X → Y for itemsets X
and Y . Intuitively, they express that Y occurs particularly often among the
transactions in which X occurs. More precisely, each such rule has a confidence
associated: the confidence cD(X → Y ) of an association rule X → Y in a dataset
D is s(XY )

s(X) , that is, the ratio by which transactions having X have also Y , or,
again, the observed empirical approximation to a conditional probability of Y
given X . As with support, often we drop the subindex D. This view suggests
a form of correlation that, in many applications, is interpreted implicitly as a
form of causality (which, however, is not guaranteed in any formal way; see the
interesting discussion in [11]).

We denote as R the set of all the rules of confidence at least γ for the given
dataset D, again we should label R with D and γ as subscripts but these will be
always clear from the context. Always γ > 0. We resort to the convention that,
if s(X) = 0 (which implies s(XY ) = 0) we redefine the undefined confidence
as 1, since the intuitive expression “all transactions having X do have also Y ”
becomes vacuously true. Additionally, note that cD(X → Y ) = cD(X → XY ),
and we will switch rather freely between right hand sides that include the left
hand side and right hand sides that don’t: when two rules have the same left
hand side, and the union of left and right hand sides also coincide, we say that
they are equivalent by reflexivity. Clearly their confidences will always coincide.

3 Redundancy Notions

We start our analysis from one of the notions of redundancy proposed in [1], and
from a variation thereof, seemingly less restrictive.

Definition 1. 1. X0 → Y0 is AY-redundant with respect to X1 → Y1 if the
confidence and support of the former are always larger than or equal to those
of the latter, whatever the dataset [1].

2. X0 → Y0 is plainly redundant with respect to X1 → Y1 if the confidence of
X0 → Y0 is larger than or equal to the confidence of the latter, whatever the
dataset.
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Thus, plain redundancy is like AY-redundancy, but forgetting the condition re-
garding support. It turns out that the condition about confidence is already
rather strong, due to the “whatever the dataset” clause, to the point that our
first new result is that the simplified version is as powerful as the original one:

Theorem 1. Consider any two rules X0 → Y0 and X1 → Y1 where Y0 �⊆ X0.
Then X0 → Y0 is AY-redundant with respect to X1 → Y1 if and only if X0 → Y0
is plainly redundant with respect to X1 → Y1.

This will allow us to concentrate on confidence bounds at the time of discussing
complete bases, since support bounds will follow essentially from that result.
The reference indicated [1] also provides two simpler definitions of redundancy:

Definition 2. (From [1].)

1. If Z0 �= ∅, rule X0Z0 → Y0 is simply redundant with respect to X0 → Y0Z0;
2. if X1 ⊆ X0 and X0Y0 ⊂ X1Y1, rule X0 → Y0 is strictly redundant with

respect to X1 → Y1.

It is rather easy to check that moving attributes from the right hand side into
the left hand side can only increase the confidence and leave equal the support:
this fact corresponds to simple redundancy, and relates rules obtained from the
same frequent set X0Y0Z0. Strict redundancy focuses, instead, on rules extracted
from two different (frequent) itemsets, say X0Y0 where X0 will be considered as
antecedent, versus X1Y1, where X1 will be antecedent, and under the conditions
that X1 ⊆ X0 and X0Y0 ⊂ X1Y1 (the case X0Y0 = X1Y1 is already covered by
simple redundancy). Both simple and strict redundancies imply AY-redundancy;
this is argued in [1], which discusses most of the results just in terms of these two
simplified notions. Note that, in principle, there could possibly be many other
ways of being redundant beyond simple and strict redundancies: we show next,
however, that, in essence, this is not the case, as we can state the following new,
far from obvious characterization:

Theorem 2. Consider any two rules X0 → Y0 and X1 → Y1 where Y0 �⊆ X0.
The following are equivalent:

1. X1 ⊆ X0 and X0Y0 ⊆ X1Y1;
2. rule X0 → Y0 is either simply redundant or strictly redundant with respect

to X1 → Y1, or they are equivalent by reflexivity;
3. rule X0 → Y0 is plainly redundant with respect to X1 → Y1.

The two inclusions in the first statement form a condition that characterizes
exactly the cover operator of [18] (Property 3.3 there): hence that operator is
also fully equivalent to plain redundancy.

3.1 Optimum-Size Basis for Plain Redundancy

The main property of a basis, namely completeness, or not losing informa-
tion upon deletion of the remaining rules, corresponds now to the following
formalization:
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Definition 3. Given the set of rules R that hold in a given dataset D at confi-
dence at least γ, B ⊆ R is a complete basis if every rule of R is plainly redundant
with respect to some rule of B.

We describe now, briefly, the construction of a basis as proposed, almost simul-
taneously, in [1] and in [19] (called there “representative rules”).

Definition 4. Given itemsets Y and X ⊆ Y , X is a γ-antecedent for Y if
c(X → Y ) ≥ γ, that is, s(Y ) ≥ γs(X).

This is the same as organizing all the rules of R according to the itemset resulting
from union of antecedent and consequent. For each itemset Z, we will keep some
rules X → Y with XY = Z, or equivalently, we will keep some antecedents X
for Z. Keeping all γ-antecedents of all sets yields, essentially, the whole of R.
We will keep only a part of them, as few as possible, but losing no information.

Definition 5. Given itemsets Y and X ⊆ Y , X is a valid γ-antecedent for Y
if the following holds:

1. X is a γ-antecedent of Y ,
2. X fulfills this preceding property minimally: no proper subset of X is a γ-

antecedent of Y , and
3. X is not a minimal γ-antecedent of an itemset strictly larger than Y .

Now, the basis we are studying consists of all rules X → Z −X for all itemsets Z
and for all valid antecedents X of Z. We refer to this basis as B0. It is immediate
to see that all the rules in the basis B0 actually hold with confidence at least γ
since, for X ⊆ Z, c(X → Z − X) = c(X → Z) ≥ γ which is explicitly required
for X to be an antecedent of Z. It is proved in [1] that this basis is irredundant
with respect to simple and strict redundancies. Completeness can be stated as
follows (see also [19]):

Proposition 1. B0 is a complete basis: all the rules in R are plainly redundant
with respect to B0.

Hence B0 contains rules that hold and which imply all the rules that hold, that
is, it is indeed a basis. Efficient algorithms to construct B0 are provided in [1] and
[19], where small examples can be found as well; we have developed alternative
algorithmics that we will describe elsewhere. Our contribution here, rather than
algorithmic, is foundational: now we can state and prove the most interesting
novel property of this basis. It was known [1] that it is irredundant with respect
to simple or strict redundancy, that is, none of the rules in it is simply redundant,
nor strictly redundant. Our characterization in Theorem 2 then applies, so that
none of the rules in B0 is, in fact, plainly redundant. But this irredundancy does
not rule out the possibility that some other basis, constructed in an altogether
different form, could have less many rules. We state and prove now that this is
not so: there is absolutely no other way of constructing a basis smaller than this
one, while preserving completeness with respect to plain redundancy, because it
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has absolutely minimum size among all complete bases. Therefore, in order to
find smaller ways of listing association rules from R, and not losing information,
a notion of redundancy more powerful than plain redundancy is unavoidably
necessary.

Theorem 3. Let B′ ⊆ R be any set of rules such that all the rules of R are
plainly redundant with respect to B′. Then, B′ has at least as many rules as B0.

Implementation and test of this approach reveals interesting reductions of the
sizes of the rules, but these are still somewhat large. We concentrate efforts
henceforth on the study of alternative existing notions of redundancy, as an
attempt at getting bases smaller than B0.

4 Closure-Based Redundancy

The theorems in the previous section tell us that, for plain redundancy, the
absolute limit of a basis, thus without losing information, is reached by the
construction of [1]. Several studies, prominently [32], have put forward a different
notion of redundancy; namely, they give a separate role to the full-confidence
implications. Along this way, one gets a stronger notion of redundancy and,
therefore, smaller bases can be constructed.

Indeed, implications can be summarized better, because they allow for transi-
tivity and augmentation to apply in order to find redundancies; moreover, they
can be combined in a certain form of transitivity with a partial rule of confi-
dence at least γ to give rules that also have confidence at least γ. The best way
to handle them is through a closure operator ([10], [12], [32], [26], [31]).

Given a dataset D, the closure operator associated to D maps each itemset X
to the largest itemset X that has the same support as X in D; it can be defined
in several alternative ways. A set is closed if it coincides with its closure. When
X = Y we also say that X is a generator of Y . Our definition gives directly
that always s(X) = s(X). We will make liberal use of this fact, which is easy to
check also with other definitions of the closure operator, as stated in [26], [32],
and others.

Implications, or association rules of confidence 1, are closely related to this
closure operator: c(X → Y ) = 1 if and only if Y ⊆ X. Several quite good
algorithms exist to find the closed sets and their supports. There are proposals
of basis constructions from closed sets in the literature. In the min-max basis of
[26], antecedents are minimal generators, that is, as small as possible, whereas
consequents are closures, that is, as large as possible. We will follow the approach
of [32] where both antecedents and consequents are chosen as small as possible;
but, if we consider only number of rules, and not their sizes, both approaches
share many similarities.

Redundancy based on closures is a natural generalization of equivalence by
reflexivity; it works as follows ([32], see also section 4 in [26]): given a dataset
and a closure operator corresponding to implications that have confidence 1 in
the dataset, two partial rules X0 → Y0 and X1 → Y1 such that X0 = X1 and
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X0Y0 = X1Y1 turn out to be equivalent in terms of support and confidence;
the reason is that s(X0) = s(X0) = s(X1) = s(X1), and s(X0Y0) = s(X0Y0) =
s(X1Y1) = s(X1Y1). Therefore, groups of rules sharing the same closure of the
antecedent, and the same closure of the union of antecedent and consequent,
give cases of redundancy. The notion of redundancy in [32] leads to selecting as
irredundant rules from each such group that have inclusion-minimal antecedents
and consequents. The size of the basis obtained in this way is analyzed empiri-
cally in [32], where it is also combined with the strategy from [23] of using only
neighbor closures. This basis was found to be smaller than the set of all the rules
in all cases, many times exhibiting a huge reduction factor. We will provide addi-
tional improvements by refining the closure analysis and by combining the idea
of closure-based redundancy with the notion of valid antecedents of the previous
section. Most interestingly, we provide again a proof that, with our variant, we
reach the limit of closure-based redundancy: our basis will be shown again to
have the smallest possible size with respect to closure-based completeness.

4.1 Characterizing Closure-Based Redundancy

Let B be the set of implications, of confidence 1, in the dataset D; alternatively,
B can be any of the bases already known for implications in a dataset. In our
experiments later on we will use as B the Guigues-Duquenne basis, that has been
proved to be of minimum size [10], [31]. From here on, we require 0 < γ < 1,
leaving the rules of confidence 1 to be handled from B.

Definition 6. Let B be a set of implications. Rule X2 → Y2 has closure-based
redundancy relative to B with respect to rule X1 → Y1, which we denote by
B ∪ {X1 → Y1} |= X2 → Y2, if any dataset D in which all the rules in B hold
with confidence 1 gives cD(X2 → Y2) ≥ cD(X1 → Y1).

We continue our study by showing a necessary and sufficient condition for
closure-based redundancy, along the same lines as the one in the previous section.

Theorem 4. Let B be a set of exact rules, with associated closure operator map-
ping each itemset Z to its closure Z. Let X2 → Y2 be a rule not implied by B,
that is, where Y2 �⊆ X2. Then, the following are equivalent:

1. X1 ⊆ X2 and X2Y2 ⊆ X1Y1
2. B ∪ {X1 → Y1} |= X2 → Y2

4.2 Optimum-Size Basis for Closure-Based Redundancy

In a similar way as in the previous section, we give here a basis, similar to the
one proposed in [32] but smaller, by combining closure-based redundancy with
the conditions of Definition 5. As in [32], the rules of confidence 1 are handled
separately: we focus on the partial rules. We show first that our construction
indeed gives a basis, that is, consists of rules that hold and make redundant all
other rules that hold, in the following sense:
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Definition 7. Given the set of rules R that hold in a given dataset D at confi-
dence at least γ, and given in it the rules B that hold with confidence 1, closure-
based completeness of a set of partial rules B′ ⊆ R holds if every partial rule of
R has closure-based redundancy relative to B with respect to some rule of B′.

Conceptually, our new basis departs only slightly from the bases of [26] and [32],
but is nonetheless different in most cases (and therefore smaller, in some cases by
an important factor, as shown below). It is constructed as follows. For each closed
set X , we will consider a number of closed sets Y properly included in X to act as
antecedents. They follow a similar pattern to the one of valid antecedents; but,
instead of minimal antecedents, we will pick just minimal closed antecedents.
That is:

Definition 8. For each closed set X, a closed set Y ⊂ X (proper inclusion) is
a basic γ-antecedent if the following holds:

1. Y is a γ-antecedent of X: s(X) ≥ γs(Y );
2. Y is not a γ-antecedent of X ′ for any larger closed set X ′ ⊃ X: s(X ′) <

γs(Y );
3. Y is minimal among the closed proper subsets of X for which the previous

two conditions hold.

Then we use these antecedents for our basis:

Definition 9. The basis B�
γ consists of all the rules Y → X − Y for all closed

sets X and all basic γ-antecedents Y of X.

This set of rules entails exactly the rules that hold:

Theorem 5. Let B be any basis for implications that hold with confidence 1.

1. All the rules in B�
γ hold with confidence at least γ.

2. B�
γ is a complete basis for closure-based redundancy: if the rule Y → Z

holds with confidence at least γ, then, taken together with the full-confidence
implications, B ∪ B�

γ |= Y → Z.

Now we can move to the main result of this section, and in fact of the whole
paper: this basis is of absolutely minimum size.

Theorem 6. Let B′ ⊆ R be an arbitrary basis having closure-based completeness
for R. Then, for each implication Y → Z ∈ B�

γ , there is in B′ an implication of
the form Y ′ → Z ′ with Y ′Z ′ = Y Z and Y ′ = Y .

That is, for each Y → X−Y ∈ B�
γ , there is a corresponding rule in Y ′ → Z ′ ∈ B′;

this rule in B′ provides us with X = Y ′Z ′ and Y = Y ′. Thus, both X and Y are
univocally determined by Y ′ → Z ′ and, hence, the same rule in B′ cannot yield
but one of the rules in B�

γ , so that B′ must have at least as many rules as B�
γ .

Therefore, B�
γ has a minimum number of rules, in an absolute sense, among all

bases that are complete according to closure-based redundancy.
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4.3 Support Bounds

Now we discuss, briefly, what happens if we work under a support threshold.
In fact, for most datasets, if we do not impose a support bound then even the
lattice including just closed sets reaches easily dozens or hundreds of thousands
of nodes, or indeed even millions.

Assume that we do not mine the rule basis from a lattice including all closed
sets but only those above a support threshold. Is there any risk of obtaining a
wrong basis? The answer is negative:

Proposition 2. For any fixed confidence threshold γ, mining the B�
γ basis only

on closed sets of support at least τ , for τ ≤ γ, provides a basis of the whole set
of rules that hold with confidence at least γ and support at least τ .

This proposition is proved by combining Theorem 1 with an easy observation: if
the rule X → Y has support at least τ , both X and XY have also support at least
τ , so that we can argue as in the proof of completeness above. We are therefore
safe if we apply the basis construction for B�

γ to a lattice of frequent closed
sets above support τ , instead of the whole lattice of closed sets. However, this
proposition does not ensure us that the basis obtained under a support bound is
minimal anymore. There is a strategy (to be described in a forthcoming paper)
that provides us with a correct and provably minimum basis also under a support
bound, at the price of somewhat longer computations. For our development here,
we just consider basis B�

γ as computed from the lattice of closed sets above the
support bound.

5 Empirical Validation

As indicated, this paper focuses rather on the foundational properties of re-
dundancy and bases, and its algorithmic content is not the main contribution.
However, we present some algorithmics and empirical results for the sake of
completeness. We have implemented a known construction of a minimal basis
for the full-confidence implications [10] to compute the closure operator, and an
algorithm that constructs our proposed basis. For this computation, we consider
an algorithm that conveniently uses as a black-box a separate closed itemsets
miner. It is explained in Table 1: it scans the lattice of closed sets repeatedly to
construct the basic γ-antecedents. That implementation has provided us with
all the figures in Table 3. The initialization of the lists scan the whole lattice to
pick up closed proper predecessors: a natural alternative would preprocess the
lattice as a graph in order to find the predecessors of a node directly; however, in
practice, with this alternative, whenever the graph requires too much space the
computation slows down unacceptably, probably due to a worse fit to virtual
memory caching. The search of the optimal algorithmic compromise between
avoiding repeated computations while efficiently handling virtual memory will
be the topic of further work; the current implementation gives answers in just
seconds in most cases, on a mid-range Windows XP laptop, taking a few minutes
when the closure space reaches a couple dozen thousand itemsets.
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Table 1. Algorithmic approach to B�
γ

Algorithm B�
γ-1(closed sets,γ):

for each of the closed sets:
construct a list of closed proper subsets
filter it to leave only γ-antecedents
filter again to leave only minimal γ-antecedents

for each of the closed sets:
filter out from the list minimal γ-antecedents of larger closed sets

for each of the closed sets:
for each antecedent in its list:

output as rule:
left hand side: a minimum-size generator of the antecedent
right hand side: a minimum-size generator of the closed set,

removing from it items appearing in the left hand side

Table 2. Parameters of the datasets

Dataset Num. Items Size in Transactions
Chess 76 3196
Connect 130 67557
Mushroom 120 8124
Pumsb 7117 49046
Pumsb star 7117 49046
T10I4D100K 1000 100000

An important property of our approach, shared with all the closure-based
works, is that the key parameter is neither the size nor the dimensionality of the
dataset, rather the size of the closures lattice. If that structure is of moderate
size, our proposal works very well; the average degree of the corresponding Hasse
graph is the next crucial value. If this degree is sublinear, which tends to be the
case, then the computation of the rules is quadratic on the number of closures.

We have run our implementation exactly on the same real datasets (down-
loaded from http://fimi.cs.helsinki.fi) as the main table in [32], and with
the same values of the parameters. Of course further comparisons are desirable,
but in this way it is clear that we did not pick our experiments specifically to
favor our approach. We have also included one of the synthetic datasets treated
there. Some parameters of the datasets are indicated in Table 2.

Numbers of rules appear in Table 3. The values of “Supp/Conf” is the value
of the confidence and support parameters; “Traditional” is the number of rules
obtained via the original definition; “Closure-based” is the number of rules of
the closure-based basis of [32] (which is already an impressive improvement);
these columns are taken literally from [32] (there the value of the confidence
parameter is made to coincide with the support parameter, so we do the same).
These numbers are to be compared with the number of rules for our approach,
that is, the sum of the columns “GDbasis” (number of rules in the Guigues-
Duquenne minimum-size basis for full-confidence implications) and B�

γ . That
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Table 3. Sizes of sets of rules for some datasets

Dataset Supp/Conf Traditional Closure-based GD basis B�
γ basis Total

Chess 80 552564 27711 5 226 231
Chess 70 8171198 152074 10 891 901
Connect 97 8092 1116 4 41 45
Connect 90 3640704 18848 14 222 236
Mushroom 40 7020 475 24 41 65
Mushroom 20 19191656 5741 170 158 328
Pumsb 95 1170 267 2 32 34
Pumsb 85 1408950 44483 9 1080 1089
Pumsb star 60 2358 192 5 6 11
Pumsb star 40 5659536 13479 47 82 129
T10I4D100K 0.5 2216 1231 0 585 585
T10I4D100K 0.1 431838 86902 214 4054 4268

Fig. 1. Number of rules in the basis B�
γ for pumsb-star at 20% support

total is provided in the last column. The improvements are apparent: however,
they are just consequences of our main theorems.

One very interesting outcome of the experiments was the following. Some of
us are used to a monotonicity intuition, by which lower confidence thresholds al-
low for more rules, so that the size of the output grows (sometimes enormously)
as the confidence drops. However, in the case of the basis B�

γ , some datasets ex-
hibit a nonmonotonic evolution: at lesser confidence thresholds, sometimes less
many rules are mined. Inspecting the actual rules, we can find the reason: some-
times there are several rules at, say, 90% confidence that become simultaneously
redundant due to a single rule of smaller confidence, say 85%, which does not
appear at 90% confidence. This may reduce the set of rules upon lowering the
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confidence threshold. An example illustrating this point is given by the dataset
pumsb-star, mined for our basis B�

γ at 20% support threshold with confidence
ranging from 99% to 51%. The number of full-confidence implications in the
Guigues-Duquenne basis at this support threshold is 47. The number of partial
rules varies between 476 (at 80% confidence) and 1282 (at 93%), except near 50%
confidence where the number of rules drops a bit more. The graphic in Figure 1
indicates the number of rules for each confidence level between 0.51 and 0.99,
computed at a granularity of 0.01.

6 Conclusions

Our main contribution, at a glance, is a way of thinking about confidence-
bounded association rules in terms of notions of redundancy. We have provided
characterizations of existing redundancy notions, from which we have been able
to exactly pinpoint the limitation of an existing basis proposal, for a plain notion
of redundancy, and also to improve the constructions of bases for closure-based
redundancy. As a consequence, analysis of specific datasets is now more feasible,
from the perspective of the human analyst who must read through the output
of the rule miner.

Several questions are worth further study. Mainly, it is not difficult to propose
stronger notions of redundancy, and, in fact, we could see these contributions
as progress towards a complete logical approach, where redundancy would play
the role of entailment: in a forthcoming paper [4], will describe logical calculi
that exactly correspond to plain redundancy and to closure-based redundancy.
Then, the following natural question arises: our notions of redundancy only relate
one partial rule to another partial rule, possibly in presence of full-confidence
implications, and always with respect to a fixed confidence threshold: is it indeed
possible that a partial rule is entailed by two partial rules, but not by a single
one? The failures of Transitivity and Augmentation strongly suggest the intuition
of a negative answer; in a forthcoming paper [4] we will see that this is so for
certain confidence thresholds, but that there are confidence thresholds where
this intuition is wrong: for instance, the reader may enjoy analyzing the case of
rules A → BC and A → BD, assuming that they hold with 65% confidence, and
trying to make rule ACD → B fall below the same confidence threshold in the
same dataset. This is, in fact, impossible, and our next paper [4] will characterize
exactly when two partial rules entail a third one, either in presence or in absence
of a closure operator for the exact rules. This could be a way towards stronger
redundancy notions and even smaller bases.

We are studying as well ways of computing bases of provably minimum size
under a support threshold; as discussed above, our basis is correct, and small,
but, for this particular case, full optimality is not guaranteed yet. We will discuss
an alternative in future works. Additional comparatives with other approaches
to redundancy, based on additional information beyond the list of rules mined,
is also necessary, including, for instance, the nonderivable itemsets of [7] or the
cover operator of [9].
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We plan also to extend this approach to the mining of more complex depen-
dencies [29] or of dependencies among structured objects; however, extending
the development to sequences, partial orders, and trees, is not fully trivial, be-
cause, as demonstrated in [5], the combinatorial structures may make redundant
rules that would not be redundant in a propositional (item-based) framework;
additionally, an intriguing question is: what part of all this discussion remains
true if implication intensity measures different from confidence are used?
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