
The Guilet Dialog Model and Dialog Core for Graphical
User Interfaces

Jürgen Rückert and Barbara Paech

Institute of Computer Science, University of Heidelberg, Germany
{rueckert,paech}@uni-heidelberg.de

http://www-swe.informatik.uni-heidelberg.de

Abstract. Model-based approaches to graphical user interfaces (GUIs) achieved
poor acceptance of software engineers because the offer models, architectures,
components, frameworks and libraries that restrict the flexibility of development
too much. We propose a dialog model which enables flexible development with
no restrictions on presentation and application layer and without any implemen-
tation-technology dependence. The dialog model supports GUI designers and de-
velopers in understanding the behavior of the GUI. The dialog model controls
the dialog core component. The dialog component relieves GUI developers of
re-implementing the coordination of presentation and application layer.

Keywords: Model-based user interfaces. Dialog models. Dialog cores. UI
engines.

1 Introduction

Model-based approaches to graphical user interfaces (GUIs) achieved poor acceptance
of software engineers because they restrict the flexibility of development too much.
They rarely offer models, architectures, components, frameworks and libraries that can
fully be adapted to customer needs [11]:

P1. GUI designers are not able to describe the presentation that usability engineers
defined (in mock-ups). For instance, the approach does not support the modeling
of complex graphical components which would be necessary in order to guarantee
the usable GUI.

P2. Software architects are not able to integrate existing application layers and their
application services into the GUI. For instance, the approach does not consider the
different application service technologies and their corresponding different integra-
tion mechanisms.

P3. GUI Developers are not able to transfer a GUI to another platform as the behavior is
hidden in the platform-specific implementation parts and hardly changeable. In this
case it is hardly possible to re-use components that are responsible for controlling
the GUI. For instance, the approach does not allow for a desktop application to
be transferred to a PDA application by splitting few large screens into many small
screens and does not allow adding a wizard-like behavior to walk through the small
screens.

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 197–204, 2008.
c© IFIP International Federation for Information Processing 2008

198 J. Rückert and B. Paech

P4. GUI Developers use development tools that are not integrated with the modeling
tools of the designers which easily results in implementations that no longer reflect
the actual design.

We propose an approach to develop GUIs that puts dialog modeling in the center of
design and implementation. The Guilet Dialog Model (GDM) (1.) allows designers to
model the behavior of the GUI graphically (P1, P4) and (2.) allows developers to realize
the presentation and application layer using any implementation technologies (P2) by
identifying abstract behavioural building blocks (P3), namely the Guilets. An optional
reusable Guilet Dialog Core (GDC) component that is controlled by the GDM (3.)
relieves developers of re-implementing the coordination of presentation and application
layer without restricting the GUI architecture too much (P2) and (4.) allows developers
to transfer (P3) the GUI between applications of a specific platform (e.g. inside the Java
platform between Java Swing, Java Web and Eclipse Rich Client applications).

Section 2 defines major functional and non-functional requirements of dialog core
models. Section 3 presents an easy to understand example that shows the graphical no-
tation of the GDM (3.1). Afterwards, the modeling elements of the GDM are explained
(3.2). Section 4 presents first experiences gathered in an in-house and in a commercial
project. Section 5 summarizes the article and gives an outlook.

2 Requirements of Dialog Core Models

The major functional requirements for dialog cores models can be retrieved from the
articles on GUI architectures like the Model-View-Control pattern, the Presentation-
Abstraction-Control pattern [5], the Arch model [10] and OpenQuasar [14]. The re-
quirements focus on the coordination of presentation and application layer: A dialog
core should be able (F1) to create and destroy graphical components (like views) and
their sub-components (like widgets), (F2) to create and maintain the communication
channels with application services, and finally (F3) to process events that are created by
users in the presentation layer or by application services in the application layer. Pro-
cessing events encloses (F3.1) sending events to views and widgets in order to change
their status, (F3.2) sending data to views or retrieving data from views, and (F3.3) call
application services and interpret the results or exceptions. Usually, the event process-
ing is specific to each event source (e.g. graphical component) and each event type (e.g.
click, focus).

The major non-functional requirements for dialog cores models are outlined in
Figure 1. We detailed the ISO/IEC 9126 quality categories (at the top) by requirements
that we elicited from the literature on model-based UI approaches [8] [1] [13] [15] [3]
[12] [16] [6] [9] [17] [2] [4]. These requirements are software requirements but not end-
user requirements because dialog core models are artefacts that are used hidden inside
the GUI.

The quality attribute set Functionality describes in how far the DM implements the
demanded functionality (see above). The quality attribute set Reliability describes in
how far the DM is able to model a certain level of performance under defined conditions
for a stated period of time. The quality attribute set Usability describes the designer’s
effort of creating and manipulating the DM. The quality attribute set Maintainability

The Guilet Dialog Model and Dialog Core for Graphical User Interfaces 199

Fig. 1. Non-functional Requirements for Dialog Core Models (gray boxes at the left mark con-
ceptual requirements, gray boxes at the right mark engineering requirements)

describes the effort needed to make necessary changes in the DM. The quality attribute
set Portability describes the ability of the DM to be transferred from on environment to
another.

1 Rich and Thin Clients: The DM should be reusable for stand-alone applications as
well as Web applications.

2 Multi-Views: The DM should be able to handle multiple views (e.g. panels), that
are visible at the same time and are part of a screen (e.g. a frame or a web page).

3 Multi-User: The DM should be able to model the influence of access rights of users
and roles on the GUI behavior.

4 Context Dependency: The DM should be able to model the dependency between
page structure, page flow and inserted data, user, computing platform and work
environment.

5 Transactions: The DM should support the modeling of two transactions types:
transactions during the period of processing multiple events and during process-
ing single events.

6 Exception Handling: The DM should allow modeling expected exceptions during
event processing.

7 Concurrency: The DM should support modeling concurrent event processing.
8 Tool Support: The DM should be maintainable with a domain-specific (dialog)

modeling tool to shorten design time.
9 Eclipse Platform: The DM should be maintainable on the Eclipse platform because

of the high acceptance and usage experience of software developers and the seam-
less integration of design and implementation.

10 Graphical Notation: The DM should be graphically editable instead of textually
(including XML) because this ensures faster understandability.

11 Reusability: The DM should not constrain the usage of implementation technolo-
gies for presentation and application layer technologies.

12 Platform Independence: The DM should not contain any presentation and applica-
tion layer specific information in order to be reusable for a variety of applications
in (Web, desktop and mobile) or between platforms (Sun Java, Microsoft .NET).

200 J. Rückert and B. Paech

3 Guilets

3.1 Application Example

In this section we introduce an application example that does not illustrate all of the so-
lution ideas of the GDM but instead is easy to understand (transactions are left out e.g.).
Figure 2 shows the flow of events between presentation and application layer and the
coordination of the flow by the GDC. Figure 3 shows a screen shot of the view Lecture
Details of our in-house application for administrating students and lectures. Figure 4

Fig. 2. The GDC as central component controlling the behavior of a GUI

Fig. 3. Screen shot of the view Lecture Details

shows the GDM of the view Lecture Details that describes the view’s behavior. The
user starts the application (Main Frame), retrieves a list of lectures (Lectures Overview)
and requests the details of a certain lecture by sending event E3 to the GDC. The GDC
reacts on E3 by triggering event E4 (ShowAndInitialize). As shown in Figure 4, the
GDC invokes 4 executors in parallel. 3 executors query lists of business objects from
application services and forward the lists into these 3 inner Guilets that are able to han-
dle lists of data (e.g. combo boxes or multi line fields). The LoadLecture executor reads
the variable LectureId (circle at the left) that contains the ID of the selected lecture,
queries the appropriate lecture data from an application service (a property defines the
connection reference) and forwards this data to all 4 inner Guilets. The inner Guilets
are either of type textfield, singleSelection or multipleSelection as the inner Guilet type
denotes (not shown). The user triggers the update of the modified data by sending event
E5 (Update) to the GDC. The GDC invokes the executor UpdateLecture that first reads
the data of the 4 inner Guilets, then calls an application service and finally sends either

The Guilet Dialog Model and Dialog Core for Graphical User Interfaces 201

Fig. 4. GDM of the view Lecture Details

the event UpdateOk or UpdateNotOk that may be used for refreshing other views that
are interested in an update (would be modeled as GlTransition). The user closes
the view Lecture Details by sending event E6 (Close) to the GDC. The GDC invokes
the executor CloseView that invokes a suitable GUI service.

3.2 Guilet Dialog Model

The GDM is based on the major elements GlWhiteBoxGuilet, GlBlackBox-
Guilet, GlEventIn, GlEventOut, GlExecutor, GlInnerGuilet and
GlFlow.

Designers model a GlWhiteBoxGuiletwhenever they want to model the behav-
ior of a 2d-container like a view, partial view or widget. Widgets are graphical compo-
nents that receive or provide data and very often allow user input. Partial views are the
smallest composition units of logically related widgets, their size is often determined
by reuse. Views are a composition of partial views and may contain additional wid-
gets themselves. The hierarchical structure of views needs not to be fixed, the enclosed
partial views/widgets and their amount (of recurrence) may depend on the context of
usage. The simplest case e.g. is a view that is not shown until a certain data value was in-
serted/selected in another view. Designers model a GlInnerGuilet whenever they
want to add a view, partial view or widget to a whitebox Guilet. An inner Guilet enables
reuse because it is either of type GlWhiteBoxGuilet or GlBlackBoxGuilet.
It just layouts incoming and outgoing events, but never behavior, in order to avoid

202 J. Rückert and B. Paech

redundant information layout. Designers use a GlBlackBoxGuilet whenever they
want to model a view, partial view or a widget but are not interested in modeling its
behavior (of e.g. a complex widget of a fixed graphical library).

Designers model a GlEventIn or a GlEventOut whenever they want a start-
or endpoint for a certain processing logic. They only need to model events when they
require a processing logic that needs implementation. They do not need to model events
that are processed automatically by the presentation or application layer. For instance,
they do not need to model the event sort rows if the table widget is already capable of
sorting. This decision for the GDM was made in order to reduce the amount of modeled
elements. Events are created by users or by application cores or by the GDC. Typical
events are the initialization of a view and the call of semantical functions (e.g. save data).

Designers model aGlExecutorwhenever they require a behavioral component dur-
ing processing an event. The implemented executors call application services, in order to
query data or invoke semantical functions, or they call GUI services in order to change
the status of graphical components. Designers model a GlVariableAccess (refer-
encing a GlVariable) whenever they want to store the output of an executor or want
to use a stored value as input of an executor. Variables have a scope of validity property.

Designers model a GlFlowwhenever they want to link an event with an executor or
an executor with an event, or an executor with a inner guilet or an inner guilet with an
executor. A flow calls several executors always concurrently because sequential execu-
tors can be merged into one executor. A flow cannot split into two flows by a condition
element because we do not want to overload the model with too much detailed informa-
tion. The conditional cases have to be implemented in the executor, the documentation
property of the executor serves to forward this information from designer to developer.
A special case of a flow is a GlTransition which is an event-to-event call between
two Guilets.

Designers add one or more GlProperty to any of the modeling elements above
whenever they want to enrich the elements with information that they need for pro-
cessing. Usually, executors use properties for the configuration of application services
connections.

4 Experiences

We applied the GDM and the GDC to develop several desktop applications: (1) an in-
house data management application for students and lectures and (2) an application for
a pick list creation which is an add-on application for an existing commercial fashion
logistic solution. The specifications consist of a task model and a domain data model,
virtual windows [7] (task-based mock-ups), system functions and a state chart diagram
(page flow). The virtual windows and the state chart diagram are a well-suited starting
point to design Guilets. The systems were realized as client-server systems. The clients
are implemented in Java Swing and include a GDC in Java. The GDC was reused in both
projects. The presentations are loosely coupled with Java Web Services by the GDC,
more precisely by the executor implementations. The GDC is driven by the GDM which
was modeled using the GMT. During these two projects we were able to check the ful-
fillment of some requirements, as follows. Functionality: (+) Multi-views are fully

The Guilet Dialog Model and Dialog Core for Graphical User Interfaces 203

supported. (+) Multi-users can be modeled by using event properties (edited in XML
directly). Reliability (+) GUI Transactions (useful e.g. for wizards) are supported by
tagging the flow elements with transaction IDs (edited in XML directly). (+-) Several
exceptions of an executor can be modeled. The reason for an exception cannot be mod-
eled, the reason is only accessible in the executor implementation. (+) The assumption
of parallel execution of executors as default is acceptable because sequential executors
can be merged into one. Usability: (+) The GDM definitely should be expressed in a
graphical notation and the GMT must remain a substantial part of the design because
it is very hard to ensure a semantically correct XML using pure text or XML editors.
(+-) On the one hand, the GDM exempts from too many details because of missing
conditional elements. On the other hand, the executor hides the conditional informa-
tion in its implementation. (-) A graphical modeling support for transaction (e.g. path
high-lighting) might be very useful for immediate visualisation of a transaction and its
flows. Maintainability: (+) The executor elements can be mapped to well maintain-
able code structures that easily can be understood even weeks later. We expect that
executors additionally allow collaborative, parallel implementation by several develop-
ers and a transparent tracing of implementation progess. (-) Depending on the level of
the modeled presentation details, the GDM tends to become very large. We learned that
Guilets should not be used to model the presentation hierarchy as a whole, but should
model instead only these event-sending presentation parts that require an event process-
ing by the GDM. (+) The integrated modeling and implementation in Eclipse allowed
incremental development of the GUI. (+) Guilets made development fast because the
hard-to-implement part of coordinating the presentation and application layer is avail-
able as the out-of-the-box component GDC. (-+) 100% reuse of the modeled elements
seems to be rare because usually the properties of same-named Guilet sub-elements
(e.g. properties of executors) of two Guilets differ. Despite, the amount of reuse of ex-
ecutor implementations is high. Portability: (+) The blackbox Guilets serve as a nice
mechanism to model widget libraries and can easily be reused in other Guilets.

5 Summary and Outlook

In this article we introduced a design approach to describe the behavior of graphical
user interfaces. Designers create a Guilet Dialog Model in a graphical notation using
the Guilet Modeling Tool. Developers apply the Guilet Dialog Model as a feed for a
reusable Guilet Dialog Core component that controls the presentation and application
layer using implemented, partially generated executor components. In the future, we
will, due to encouraging project realizations, continue the evaluation of Guilets in order
to evaluate the missing requirements in the area of context dependency.

References

1. Barclay, P., Griffiths, T., McKirdy, J., Paton, N., Cooper, R., Kennedy, J.: The Teallach Tool:
Using Models for Flexible User Interface Design. In: CADUI, pp. 139–158. Kluwer Aca-
demic Publishers, Dordrecht (1999)

2. Brambilla, M., Comai, S., Fraternali, P., Matera, M.: Designing Web Applications with
WebML and WebRatio. Springer, Heidelberg (2007)

204 J. Rückert and B. Paech

3. Browne, T., Davila, D., Rugaber, S., Stirewalt, K.: The Mastermind User Interface Generation
Project. GVU Technical Report GIT-GVU-96-31, Georgia Institute of Technology (1996)

4. Comai, S., Carughi, G.T.: A behavioral model for rich internet applications. In: ICWE, pp.
364–369 (2007)

5. Coutaz, J.: PAC: An object oriented model for dialog design. In: Bullinger, H.-J., Shakel, B.
(eds.) Human-Computer Interaction: INTERACT 1987, pp. 431–436. North-Holland, Ams-
terdam (1987)

6. ISO. Lotos - a formal description technique based on temporal ordering of observational
behaviour (ISO 8807). Technical report, Information Processing Systems - Open Systems
Interconnection (1989)

7. Lauesen, S.: User Interface Design. A Software Engineering Perspective. Addison-Wesley,
Reading (2004)

8. Lonczewski, F., Schreiber, S.: The FUSE-System: an Integrated User Interface Design Envi-
ronment. In: CADUI, pp. 37–56 (1996)

9. Martinez-Ruiz, F.J., Arteaga, J.M., Vanderdonckt, J., Gonzalez-Calleros, J.M., Mendoza, R.:
A first draft of a model-driven method for designing graphical user interfaces of rich internet
applications. In: LA-WEB 2006: Proceedings of the Fourth Latin American Web Congress,
pp. 32–38. IEEE Computer Society Press, Washington (2006)

10. Navarre, D., Palanque, P., Dragicevic, P., Bastide, R.: An approach integrating two comple-
mentary model-based environments for the construction of multimodal interactive applica-
tions. Interact. Comput. 18(5), 910–941 (2006)

11. Paternò, F., Sansone, S.: Model-based Generation of Interactive Digital TV Applications.
In: MoDELS 2006, Workshop on Model Driven Development of Advanced User Interfaces.
Genova, Italy (2006)

12. Puerta, A.R.: The Mecano Project: Comprehensive and Integrated Support for Model-Based
Interface Development. In: CADUI, pp. 19–36 (1996)

13. Rossi, G., Pastor, O., Schwabe, D., Olsina, L.: Web Engineering: Modelling and Implement-
ing Web Applications. Human-Computer Interaction Series, vol. 12, pp. 263–301. Springer,
Heidelberg (2008)

14. Siedersleben, J.: Moderne Software-Architektur. Dpunkt (2004)
15. Szekely, P.A., Sukaviriya, P.N., Castells, P., Muthukumarasamy, J., Salcher, E.: Declarative

interface models for user interface construction tools: the MASTERMIND approach. In:
EHCI, pp. 120–150 (1995)

16. Vanderdonckt, J., et al.: User Interface Extensible Markup Language (UsiXML) 1.8. Univer-
sité catholique de Louvain (February 2007), http://www.usixml.org

17. Vanderdonckt, J., Grolaux, D., Roy, P.V., Limbourg, Q., Macq, B.M., Michel, B.: A design
space for context-sensitive user interfaces. In: IASSE, pp. 207–214 (2005)

http://www.usixml.org

	The Guilet Dialog Model and Dialog Core for Graphical User Interfaces
	Introduction
	Requirements of Dialog Core Models
	Guilets
	Application Example
	Guilet Dialog Model

	Experiences
	Summary and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

