
P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 118–125, 2008.
© IFIP International Federation for Information Processing 2008

Task-Based Development Methodology for
Collaborative Environments

Maik Wurdel1,*, Daniel Sinnig2, and Peter Forbrig1

1 University of Rostock, Department of Computer Science, Rostock, Germany
{maik.wurdel,peter.forbrig}@uni-rostock.de

2 Concordia University, Faculty of Engineering and Computer Science, Montreal, Canada
d_sinnig@encs.concordia.ca

Abstract. The paper presents a task-based development methodology for col-
laborative applications. According to our methodology a collaborative task
model may be used during analysis, requirements and design. In order to ensure
that analysis information is correctly translated into subsequent development
phases a refinement relation is proposed supporting the incremental develop-
ment of task specifications. The development methodology is exemplified by a
case study in which interactive support for a conference session is developed.

Keywords: Collaborative Task Models, Development Methodology, Refine-
ment, Tool Support.

1 Introduction and Background Information

In modern software engineering, the development lifecycle is divided into a series of
iterations. With each iteration a set of disciplines and associated activities are per-
formed while the resulting artifacts are incrementally perfected and refined. The
development of cooperative applications is no exception to this rule. Analysis level
models are further refined into requirements- and/or design level models, finally re-
sulting in a complete specification of the envisioned collaborative application.

In this paper we define a development methodology for collaborative systems
covering the phases from analysis to design. Such an integrated development method-
ology will serve as a blueprint for practitioners to derive an iterative development
process according to which collaborative task models are stepwise refined. For this
purpose we analyze the various roles that collaborative task models may play in soft-
ware development. Moreover, we define a refinement relation for collaborative task
models. The practical applicability of our development methodology is demonstrated
by a case study in which we develop interactive support for a conference session.

Within the domain of human-computer interaction collaborative task models are
widely used for the specification of collaborative (multi-user) interactive systems.
Among the most popular ones is Collaborative ConcurTaskTrees (CCTT) [1]. In

* Supported by a grant of the German National Research Foundation (DFG), Graduate School

1424, Multimodal Smart Appliance Ensembles for Mobile Applications (MuSAMA).

 Task-Based Development Methodology for Collaborative Environments 119

CCTT modeling starts with the creation of a task model for each involved role in the
cooperation. Additionally, a so called "coordinator model" is developed to specify the
temporal dependencies of tasks involved in the cooperation. CCTT is suitable for
situations where only one actor is fulfilling one role simultaneously. Often, however,
this is a too rigid constraint. In order to overcome this shortcoming, we have devel-
oped the collaborative task modeling language (CTML) [2]. It is based on the idea
that the behavior of an actor can be approximated through her role. CTML incorpo-
rates concepts for the specification of interrelation between different actors based on
roles, where the behavior of a role is defined by collaborative task expressions. Col-
laborations of actors are specified by means of an OCL-like notation used to specify
preconditions based on the state of the tasks of the involved actors.

The remainder of the paper is structured as follows: in Section 2 we review key
principles of CTML, which will serve as foundation for the presented approach. Addi-
tionally a refinement relation, based on meta-operators for CTML specifications is
proposed. Section 3, the core part of this paper, presents a methodology for the incre-
mental and iterative development of CTML models which is guided by a refinement
relation for CTML specifications. In Section 4 we exemplify our methodology by
elaborating a small case study. Finally we conclude and give an outlook to future
research avenues.

2 The Collaborative Task Modeling Language

Similar to [1], CTML is based on a role-based approach for modeling cooperative
task models. Formally, a CTML model is a tuple consisting of a set of actors, a set of
roles and a set of collaborative task expressions (one for each role) where each actor
belongs to one or more role(s). Each collaborative task expression has the form of a
task tree, where nodes are either tasks or temporal operators. Each task is attributed
with an effect and a precondition. An effect denotes a state change of the system or
environment as a result of task execution. A precondition adds an additional execu-
tion constraint to a task. In particular a task may be performed only if its precondition
is satisfied. Conditions can be either defined over the system state or the state of other
tasks (a task life cycle is defined in terms of a state chart [2]), which potentially may
be part of another task definition. Both, preconditions and effects are needed to model
collaboration and synchronization across collaborative task expressions. The devel-
opment and simulation of CTML specifications is supported by the tool CTML Editor
and Simulator, first introduced in [2].

2.1 Refinement of CTML Specifications

Refinement is a formal process which transforms one specification into another such
that required properties of the original specification are preserved [3]. In support of an
iterative development methodology we propose, in this section, a refinement relation
for CTML models. In [4] we presented a formal approach to define and check refine-
ment between (non-collaborative) task model specifications. In what follows, we
extend the approach to CTML specifications in a straightforward manner. Refining
collaborative task models can be achieved using two different instruments: Structural
and behavioral refinement.

120 M. Wurdel, D. Sinnig, and P. Forbrig

Structural Refinement. The refined CTML model may contain more detailed infor-
mation than its base model. This is achieved by further refining the atomic units (i.e.
the leaf tasks) of the superordinate model. It is, however, important to retain type
consistency. Refined tasks need to revise their task type if necessary according to the
added subordinate tasks. An exception to this rule are tasks that have been marked
with the deep binding meta-operator (will be explained in the context of behavioral
refinement). These tasks cannot change their task type and the respective subtasks
need to be chosen such that type consistency is ensured.

Behavioral Refinement. Whether a behavioral refinement is valid or not depends on
the usage of meta-operators in the respective CTML models. Unlike temporal opera-
tors, meta-operators do not determine the execution order of tasks, but define which
tasks must be retained or may be omitted in the refining CTML model. We distinguish
between three different meta-operators: shallow binding (), deep binding (), and
exempted binding (). All three operators denote tasks which need to be preserved in
all subsequent refining CTML models. While in the case of shallow binding subtasks
may be omitted during refinement, in the case of deep binding all subtasks need to be
preserved. Tasks attributed with the exempt binding operator have been newly intro-
duced during design and should be preserved in all subsequent refinements.

Details of the algorithm implemented to check refinement can be found in [4].

3 Development Methodology

Current software engineering processes advocate iterative development lifecycles
during which artifacts are incrementally perfected and refined [5]. The development
of collaborative task models is no exception to this rule. We believe a CTML model is
best developed in five steps:

1. Definition of roles and corresponding collaborative task expressions
2. Animation and validation of these sub-specifications
3. Specification of the environment including actors, associated roles and devices
4. Annotation of tasks with precondition and effects
5. Animation and validation of the entire specification

Instead of creating the entire model at once, which can be quite overwhelming, we
suggest to first define (1) and test (2) the involved roles and their individual collabo-
rative task expressions. Both steps can be performed iteratively. In case of an
unsatisfying animation the developer typically adapts the underlying specification and
restarts the simulation. Next (3) the designer defines the environment and involved
actors. Additionally (4) task specifications are completed by adding preconditions and
effects based on the analysis of the dependencies between actors and roles. Finally (5)
the entire specification consisting of several “concurrently” executing task expres-
sions can be tested and animated. This sequence is to be repeated until the simulation
exhibits the expected behavior. Please note that in each stage it is possible to return to
any previous step to revise made design decisions, based on evaluation results. Each
of the above steps is fully supported by our tool CTML Editor and Simulator.

Fig. 1 indicates that throughout the development lifecycle of a collaborative appli-
cation different “versions” of a CTML model are used. As will be detailed next, the

 Task-Based Development Methodology for Collaborative Environments 121

usage and role of the CTML model vary, depending on the development stage within
which it is utilized.

Analysis. The purpose of analysis is to understand the user’s behaviors, their collabo-
rations and interactions. Consequently, the analysis CTML model captures the current
work situation and highlights elementary domain processes as well as exposes bottle-
necks and weaknesses of the problem domain. As portrayed in Fig. 1, the focus is on
the actual users while the envisioned interactive system is not yet taken into account.

Fig. 1. CTML in the Development Lifecycle

Requirements. When moving to the requirement stage the analysis information is
further refined by taking into account the support of the envisioned interactive appli-
cation. Correspondingly requirements level CTML models specify the envisioned
way tasks are performed using the system under development. That is, tasks that were
formerly performed by the user may now be taken over by the envisioned interactive
system. Generally, the artifacts gathered during requirements specification are part of
the contract between stakeholders about the future application.

Design. During design, the various tasks of the requirements model are “instantiated”
to a particular target device by taking into account its interaction capabilities. Typi-
cally, new design specific, tasks are also introduced. An example of such a design
specific task for a conference session management system (will be introduced in
Section 4) is “Register Presenter”. This task was not part of the analysis or require-
ments model, but is needed during design such that the session management system is
able to keep track of the participating presenters.

When moving from analysis to requirements to design, the collaborative task
model is further refined since application and design specific information is added.
With each refinement step it is important to verify that the refining model is a valid
refinement of its base specification. The interpretation of what constitutes a valid
refinement depends on the artifacts involved, as well as on their purpose in the soft-
ware lifecycle.

4 Case Study

In this section we showcase the application of the presented development methodol-
ogy by elaborating a small case study which has as its goal the development of
interactive tool support for a conference session. For this purpose let us consider the
following scenario:

Before starting the session Peter, the chairman, connects his notebook to the pro-
jector installed in the conference room and switches to presentation mode. Afterwards

122 M. Wurdel, D. Sinnig, and P. Forbrig

he starts the session by introducing himself and giving a short introduction about the
presentations to be given during the session. Then, Peter gives the floor to the first
speakers, Daniel and Maik, who give a joined presentation. Daniel connects his note-
book to the projector and starts the presentation by briefly introducing the general
approach. The technical details are explained by Maik. His slides are stored on his
own notebook, which has to be connected to the projector before he presents his
ideas. Afterwards, Daniel resumes the talk by giving the conclusion and an outlook
for future research which results in an additional reconfiguration of the notebook and
the projector. After finishing the talk the chairman asks for questions from the plenum
which are answered by the speakers. The subsequent talks are given in ordinary man-
ner until Peter closes the session.

Based on our experiences such a scenario is quite common. The technical burden
of state of the art computing devices leads to a tedious and error prone configuration
process. But pure automation does not solve this problem. From our point of view a
thorough analysis of the collaboration of the actors involved in this process is able to
expose where automation is really helpful. The question to be addressed is: “What is
the appropriate assistance in the current situation for the actual actor?”

Clearly the scenario shows that actors involved in a joint presentation have to syn-
chronize and agree on who is taking the control of the presentation. Daniel and Maik
must not perform the task “Present” concurrently. This is a key collaboration con-
straint and hence should be taken into account in any corresponding collaborative task
model. In Fig. 2 the analysis level CTML model for the joint presentation is given. It
is role-based and represents how involved presenters perform their joint presentation.
As already hinted by the afore-mentioned scenario, a presenter has to gain control and
set up the equipment before presenting his slides. After finishing her/his part the pre-
senter surrenders the control and hence enables other actors to present their parts.

Fig. 2. Analysis Task Model for the Role “Presenter”

The interplay between gaining and surrendering control is modeled using the ef-
fects given in Table 1. The effect of an actor performing the task “Gain Control” is
that for all other presenters the “Gain Control” task becomes disabled. Conversely,
the execution of the task “Surrender Control” enables the “Gain Control” task to all
participating presenters among which, one presenter will be able to “Gain Control” of
the presentation.

 Task-Based Development Methodology for Collaborative Environments 123

Table 1. Effects of Analysis Task Model for “Presenter”

Task Effect
(1.) Gain Control Presenter.allInstances.Gain Control.disable
(2.) Surrender Control Presenter.allInstances.Gain Control.enable

Before moving to the requirements stage, we have to ensure that pivotal domain

specific tasks are preserved in all subsequent refining models. This is done by the use
of meta-operators which have been introduced in the previous section. In the context
of this case study, the important tasks to be retained are “Gain Control”, “Present”
and “Surrender Control” and therefore are marked with the shallow binding operator.

During the requirement stage new aspects come into play. Compared to the analy-
sis model, the envisioned work situation is enriched by taking into account the sup-
port of interactive devices. In our case the interactive support consists of a remote
presenter device and a steerable projector. The former can be used to navigate through
the slides but also to surrender and gain control of the presentation. The latter can
soft-switch between multiple input sources and projection surfaces and hence, can
relieve the presenters from manually setting up the equipment (e.g. connecting the
laptop to the projector).

As depicted in Fig. 3 the requirements level task model refines the analysis model in
terms of structure and behavior. The task “Gain Control” has been structurally refined
into interaction and application subtasks denoting how the control of the presentation is
gained using the envisioned software system. In particular the execution of the subtask
“Assign Control” assigns the control of the remote presenter device and thus to its user.
The “Present” task is now regarded as an interaction task since presentations given
with the new system are requiring the interaction with the newly introduced remote
presenter device. The execution of the “Setup Equipment” task has the effect that the
input source of the steerable projector is set to the current actor’s laptop. Note that for
the sake of simplicity the necessary preconditions and effects are not shown.

In order to ensure that the requirements are preserved in subsequent design models
the tasks “Gain Control” and “Present” are marked with the deep binding meta-
operator. This guarantees that each of these tasks including the subtasks is carried on
to the design stage. Additionally “Surrender Control” keeps being marked with the
shallow binding operator.

Fig. 3. Requirement Task Model for the Role “Presenter”

124 M. Wurdel, D. Sinnig, and P. Forbrig

During design, the focus is put on tasks related to the specific interaction with the
newly introduced system. Fig. 4 portrays the corresponding task model for our case
study. In particular the task “Request Control” has been further refined with subtasks
which take into account concrete interactions with the remote presenter (e.g. “Press
Request Button”). The same applies for “Surrender Control”. Additionally, technol-
ogy related tasks are introduced. In the context of the case study the presenter has to
register her/his remote presenter device to the system (“Register Presenter”) before it
can be used. The “Register Presenter” task has been attributed with the exempted
binding operator, denoting that it should be preserved in all subsequent refinements.

Fig. 4. Design Task Model for the Role “Presenter”

We conclude this section by noting that for each phase (i.e. analysis, requirements
and design) we interactively animated the developed CTML models using the tool
CTML Editor and Simulator. This was particularly helpful in gradually refining the
model until the envisioned behavior was achieved. A snapshot of the interactive ani-
mation of the requirements level task model is depicted on the right hand side of
Fig. 5. On the left hand side a snapshot of the tool in specification mode is given.

Fig. 5. CTML Editor and Simulator in Specification and Animation Mode

 Task-Based Development Methodology for Collaborative Environments 125

5 Conclusion and Future Work

In this paper we presented a development methodology for collaborative task models.
In particular, we proposed a set of steps for the incremental development of CTML
models. Each step is supported by our tool the CTML Editor and Simulator. We ex-
plored the different roles of a CTML model within the development lifecycle of a
collaborative application. In particular we proposed a development methodology
according to which an analysis level CTML model is further refined to a requirements
and design level model. Finally we validated and illustrated our proposed develop-
ment methodology by elaborating a small case study, which had as its goal the devel-
opment of interactive support for a conference session.

As future work we are currently investigating how CTML can be integrated into
state of the art model-based UI development processes for collaborative environ-
ments. Another future avenue deals with the enhancement of the CTML Editor and
Simulator with model checking capabilities such that the tool will be able to prove
certain properties of a CTML model (e.g. livelock and deadlock freedom) and mecha-
nizes the verification of refinement between CTML specifications.

References

1. Mori, G., Paternò, F., Santoro, C.: CTTE: Support for Developing and Analyzing Task
Models for Interactive System Design. IEEE Trans. Softw. Eng. 28(8), 797–813 (2002)

2. Wurdel, M., Sinnig, D., Forbrig, P.: Towards a Formal Task-based Specification Frame-
work for Collaborative Environments. In: CADUI 2008, Albacete, Spain (2008)

3. Bowen, J., Reeves, S.: Refinement for User Interface Designs. In: FMIS 2007, Lancaster,
UK (2007)

4. Wurdel, M., Sinnig, D., Forbrig, P.: Task Model Refinement with Meta Operators. In: DSV-
IS 2007, Kingston, Canada (2008)

5. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development, 3rd edn. Prentice Hall PTR (2004)

	Task-Based Development Methodology for Collaborative Environments
	Introduction and Background Information
	The Collaborative Task Modeling Language
	Refinement of CTML Specifications

	Development Methodology
	Case Study
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

