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Abstract. In order to robustly match a statistical model of shape and
appearance (e.g. AAM) to an unseen image, it is crucial to employ a
robust model fittness measure. Dense sampling of texture over the region
covered by the shape of interest makes comparison of model and image
in principle robust. However, when merely texture differences are taken
into account, problems with low contrast regions, fuzzy features, global
intensity variations, and irregularly varying structures occur.

In this paper we introduce a novel entropy-optimized texture model
(ETM). We map gray values of training images such that pixels repre-
sent anatomical structures optimally in terms of information entropy. We
match the ETM to unseen images employing Bayes’ law.

We validate our approach using four training sets (hearts in basal
region, hearts in mid region, brain ventricles, and lumbar vertebrae) and
conclude that ETMs perform better than AAMs. Not only they reduce
the average point-to-contour error, they are better suited to cope with
large texture variances due to different scanners and even modalities.

1 Introduction

Statistical shape models exploit prior knowledge of shape to perform robust
segmentation. Active Shape Models (ASMs) [I] are based on Principal Compo-
nent Analysis (PCA) of a set of corresponding training shapes. In the matching
process, the model iteratively deforms attracted by image features (e.g. edges).

Additionally to shape, Active Appearance Models (AAMs) [2] incorporate
texture variations (represented again by PCA). In the following we motivate our
new approach to texture representation for statistical models by resuming some
critical aspects of texture modeling in AAMs.

Low contrast and fuzzy structures. Model matching is understood as finding
the model instance which exhibits the minimal difference to the unseen image.
Hence it is very important to employ an effective difference measure which con-
sistently reflects how well a given model instance matches the image. In the
context of AAMs, typically measures based on texture differences are used. The
assumption is made that large texture differences correspond to large misalign-
ment of the model. However, low contrast (e.g. lung and myocardium in cardiac
MRI) and fuzzy /irregular structures (e.g. spongy bone, trabeculae) make it dif-
ficult to objectively compare texture differences which are measured in different
image regions. It may thus happen, that regions of low contrast are over-ruled
by regions showing fuzzy structures.
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PCA-based texture modelling. For many data sets we observed that a large
number of PCA texture parameters are required to sufficiently well cover varia-
tions in a training set. For the data investigated in this paper we observed that
the sorted eigenvalues of shape decrease much faster than those of texture. This
suggests that PCA is not the optimal choice for texture modeling.

Texture normalization. To improve the quality of AAMs, a texture normal-
ization step is usually applied before statistical analysis. The goal is to keep
irrelevant texture variations (e.g. global variations in brightness or gamma) out
of the model. In the scope of AAMs different methods have been proposed (e.g.
different types of non-linear texture normalization [3]). However, in general it
is hard to predict which type of texture normalization leads to good results for
which kind of data.

Mutual Information. A very popular matching criterion for medical image
registration is mutual information (MI) []. The great advantage of this measure
is that it makes it even possible to register images which were acquired using
different imaging methods. Mutual information is based on entropy terms and
in its original form limited to registration of a pair of images. Thus, although it
would be reasonable to integrate mutual information into the AAM framework
this cannot be done straight forwardly.

Bayesian Framework. Bayesian reasoning makes use of posterior probabilities
to quantify how well a given model explains unknown data. Based on Bayes’ law
prior probability is combined with the likelihood of an observation to derive the
posterior probability of the model. Bayesian reasoning has a sound mathematical
background and is well-established for pattern recognition tasks. Thus it seems
worth to incorporate it into the framework of statistical models of shape and
appearance.

To tackle the above issues we borrow ideas about entropy from groupwise
registration and formulate a novel probabilistic texture model. In section 2l we
derive an optimization function for texture normalization which has similarities
with a recently proposed function for shape correspondence optimization [5]. In
section [3] we match the model to unseen images using Bayesian inference. We
demonstrate the robustness of our entropy-optimized texture model (ETM) on
four different 2D training sets: vertebra, brain ventricles, mid cardiac, and basal
cardiac slices (section H]). Based on this validation we conclude in section [ that
the proposed ETM outperforms AAMs and even copes with texture variations
due to different imaging modalities (different MRI scanners, T1/T2/FLAIR,
CT/MRI).

2 Entropy Texture Model: Construction

Similar to AAM, the input for the model we propose is a set of m training
images T;, annotated with a fixed number of landmark points in correspondence,
consistently triangulated, resampled by n texels and quantized to r; gray levels.
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Fig. 1. The entropy texture model: normalized corresponding pixels are modeled by
probability distributions

While identical in shape description by mean and principal components, our
model differs from AAMs in the representation of texture. Each of the n model
texels t; captures the statistical variations observed at corresponding training
pixels.

In order to keep unspecific intensity variations out of the model we propose
to normalize the training images using generic intensity mappings. The task is
to optimize m intensity maps f; that quantize the training images from r; to s
gray levels.

fi i Zlp, — Zs, sy t=1...m (1)

In the following we design the cost function to assess mappings f;. Each
model’s texel ¢; observes m occurrences of the s possible mapped gray values at
corresponding training texels. Such a set of observations can be interpreted as
probability density function (PDF) and we denote it p;. p;(gj,) is the probability
that at corresponding texel ¢; a mapped gray value gj, is observed.

The predictability of mapped gray values expressed by PDFs varies across
model texels. Figure [I] illustrates the situation for two texels. While PDF po
exhibits a single high peak, p1¢ is rather equally distributed. This suggests that
predictions of gray values for texel ¢35 will be more reliable than for texel ¢1¢.

Inspired by Balci et al. [6] we propose to favor reliability (similar to ps) and
to penalize uncertainty (similar to p1g) by minimizing the entropy of the corre-
sponding PDFs: H(p;) = — > 1_, pj(9,)1ogs(pj(g})). Considering all n model
texels yields a cost function that measures the quality of mappings f;:

1 n
H7tl = " H(p;)  — min (2)
j=1

Hmodel yields minimum when the mappings degenerate such that all mapped
training pixels show the same gray value. In this case the model exhibits maximal
specificity.

However, this specificity has to be put into relation to the training images which
contain no information once degenerated. This motivates for a compensation term
which drives the mapped training textures f;(7;) towards maximum information
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Fig. 2. A sample training set (two different MRI scanners and a CT) before (a) and
after (b) mapping to three gray levels (s = 3)

content. We measure the information content by image entropy H(f;(T;)) and aim
at its maximization across the entire normalized training set:

m

e = USTH(R(T) - max 3)

i=1

H'® reaches a maximum when the texture transformations f; maximize the
information content of the textures T;. This is equivalent to histogram equalization.

We combine the entropy terms of model (eq. () and training textures (eq.
@)). The goal is maximization in terms of texture mappings f;:

{ff, ..., fr}y = argmax (H'™ — Hm"dd) (4)
{f17"'7f’VYI}

There is no need for an ad-hoc weighing of the two entropy terms since they are
commensurate, i.e., measured in bits per texel and bits per pixel respectively.
An objective function similar to ({@]) has recently been proposed for shape cor-
respondence optimization [5]. In this work similarly two energy terms are used:
one for individual shapes and one for a shape ensemble. This makes our entropy-
optimization of texture a direct analogy to Minimal Description Length (MDL)
of shape with the difference that we do not stick to Gaussian distribution as
description language for texture.

We used Simulated Annealing to optimize mappings f; subject to the cost
function (@)). Represented by lookup tables, the texture mappings f; are ini-
tialized to linearly remap the training images to s levels. During optimization
the lookup tables are updated in each iteration. After optimization the mapped
training textures represent structures with minimal uncertainty at maximum
information content (figure 2(b)).

Figure Bl shows entropies of the optimized distributions of four models we use
for validation in section @l While bright texels exhibit strong variations (high
entropy), dark texels represent high predictability (low entropy).

3 Entropy Texture Model: Matching

In contrast to AAMs, only shape parameters S = {position, scaling, rotation, and
statistical shape deformation} are optimized. The cost function describing model
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(a) heart LV+RV  (b) heart LV (c) vertebra (d) brain ventricles

Fig. 3. Entropy (brightness) of model PDFs after optimization

matching accuracy is based on model PDFs and sub-texture U = (uq,...,uy)
of the unseen image currently overlapped by the model.

Mapping of the Unseen Image’S Texture. As our model texels capture
PDFs of s normalized gray values, we first need to normalize U accordingly: we
seek for a function f, : Z,, — Zs that maps the texture to s gray levels.

We want to find a suitable intensity mapping for each of the r,, gray values. For
a fixed gray value 4 € {1,...,r,} all model texels observing it vote according
to their PDFs: out of the s possibilities the target gray value leading to the
maximal likelihood is assigned. Formally:

fu(t) = argmax H p;(9%) k=1...s (5)

’
g L
k UG =1

Cost Function. To assess how well the shape instance S fits to the unseen
image, we compare model PDFs p(.) to the normalized texels U’ = f,(U) =
{ fu(uj)}}‘:l. To convey this, we consider maximizing the posterior probability
P(S|U’) of the shape instance S, with the observed normalized texture U’ given.
According to Bayes’ law [7] the posterior is proportional to the product of a
likelihood and a prior (left side of eq. (@)).

The likelihood P(U’|S) of the observed normalized texture U’ with the shape
instance S given, is (under the naive Bayesian assumption) the product of prob-
abilities of the normalized texels.

The prior probability P(S) of shape instance S is calculated feeding its pa-
rameters into the multivariate Gauss distribution that corresponds to the PCA
shape space (please refer to [7] for details).

Putting both terms together yields the cost function which is maximized sub-
ject to shape parameters S:

P(S|U") o PUIS)P(S) = | [T pi(fulu;)) ]| P(S) (6)
j=1

Strategy and Implementation Issues. In contrast to AAM there are no
texture parameters to optimize. The search space is only spanned by shape
parameters and typically has not more than 10 to 15 dimensions. This fact
makes exhaustive search strategies similar to [8] affordable and we employ such
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Fig. 4. Matching of a model comprising five target values (s = 5): original image with
initialized contour (&) maximum likelihood estimate for f, for initial contour[(b)] after
4 iterations and after 8 iterations[(d)] Final match over the original unseen [(€)]

a scheme in this work. Figure [] illustrates how a model with five gray levels
evolves during matching. Shape and maximum likelihood texture mapping con-
verge consistently.

Any p;(.) being zero degenerates the equations (Bl and (@). In order to avoid
this we assign a small compensation probability of 1/(2m) and renormalize the
distribution p;.

To avoid numerical instability due to the large number of multiplications in
@) and (@) we maximize sums of logarithms of the probabilities instead.

4 Validation and Results

In order to validate our approach we compared the segmentations achieved by
ETM (s = 5) to those achieved by standard AAM. For cross validation we
split training sets into reasonable subsets (e.g. images from same patient or
same scanner). Every image was matched as an unseen by a model built from
complementary subsets. Model matching was performed by initializing each of
the models close to the correct contours (hence no automatic initialization of the
model was done). Matching accuracy was measured in terms of average point-to-
contour distances. To include enough information about object boundary regions
into the models, additional landmark points outside the objects were defined. In
the following we describe the data sets and the results in detail.

Heart LV+RV, basal region: contains short axis slices from the base of the
heart showing few or no papillary muscles. The training set comprises data from
four different sources: CT and three different MR protocols. Annotations define
the contours of inner and outer boundaries of the left ventricle (LV) and the
inner contour of the right ventricle (RV). ETM performed better in 23 out of
38 cases, reducing the average point-to-contour distance from 4.36 to 3.36 mm.

Heart LV, mid region: includes 42 short axis MR images from the mid re-
gion of the heart exhibiting large texture variations due to papillary muscles.
Images stem from two different MR scanners.The average pixel size is 1.39mm.
Annotations define the contours of the inner and outer boundaries of the left ven-
tricle (LV). ETM performed better in 38 out of 42 cases, reducing the average
point-to-contour distance from 4.02 to 2.38 mm.
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Brain ventricle: comprises 17 transversal MR slices of 15 different patients.
One patient is represented by a T1 image and a FLAIR image. Another patient
is represented by a T2 image and a FLAIR image. Remaining patients are rep-
resented each by a T1 image. The average pixel size is 0.85mm. Annotations
define the contours of brain ventricles. ETM performed better in 16 out of 17
cases, reducing the average point-to-contour distance from 3.53 to 1.67 mm.

Vertebra: consists of 13 CT slices from 4 different patients showing transversal
sections of lumbar vertebrae. The average pixel size is 0.32mm. Annotations
define the outer contour of the vertebra and the contour of the spinal canal.
ETM performed better in 9 out of 13 cases, reducing the average point-to-contour
distance from 2.67 to 2.06 mm.

On average our ETMs clearly outperformed AAMs. Results are summarized
graphically in figure

5 Conclusions and Future Work

We proposed a novel texture model for medical image segmentation. Its texture
is described by probability distributions of individual texels. Moreover, these
probabilities are optimized by information entropy terms. This allows to effec-
tively cope with unspecific intensity variations in the training set caused e.g.
by different modalities, scanner settings, and fuzzy anatomical structures. The
model is matched to unseens in accordance with Bayesian reasoning.

There are two major messages we would like to conclude with. First, ETM
perform better than AAM, as it is shown in the validation. Second, thanks
to intensity normalizations that are integral part of model construction, some
requirements on training texture (e.g. Gaussian distribution) can be relaxed. We
have demonstrated this with training sets containing mixtures of CT/MR and
MR T1/T2/FLAIR images.

There are several issues left for future work. To name a few, we intend to ad-
dress extension to 3D volume textures, automatic initialization, and acceleration
of matching in the near future.
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