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Abstract. Whole-body magnetic resonance imaging is an emerging application
gaining vast clinical interest during the last years. Although recent technologi-
cal advances shortened the longish acquisition time, this is still the limiting fac-
tor avoiding its wide-spread clinical usage. The acquisition of images with large
field-of-view helps to relieve this drawback, but leads to significantly distorted
images. Therefore, we propose a deformable mosaicing approach, based on the
simultaneous registration to linear weighted averages, to correct for distortions in
the overlapping area. This method produces good results on in-vivo data and has
the advantage that a seamless integration into the clinical workflow is possible.

1 Introduction

Whole-body (WB) magnetic resonance imaging (MRI) is becoming a popular clini-
cal tool due to the recent technological advances in MRI, making faster acquisitions
possible. Unlike computed tomography (CT), the acquisition of high-resolution MR
images is not feasible during continuous table movement, making a multi-station scan-
ning necessary to cover larger body regions. The compounding of the partially overlap-
ping volumes is straightforward, since the MR scanner keeps track of their exact spatial
locations.

The creation of WB images further increases the number of clinical applications for
MRI, so far reserved for other modalities, see section 2. From a current perspective,
the major disadvantage using MRI for WB imaging in comparison to CT is the longer
scanning time. In this report, we use MR acquisitions with a large field-of-view (FOV),
enabling to cover with the same number of scans larger parts of the body. This, how-
ever, leads to a degradation of the images by geometrical distortion artefacts towards
the boundaries, further described in section 3. We propose a novel method, originating
from the field of brain atlas construction, to correct for the geometrical distortion in the
overlapping area, see section 4. Our experiments show the good results on in-vivo data,
see section 5.
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2 Clinical Applications of WB-MRI

Recent advances in MRI such as multi-channel receiver, parallel imaging techniques,
and automated table movement make high-resolution WB-MRI clinically feasible [1].

First clinical studies show its value in oncological ap-

Fig. 1. WB-MRI from 3 sta-
tions. Gray bars show overlap.

plications, which focus on the search for metastases of
cancer patients in the whole body. Lauenstein et al. [2]
found out that WB-MRI compares well with standard
methods such as CT, PET, and nuclear scintigraphy for
the detection of cerebral, pulmonary, and hepatic lesions
and is more sensitive for the detection of hepatic and os-
seous metastases. Additionally, the excellent contrast of
MRI provides further information about soft tissue and
organs to the physician, supporting his diagnosis [3].

Non-oncological applications are whole-body fat
measurement to evaluate body composition and muscular
infections, angiography for the diagnosis of atherosclero-
sis, and virtual autopsy in forensic science [3]. WB-MRI
is also the method of choice for screening and preven-
tion purposes, which is ethically questionable with CT
due to radiation exposure of healthy persons. Moreover,
contrast agents used for MRI to highlight specific organs
or the vascular tree are relatively safe in comparison to
iodine based ones used for CT [3].

These reasons indicate that MRI is challenging CT as
standard WB imaging modality. For head and abdomen,
the superior performance of MR was already noted, but
imaging the lungs is still delicate [3]. The major draw-
back, however, remains the longer acquisition time with
MRI. We address this issue by using scans with a larger
FOV, allowing for covering an equivalent region with
less stations. They have the same resolution as scans
with a regular FOV, leading to the same acquisition time,
but an increased voxel spacing, leading to a negligible
loss of image quality. Typical is a normal FOV of 35 cm
and an enlarged one of 50 cm. A disadvantage of the enlarged FOV is that spins are ex-
cited, which are farther away from the magnetic iso-center and therefore more sensitive
to geometrical distortions, see section 3.

3 Geometrical Distortion in MRI

Essential for MRI is to know the resonance frequency at each position within the FOV,
to relate the frequency spectrum of the received RF impulses to the right spatial location.
The Lamor equation relates precession frequency of nuclear spins ϖ to the magnetic
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field, composed of the static field B0 and the slice and row selection gradient fields Gz

and Gx, respectively
ϖ(x,z) = γ(B0 + x ·Gx + z ·Gz) (1)

with γ the gyromagnetic ratio. Inhomogeneity of the static field or nonlinearity of gra-
dient fields, more prominent farther away from the magnetic iso-center, lead to un-
certainties, causing geometrical distortion artefacts. More specifically, these artefacts
are referred to be system-specific artefacts in contrast to patient-induced artefacts aris-
ing from susceptibility effects, chemical shift, and flow [4]. Scanner with higher field
strength and shorter bore magnets, the current trend in MRI, are more sensitive to dis-
tortion effects, putting its correction back into focus [4].

In the literature, mainly system-specific artefacts are discussed. Chang and Fitz-
patrick [5] correct for B0 distortion by acquiring two almost identical images only dif-
fering in the polarity of the read-out gradient. This enables for an exact correction of B0

distortion. In follow-up articles Kannengiesser et al. [6] and Reinsberg et al. [7] refine
this method by using deformable image registration techniques to make it also applica-
ble to real MR images and not only phantom scans. This approach is hardly applicable
in the clinical workflow because acquisition time would double.

Doran et al. [4] analyze the distortion with phantom scans and apply the deduced
correction field to medical data. It is doubtful if corrections based on phantom scans
make sense because it is not feasible to build a phantom duplicating a biological sys-
tem, and distortions calculated at fiducial locations have to be interpolated to create a
dense mapping, which limits the accuracy [5]. Our approach has the advantage that no
additional images have to be acquired, enabling a seamless integration in the clinical
workflow. Additionally, the correction is not limited to system-induced distortions but
also covers patient-induced ones.

4 Deformable Mosaicing

In order to introduce our approach of deformable mosaicing, we define the two volumes
to be stitched as I1 : Ω1 ⊂ R

3 → R and I2 : Ω2 ⊂ R
3 → R. The overlapping domain is

denoted as Ωo = Ω1 ∩Ω2. Since the overlap Ωo is the only part where the two im-
ages share any information, a naive approach for the stitching could be defined as a
minimization problem with respect to a certain distance/similarity measure ρ(·), or

T̂1,2 = argmin
T1,2

Z
Ωo

ρ(I1(T1(x))− I2(T2(x)))dx (2)

where x = (x,y,z) denotes a voxel position, and T1,2 are the parameters of the transfor-
mations T1 and T2 relating the two volumes in the spatial domain. The most common
approach in pairwise registration is to assume that one of the two transformations is
equal to the identity transformation. In our case, such an approach would lead to sev-
eral problems: (i) through the selection of a moving and a fixed image, we would in-
troduce a certain bias on the stitching result, (ii) since both volumes are distorted due
to the inhomogeneous magnetic field in the overlap volume, none of them is actually
representing a good reference for the stitching, and (iii) a registration performed only
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Fig. 2. Synthetic example of a deformable stitching. The first and second image are to be stitched
where both are significantly distorted. The initialization of our linear weighted average is shown
in the third image. The horizontal gray lines indicate the borders of the overlap area. Fourth to
sixth image is an illustration of the registration progress and the iterative improvement of the
linear weighted average.

within the overlap may result in discontinuities with respect to the rest of the volumes.
In order to overcome these problems, we propose an iterative simultaneous registration
using a linear weighted average. The idea of the weighted average is to account for
the underlying physical properties of increasing distortions towards the volume bound-
aries. Assuming that the boundary information is less reliable, we would like to reduce
its influence to the registration.

4.1 Simultaneous Registration to Linear Weighted Average

Let us define another volume S : Ωs on the union of the two volume domains Ωs =
Ω1 ∪Ω2. The intensities of S are set using our average model, or

S(x) =

⎧⎪⎨
⎪⎩

f (x), if x ∈ Ωo

I1(T1(x)), if x ∈ Ω1 \Ω2

I2(T2(x)), if x ∈ Ω2 \Ω1

(3)

where f (·) is a function computing the linear weighting in the overlap volume, or

f (x) = (1−h(x)) · I1(T1(x))+ h(x) · I2(T2(x)). (4)

The linear function h(·) has a range of (0,1) and is defined for the overlap domain
Ωo with respect to the stitching direction. In our application, this direction is usually
along the head-feet axis which corresponds to the y-axis of our common 3D coordinate
system for all the MRI volumes.

The setup for the deformable stitching and the initialization of the linear weighted
average is illustrated in Fig. 2. We can reformulate the naive registration in Eq. 2 in
order to pose a simultaneous registration based on the linear weighted average S. In
terms of an energy function (which is to be minimized), we define

Edata(T1,2) =
2

∑
i=1

Z
Ωo

ρ(S(x)− Ii(Ti(x)))dx. (5)

In order to reduce the dimensionality of the problem, we consider Free Form De-
formations [8] as the transformation model for the two images. A deformation grid
G : [1,K]× [1,L]× [1,M] is superimposed onto the volume domain Ωs. By deforming
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the grid (with a 3D displacement vector dp for each control point) the underlying struc-
tures are aligned. The transformation of a voxel x can be expressed using a combination
of basis functions, or

T (x) = x + D(x) with D(x) = ∑
p∈G

η(|x−p|)dp (6)

where η(·) is the weighting function (based on cubic B-Splines) measuring the contri-
bution of the control point p to the displacement field D.

Now, we can rewrite the objective function defined in Eq. 5 based on the two defor-
mation grids G1 and G2, or

Edata(T1,2) =
2

∑
i=1

1
|Gi| ∑

p∈Gi

Z
Ωo

η̂(|x−p|) ·ρ(S(x)− Ii(Ti(x)))dx. (7)

where η̂(·) computes the influence of a voxel x to a control point p. Such a function acts
as a projection of the distance/similarity measure computed from the volume domain
back to the coarser level of control points. Different definitions of the η̂(·) have to
be considered with respect to the used similarity measure. We use the normalized cross
correlation (NCC) which is robust to intensity variations common in MRI. For statistical
measures such as NCC, we define

η̂(|x−p|) =

{
1, if η(|x−p|) > 0

0 otherwise
. (8)

Basically, this function masks voxels influenced by a control point p resulting in a local
image patch centered at the control point. From this patch, a local similarity measure
can then be computed. Definitions for voxel-wise measures such as sum of squared
differences can be found in [9].

The simultaneous registration to an average should overcome the problems for the
reference selection, mentioned before. This is very similar to atlas construction ap-
proaches where the average is used as the reference image in order to achieve an unbi-
ased coordinate frame (e.g. for shape models) [10]. In addition, we try to account for
the increasing distortions using a linear weighted average.

4.2 Optimization through Discrete Labeling

We propose to define the simultaneous registration as a discrete optimization problem.
Discrete optimization has been recently shown to provide very good results in the case
of standard pairwise registration [9]. Based on the previous assumptions, we define a
set of discrete variables Gmrf = G1 ∪G2. Thus, each variable corresponds to a control
point of one of the two deformation grids. Similar to [9], we consider a discrete set
of labels L = {l1, ..., li} corresponding to a quantized version of the deformation space
Θ = {d1, ...,di}. A label assignment lp to a grid node p is associated with displac-
ing the node by the corresponding vector dlp . If a label is assigned to every node we get
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a discrete labeling l. A popular model for representing discrete labeling problems are
Markov Random Fields (MRFs) [11]. The general form of a first-order MRF is

Emrf(l) = ∑
p∈Gmrf

Vp(lp)+ ∑
(p,q)∈Emrf

Vpq(lp, lq) (9)

where Vp(·) are the unary potentials representing the data term, Vpq(·, ·) are the pairwise
potentials representing the smoothness term, and Emrf represents the neighborhood sys-
tem represented by edges between nodes. We define the unary potentials (in iteration t)
according to our data term ∀p ∈ Gi as

Vp(lp) =
Z

Ωo

η̂(|x−p|) ·ρ(S(x)− Ii(T t−1
i (x)+ dlp))dx. (10)

The pairwise potentials encode a penalty term for assigning different labels to neighbor-
ing nodes. The FFD transformation model already inherits some implicit smoothness
properties. Additionally, one can consider explicit regularizing constraints on the grid
domain using the pairwise potentials. These are defined ∀(p,q) ∈ Emrf ∧p,q ∈ Gi as

Vpq(lp, lq) = λ
∣∣∣(Ri(p)+ dlp)− (Ri(q)+ dlq)

∣∣∣ (11)

where λ denotes a weighting factor for the smoothness term and Ri(·) back-projects the
accumulated displacement field (of iteration t −1) on the control point level, or

Ri(p) =
Z

Ωs

η̂(|x−p|)Dt−1
i (x)dx. (12)

In contrast to the data term energy, the smoothness energy affects the whole stitch-
ing domain Ωs. Such an approach together with the use of smooth FFD transformations
guarantees continuous and seamless transitions between the overlapping and
non-overlapping areas of the stitched volume while the actual stitch is (softly) con-
strained to the volume of overlap.

Many optimization algorithms exist for efficiently solving discrete labeling problems
in forms of an MRF [11]. We use a recently proposed method called Fast-PD [12] which
is also used in [9]. Due to the limited space, we refer the reader to the given references.

4.3 Iterative Multi-scale Approach

We propose to embed the simultaneous registration into a common iterative multi-scale
approach. The simultaneous registration of the two volumes I1 and I2 to the linear
weighted average S is performed in a pyramidal setup where different levels of reso-
lution for the volume as well as for the deformation grids are considered. On each level,
several discrete labelings are computed where the set of displacements Θ is successively
refined each time and the displacement fields are incrementally updated. After the reg-
istration converges, the linear weighted average S is recomputed and a new registration
cycle is started. In Fig. 2 three of such cycles are illustrated for the case of synthetic
data. Usually, only a few cycles are needed until the average shows no dramatic changes
anymore.
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Fig. 3. The two rows are magnifications of the stitching areas of the WB-MRI shown in Fig.
1. Left: Initial average. Middle: Final stitching result after 3 optimization cycles. Right: Refer-
ence scan where the overlap volume is centered within the MR scanner. Our method is able to
reproduce similar smooth and continuous transitions as present in the reference images.

5 Experimental Validation

We evaluate our method on 8 whole-body T1- and T2-weighted data sets from three
different Siemens MR scanners: Avanto 1.5T, Trio 3T, and Espree 1.5T. The overlaps
vary between 5 and 27 cm. For all stitching results, we obtained very positive feedback
from our clinical experts in the radiology department who inspected the images visually.
An example mosaic is shown in Fig. 1, consisting of three volumes having a FOV of
50×50×28 cm3, a resolution of 448×448×35 voxel, and an overlap of 5 cm. In Fig.
3, one can clearly see the influence of the distortion by regarding the initial average, and
the improvement after the deformation by comparing the result to the reference scan.
The final resolution for the 3 station stitch shown in Fig. 1 is 448×1256×35 where the
two stitches take together approximately 25 min of computational time.

To illustrate that the proposed method also works for varying overlaps, we show the
stitching of 3 volumes for whole-spine MR, see Fig. 4. The first overlap is with 15.2
cm very large and our method arrives at producing a sharper average. The second one,
with only 1.4 cm, shows discontinuities in the initial average, which are removed after
deformable mosaicing.

6 Conclusion

Speeding up the acquisition for WB-MRI with large FOV images leads to significant
distortions towards the boundaries. Methods for distortion correction proposed in the
literature are not applicable to the WB imaging setup because they either elongate the
workflow or only correct for specific system-induced distortions. So far, the overlap in
WB-MRI was not used to correct for distortion. We propose the usage of simultaneous
deformable registration in a mosaicing scenario, which has not yet been done before.
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Fig. 4. Stitching of 3 spine volumes. Top: initial average. Bottom: result. Gray bars indicate over-
lap.

Key for the simultaneous registration is the creation of a linear weighted average, each
of the two images is registered to. Our experiments on synthetic and in-vivo data show
the ability of the method to correct for distortions. The unaltered clinical workflow
makes our approach very interesting for being integrated into further MR scanner gen-
erations.
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