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Abstract. In minimally invasive surgery, dense 3D surface reconstruction is 
important for surgical navigation and integrating pre- and intra-operative data. 
Despite recent developments in 3D tissue deformation techniques, their general 
applicability is limited by specific constraints and underlying assumptions. The 
need for accurate and robust tissue deformation recovery has motivated re-
search into fusing multiple visual cues for depth recovery. In this paper, a 
Markov Random Field (MRF) based Bayesian belief propagation framework 
has been proposed for the fusion of different depth cues. By using the underly-
ing MRF structure to ensure spatial continuity in an image, the proposed 
method offers the possibility of inferring surface depth by fusing the posterior 
node probabilities in a node’s Markov blanket together with the monocular and 
stereo depth maps. Detailed phantom validation and in vivo results are provided 
to demonstrate the accuracy, robustness, and practical value of the technique.  
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1   Introduction 

In image guided Minimally Invasive Surgery (MIS), accurate 3D deformation recov-
ery is essential for intra-operative image registration, motion stabilisation and pre-
scribing dynamic active constraints. Despite significant research effort in this area, 
current progress towards reliable, real-time, intra-operative 3D tissue deformation 
recovery remains limited. This is largely due to the complexity of the MIS field-of-
view, in which inter-lumen reflection, specular highlights, coupled with the general 
lack of stable distinctive visual features, constitute significant challenges [1]. In such 
situations, imposing strong geometrical constraints, as often used in early work of 
tissue deformation recovery, is not appropriate.  

The need for accurate and robust tissue deformation recovery has motivated re-
search into fusing multiple visual cues for depth recovery. In computer vision, the 
value of this approach has long been recognised for compensating for the weaknesses 
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of individual cues and to better reflect the nature of the human vision system. Cur-
rently, integrated depth recovery methods are based on a range of different techniques 
including probabilistic approaches using Bayesian formulations [2], game theory [3], 
and calculus of variations [4]. These techniques use either explicit or implicit data 
exchange and the chosen combination of different visual cues is determined by the 
suitability of each reconstruction method for separate regions.  

Thus far, many of the methods developed are application specific and limited work 
has been directed towards deformable object reconstruction, which remains a chal-
lenging task in computer vision. In MIS, both monocular and stereo based depth  
recovery techniques have been proposed [5, 6]. Strong regularisation terms tend to be 
used, which limit the ability of the existing techniques in dealing with large tissue 
deformation and discontinuities. The purpose of this paper is to propose a more gen-
eral Bayesian fusion framework for integrating multiple visual cues based on Markov 
Random Fields (MRFs). Although a Bayesian MRF-based solution for dense 3D 
depth reconstruction has been attempted for natural scenes [7], its use in MIS tissue 
deformation recovery is faced with largely textureless views, extensive changes in 
scene context, illumination and tissue surface appearance, as well as the difficulty of 
obtaining sufficiently large sets of ground truth training data.  

In this paper, the depth cues employed include feature based stereo laparoscopic 
correspondence and surface shading based depth reconstruction techniques. A MRF 
based Bayesian Network (BN) has been proposed for the fusion framework. By using 
the underlying MRF structure to ensure spatial continuity in an image, the MRF-BN 
approach offers the possibility of inferring the surface depth by fusing the posterior 
node probabilities in a node’s Markov blanket together with the shading and stereo 
information. In addition, a belief propagation scheme is designed to utilise the  
evidence provided by the sparse stereo points to infer the depth of the surrounding 
surface patches. Detailed phantom validation and in vivo results are provided to dem-
onstrate the accuracy, robustness, and practical value of the technique.  

2   Method 

2.1   Stereoscopic Depth Recovery 

Stereo methods for 3D reconstruction exploit the geometrical relationship between 
camera views in order to triangulate the 3D position of matching points from the two 
2D views. In this paper, we follow the calibration procedure presented in [8] and the 
features used for stereo-correspondence include gradient-based features selected by 
the Shi and Tomasi detector [9], and Maximally Stable Extremal Regions (MSER) 
[10]. The latter exhibits desirable properties of invariance to monotonic illumination 
changes as well as affine transformations. The matching of the detected features is 
carried out according to the measure proposed in by Pilu in [11], i.e., 
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where mnC is the normalised cross-correlation (NCC) between features ,m n from the 

two stereo channels, mnr is their Euclidean distance and μ ,ν are control parameters 

determining the influence of feature similarity and proximity respectively.   
While this is ideal for natural scenes involving large quantities of highly distinctive 

high frequency features such as edges and corners, MIS data is generally lack of dis-
tinctive geometric features. This would result in obtaining only a semi-dense 3D rep-
resentation of the target surface. The presence of highly saturated specular highlights 
commonly found in MIS images can also lead to errors in stereo calculations. For 
these reasons, additional depth cues must be employed.  

2.2   Monocular Depth Recovery 

To estimate the depth of homogenous regions of the tissue, monocular depth cues 
based on the surface shading information is used. As the specular reflection model 
cannot be measured from the laparoscopic scene, a near Lambertian reflection model 
is assumed. The technique used consists of two steps, where the depth of the surface 
is first estimated by using a minimisation technique followed by B-spline interpola-
tion to approximate the depth in regions with specular highlights. To make use of the 
unique optical arrangement of the laparoscopic camera with coincidental axes of the 
cameras and light source, the general form of the depth estimation equations based on 
the shading information can be simplified as [12]: 
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where ( )2 ,Z x y∇ represents the Laplacian of the function ( ),Z x y ,β is a weighting 

factor determining the influence of the smoothness constraint employed and ( ),g x y is 

a normalising function needed because of the unevenness of the light distribution due 
to the proximity and point-like nature of the light source. 

To minimise the impact of specular highlights, a specular highlight detector is used 
to identify the potentially problematic areas. In this paper, specular highlights are 
detected by assessing the intensity and chromaticity information of the tissue surface. 
This is achieved by simply thresholding based on the following equations: 
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where ( ),I x y is the pixel intensity and ( ),Sat x y  represents the pixel colour saturation 

defined as ( ), 1 3min( , , )/ ( , )Sat x y r g b I x y= − ; γ ,κ are empirically determined, 

and are here set as 160 and 60 respectively. The detected regions are then subjected to 
cubic B-spline interpolation. 
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2.3   MRF-BN Belief Propagation and Depth Fusion 

The core of the proposed fusion technique lies in the MRF representation of the dense 
depth map as shown in Fig. 1. In this figure, each node ,i jx represents the depth ,i jd as a 

random variable dependent on the depth of its neighbouring nodes
,i jNx , the depth ob-

tained with monocular shading cue, ,i jSFS and stereo correspondence, ,i jSS , if present.  

 

 

Fig. 1. Local neighborhood structure of the proposed Markov random field 

In Fig. 1, the neighbouring nodes
,i jNx are defined as the Markov blanket of 

node ,i jx and can be expressed as: , ( , )i jN i a j b= + + , where 1,..,1,a = −
  

( ) ( )1,...,1,and , 0, 0b a b= − ≠ . Given this Bayesian network, the belief of 

depth ,i jd can be then defined as: 

,, , , ,( ) ( | , , )
i ji j i j N i j i jBEL x P x x SS SFS                                   (4) 

Since the measurements obtained with the two techniques are inherently independent, 
the expression above can be simplified as: 
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whereα is a normalising constant such that the integral of the probability distribution 
function adds up to one, ,( )i jxπ represents the prior probability of depth at 

node ,i jx and ,( )i jxλ its likelihood from the evidence provided by the sparse stereo and 

photometric depth recovery. 

xi,j 

xi+1,j+1

xi+1,j 

xi+1,j-1

xi,j-1 

xi,j+1 

xi-1,j+1 

xi-1,j 

xi-1,j-1 

SFSi,jSSi,j 



108 B. Lo et al. 

The scheme presented shows how nodes are directly dependent on the posterior 
probability of neighbouring nodes, and its approximate solution can be found through 
a belief propagation algorithm. Since not all nodes are supplied with stereo depth 
estimates due to the semi-dense output of the technique, it makes sense to start the 
propagation seeds at the nodes with stereo depth information for the first iteration of 
the propagation algorithm. The posterior probability at the nodes with available stereo 
information can be initially calculated and propagated outwards by: 

, , , , , ,( ) ( ) ( | ) ( | )i j i j i j i j i j i jBEL x P x P SS x P SFS xα=           (6) 

neighbouring nodes can then rely on this information to calculate their belief: 

,, , , , ,( ) ( ) ( | ) ( | )
i a j bi a j b i a j b N i a j b i a j b i a j bBEL x P x P x x P SFS xα
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With this scheme, it can be observed how the independence between processes result-
ing from the weak fusion structure adopted. It allows for a great degree of flexibility 
as additional modules providing depth information obtained using different tech-
niques can be readily integrated without any substantial design modification.   

3   Experimental Setup and Results 

3.1   Phantom Reconstruction Results 

In order to demonstrate the performance of the proposed algorithm, both phantom and 
in vivo data from a daVinci surgical robot is used. The first sequence consists of a 
beating phantom heart and in order to provide ground truth data to evaluate the accu-
racy of the algorithm, fiducial markers are placed on the epicardial surface with their 
actual 3D position being tracked with a NDI Optotrak Certus tracker. Multiple views 
of the output 3D reconstruction of the shading module alone compared with the out-
put from the proposed algorithm are shown below in Fig. 2 (a) and (b) respectively, 
whereas numerical results from the evaluation of the algorithm with the ground truth 
data from the Optotrak sensor are shown in Fig. 3. Both sequences are normalised and 
low-pass filtered to remove high frequency noise and facilitate the comparison. 

At a first glance, the output of the shading algorithm in Fig. 2 (a) may look 
smoother and more regular than the output from the proposed algorithm in Fig. 2 (b). 
However, a closer inspection reveals that the proposed system yields results closer to 
the actual object structure: the irregularities present on the reconstructed surface in 
Fig. 2 (b) can indeed be found on the epicardial surface of the model in the form of 
artificial adipose deposits. On the other hand, the shading based depth cue is unable to 
correctly interpret these local irregularities because of its smoothness constraint and a 
lack of high-frequency information. This information is provided instead from the 
stereo module.  

The results in Fig. 3 show the correctness of the proposed algorithm when applied 
to tracking the problems, where Fig. 3 (a) depicts the actual and reconstructed depth  
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of one vertex of the triangular reference marker against time for the beating phantom 
heart. It can be observed that the phase and frequency information of the recon-
structed signal do correspond to the ground truth data sequence, with a frequency of 
approximately 1.22Hz as shown in Fig. 3 (b). It should be noted that the reconstructed 
data is correct up to a scale factor, and this is reflected in the slope of the linear re-
gression shown in Fig. 3 (c), where the accuracy of linear relationship is evident from 
the relatively tight regression (σ = ±0.114) of the plot. 

3.2   In vivo 3D Surface Reconstruction 

The suitability of the proposed algorithm for actual surgical procedures is qualita-
tively evaluated by applying it to an in vivo video sequence of a Totally Endoscopic 
Coronary Artery Bypass (TECAB) procedure. Fig. 4 highlights the points tracked 
during the procedure. As ground truth data is not available for the TECAB procedure, 
Fig. 5 only illustrates the reconstructed 3D position of the tracked points for qualita-
tive analysis. 

The reconstructed result shown in Fig. 4 presents a relatively smooth heart surface 
and a depression corresponding to the point of contact with the instrument. Also, the 
instrument is correctly reconstructed as a separate volume from the heart. In Fig. 5, 
the reconstructed motion of the same tracked points is shown. The recovered motion 
appears to be more irregular than the results for the phantom model, due not only to 
the presence of multiple frequencies in the heart surface motion, but also to the inter-
ferences introduced by the pressure exerted on the surface by the instrument. Never-
theless, the results for each tracked point do show the presence of a compound 
 

 

 
Fig. 2. Dense 3D surface reconstruction using (a) shape-from-shading and (b) the proposed 
MRF-based algorithm 

(a) 

(b) 
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Fig. 3. (a) Time/position plot of the reconstructed motion (above) and ground truth data (below) 
for the tracked reference marker. (b) Frequency power spectrum of (a), highlighting the scale 
factor. (c) Linear regression results between the two datasets. 

 

Fig. 4. Frame from the TECAB procedure and its corresponding 3D reconstruction with the 
five tracked points highlighted 

of regular component frequencies in each point’s motion, as well as a constant recon-
structed depth interval signifying constant bounds for the recovered 3D coordinates. 
The lack of objective ground truth data makes a quantitative evaluation of the pro-
posed algorithm’s performance difficult; however, the observations on the results 
discussed above suggest a regular, constant performance of the algorithm through 
time, with a qualitatively accurate in vivo performance. 

(c) 

(a) (b) 
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Fig. 5. Reconstructed motion of the five tracked points from Fig. 3 

4   Discussion and Conclusions 

In this paper, we have proposed a MRF-BN framework for dense 3D surface recon-
struction in MIS. The validity of the proposed method has been demonstrated with 
applications on both phantom models and in vivo data. The results obtained illustrate 
the importance of fusion complementary depth cues for reliable tissue deformation 
recovery. Although the results presented only employ monocular and stereo depth 
maps, the proposed belief propagation framework can be readily extended to incorpo-
rate other depth measures. The strength of the proposed method is that it allows seam-
less integration of additional cues without significant modifications being required, 
thus greatly simplifies its practical application.   
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