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Abstract. Diffusion tensor magnetic resonance imaging is widely used
to study the structure of the fiber pathways of brain white matter. How-
ever, the diffusion tensor cannot capture complex intra-voxel fiber ar-
chitecture such as fiber crossings. Consequently, a number of methods
have been proposed to recover intra-voxel fiber bundle orientations from
high angular-resolution diffusion imaging scans, which are optimized to
resolve fiber crossings. In this work we study how multi-tensor, spheri-
cal deconvolution, analytical QBall and diffusion basis function methods
perform under clinical scanning conditions. Our experiments indicate
that it is feasible to apply some of these methods in clinical data sets.

Keywords: DW-MRI, crossing fibers, HARDI, Multi-DT, QSpace.

1 Introduction

The most widely-used approach to study water diffusion in the human brain
is diffusion tensor imaging (DTI) [1], where the diffusion tensor’s (DT) main
eigenvector corresponds to the axis of maximum diffusion. In white matter fiber
tracts, the main eigenvector is aligned with the local average orientation of the
fibers, making it possible to study patterns of brain connectivity in-vivo.

The chief limitation of DTI is that the DT is constrained to represent only
one maximum diffusion orientation and thus it is inadequate in voxels where
two or more fiber bundles cross, split or “kiss”. This represents a significant
problem for diffusion tractography, where we rely on local fiber-orientation es-
timates to reconstruct fiber pathways. According to [2], as many as one third
of white-matter voxels contain more than one fiber bundle orientation. A num-
ber of methods have been developed to resolve heterogeneous intra-voxel fiber
structures, [3] gives a review. In this study we focus on approaches that use
data acquired at a fixed “b-value” with independent gradient directions, which
is the type of data usually acquired for DTI. DTI scans use b-values of approx-
imately 1000 s/mm2 for optimal performance [4], and can be computed with a
minimum of six gradient orientations. High angular resolution diffusion imaging
(HARDI) scans typically use a relatively large set of gradient directions and
higher b-values, to develop the contrast for multi-fiber reconstruction.
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Recent improvements in the speed of image acquisition, combined with de-
mand for high-quality DT data, have led to an increased adoption of DTI acqui-
sition protocols using 30 or more gradient directions, which opens the possibility
of applying HARDI methods in clinical scans. It is therefore useful to investigate
how the HARDI methods perform under contemporary DTI scanning protocols.
Even though most of reported methods provide some experimental validation, to
the best of our knowledge there is not a reported comparison for several methods
under the same conditions using a clinically realistic DTI acquisition protocol.
In this paper, we compare five previously published HARDI methods under the
same simulated acquisition settings for synthetic as well as for human DW-MRI
data. The methods are explained in the following section.

1.1 Methods for Intra-voxel Fiber Estimation

First, we introduce the basic models for the normalized DW signal A(q) given
the diffusion wavenumber q:

A(q) =
∫

R3
p(x) cos(qT x)dx, (1)

A(q) =
∑
i=1

αi exp(−qT Diqτ), (2)

A(q) =
∫

R3
A(q;x0)f(x)dx. (3)

Model (1) involves the particle displacement Probability Density Function (PDF)
p, (2) is the Gaussian Mixture Model (GMM) and (3) associates the Fiber Orien-
tation Distribution (FOD) f estimated by Spherical Deconvolution (SD). DT’s
are denoted by Dj with contribution αi ∈ [0, 1], τ is the effective diffusion time
and A(q;x0) is the DW signal for a fiber along orientation x0, see [3].

For our comparison study we select a set of methods from the literature:
Multi-DT (MDT)[5], analytical QBall (AQBl) [6], Maximum Entropy Spherical
Deconvolution (MESD) [7], Non-negativity Constrained Super-Resolved Spheri-
cal Deconvolution (SCSD) [8], and Diffusion Basis Functions (DBF) [9]. Next we
briefly describe these methods (see [10] for a study of similarities among them).

1. MDT [5]. This method assumes the GMM (2). The fitting procedure re-
quires non-linear optimization. In [5] the DT’s eigenvalues were fixed and the
GMM was fitted by a multi-start gradient descent algorithm. We optimize
the full diffusion tensors subject to non-negativity of the eigenvalues, using a
Levenberg-Marquardt algorithm [11]. A problem for this method is the need
for model selection as a pre-processing step.

2. AQBl [6]. By using the Funk transform, a projection of p along the orienta-
tion x is proportional to the integral of A(q) over the circle perpendicular to
x. We use the novel analytical reconstruction approach which introduces a
regularization term based on the Laplace–Beltrami operator. This modifica-
tion improves fiber orientation detection. The non-parametric nature allows
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one to recover an arbitrary number of fiber orientations but makes the esti-
mation noise sensitive.

3. MESD [7]. This is a generalization of the Persistent Angular Structure
(PAS) method. The PAS function is parameterized by a maximum-entropy
model. The PDF estimation is achieved by evaluating an integral only for
a fixed radius sphere in q space. This representation allows one to recover
high quality solutions of the angular structure of p, although the required
non-linear optimization is computationally expensive.

4. SCSD [8]. This proposal extends previous proposals on SD which decon-
volve the FOD f from model (3). This work tackles the ill-conditioned prob-
lem of classical SD approaches by constraining the non-negativity of the
FOD components, which allows super-resolution: the FOD can be estimated
with more parameters than measured signals.

5. DBF [9]. A discrete version of the GMM is proposed by fixing a tensor basis
consisting of anisotropic diffusion tensors with principal directions isotrop-
ically distributed on the sphere. A dictionary of DBF is computed (one
signal per basis tensor), so that A(q) is explained as a non-negative linear
combination of the DBF. The fitting procedure is based on a Basis Pursuit
optimization framework which searches for the smallest possible number of
DBF to represent the signal.

The rest of the paper is organized as follows. We explain the comparison
framework in section 2. The results are presented in section 3 and finally we
discuss the experiments and present our conclusions in Section 4.

2 Experimental Methods

To implement the various methods, we use: a) the code provided by the authors
for methods MESD, SCSD, AQBl and DBF, and b) open-source implementa-
tions for method MDT in the Camino toolkit [11]. Also, we use the proposed
parameters supplied with the software as described below. For AQBl we use har-
monic order l = 8 and regularization amount λLB = 0.006; no FOD sharpening
is applied. For the MESD method we use a PAS filter with radius 1.4. For SCSD
we use spherical harmonic order lmax = 10, λ = 1, τ =10%. For DBF method we
use the reported 129 basis orientations. Peak detection was performed for AQBl,
MESD and SCSD by using the Camino toolkit [11]. Following [8], peaks smaller
than 20% of the magnitude of the largest peak were eliminated. Correspondingly,
for DBF and MDT we eliminated tensors with coefficients αi less than 20% of
the largest coefficient. We provided to SCSD and DBF the same profile signal for
a single fiber bundle A(q;x0), which is computed using the average DT in voxels
thought to contain a single fiber bundle. In the brain data, we fitted the DT
to the data set, then we calculate average eigenvalues from tensors with linear
coefficient larger than both spheric and planar coefficients, which are defined
in [12]. In the synthetic data, we generated synthetic noisy measurements from
voxels containing a single diffusion tensor.
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We use data from three sources in the experiments:

1. Synthetic data - free diffusion model. The DW-MRI signal was synthe-
sized from the GMM (2). The DT principal eigenvalue was set to 1 × 10−3

mm2 / s and the second and third eigenvalues were 2.22 × 10−4 mm2 / s,
so that the Fractional Anisotropy (FA) [1] is equal to 0.74 and the diffusion
ratio (longitudinal/transversal) is equal to 4.5. The above values were taken
from a sample of tensors observed in the brain data from a healthy volunteer
(see below). The number of tensors in each voxel of synthetic data is either
two or three and the crossing angle is varied between 30 and 90 degrees. A
random rotation was applied to all tensors in each voxel before the data was
generated, to simulate fiber bundles at different orientations.

2. Synthetic data - restricted diffusion model. The MDT and the DBF
methods both use the GMM, so they have an advantage when data is syn-
thesized from a GMM. We therefore perform one experiment with data gen-
erated from a Monte-Carlo (MC) simulation of diffusion within and around
impermeable cylinders. For the simulation, 105 simulated water molecules
were evenly distributed on a substrate consisting of a regular grid of im-
permeable, hollow cylinders of radius 5 ×10−6 m, separated by 13 ×10−6

m. The simulated MR acquisition was designed to be as similar as possi-
ble to the human brain acquisition (below): nine measurements at b = 0
and sixty at b = 1000 s/ mm2, diffusion time Δ = 0.035 s and pulse width
δ = 0.017 s. The algorithm for simulating the diffusion and the MRI acquisi-
tion is explained in [13] and implemented in the Camino toolkit [11]. When
the diffusion tensor is fitted to this data, the FA is close to 0.74, as is used
in the GMM experiments. To generate data from a fiber crossing, we rotate
half of the cylinders by 90 degrees and repeat the simulation.

3. Human brain data. A single healthy volunteer was scanned on a Siemens
Trio 3T scanner. The DWI acquisition parameters were as follows: single-
shot echo-planar imaging, nine images for b=0 s/mm2, 60 DW images with
unique, isotropically distributed orientations (b=1000 s/ mm2), TR=6700
ms, TE=85 ms, 90o flip angle, voxel dimensions equal to 2 × 2 × 2 mm3. We
compute the fiber orientations using each method, first using all 60 of the
diffusion weighted measurements, and then with subsets of various sizes. The
purpose of this experiment is to report the method’s stability if fewer than
60 measurements were acquired. In order to preserve the isotropic distribu-
tion of directions, we compute evenly-distributed subsets using the method
presented in [14].

3 Results

The top part of Table 1 presents results for the synthetic signal generated with
free diffusion model. The results show the following configurations of the GMM:
a) a two fiber crossing with random crossing angle 60o > γi < 90o, denoted as
2≈90, b) a three fiber crossing with random crossing angle 60o > γi < 90o, denoted
as 3≈90, and c) a two fiber crossing with crossing angle γi denoted as 2γi . Sixty
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Table 1. Numerical results for comparison with synthetic signals (free diffusion and
cylinder restricted models). We show in bold the best results per category.

Free Diffusion

SNR=10 SNR=20 SNR=30
n̄− n̄+ ε̄θ σεθ ε̄α n̄− n̄+ ε̄θ σεθ ε̄α n̄− n̄+ ε̄θ σεθ ε̄α

2≈
90 0.2 18.9 12.2 0.20 0.1 11.7 10.1 0.15 0.0 7.6 6.3 0.12

M 3≈
90 0.3 27.7 14.8 0.18 0.8 25.5 14.8 0.25 0.8 24.1 13.8 0.25

D 230 0.5 18.2 15.6 0.28 0.6 14.6 11.7 0.31 0.6 13.7 10.7 0.34
T 240 0.4 18.6 13.7 0.28 0.5 15.9 10.0 0.30 0.5 14.2 9.8 0.29

250 0.3 20.3 12.1 0.26 0.3 16.5 10.5 0.26 0.3 13.1 7.9 0.24
260 0.3 19.2 11.1 0.23 0.2 14.0 8.2 0.22 0.0 10.6 7.3 0.18
2≈
90 0.6 0.0 19.8 11.4 0.31 0.7 0.0 20.3 11.0 0.37 0.8 0.0 20.6 10.0 0.40

A 3≈
90 1.0 0.0 28.7 15.4 0.25 1.4 0.0 28.9 12.8 0.40 1.5 0.0 29.2 11.8 0.43

Q 230 1.0 0.0 11.5 3.7 0.50 1.0 0.0 12.3 2.6 0.50 1.0 0.0 12.9 1.9 0.50
B 240 1.0 0.0 14.9 5.2 0.50 1.0 0.0 16.8 3.2 0.50 1.0 0.0 17.5 2.3 0.50
l 250 1.0 0.0 18.5 6.3 0.50 1.0 0.0 21.0 3.8 0.50 1.0 0.0 22.0 2.8 0.50

260 0.9 0.0 22.0 9.3 0.45 1.0 0.0 24.0 5.5 0.50 1.0 0.0 25.5 4.1 0.50
2≈
90 0.0 0.7 21.7 12.7 0.12 0.0 0.4 14.5 10.5 0.10 0.0 0.1 10.7 8.1 0.08

M 3≈
90 0.0 0.0 26.1 14.1 0.08 0.0 0.0 20.1 12.4 0.08 0.1 0.0 16.5 11.7 0.08

E 230 0.3 0.3 24.1 21.1 0.26 0.8 0.1 14.7 17.5 0.35 0.9 0.0 12.2 11.5 0.40
S 240 0.2 0.5 23.6 17.0 0.21 0.4 0.2 19.6 17.0 0.26 0.8 0.0 14.9 12.1 0.38
D 250 0.1 0.5 23.9 15.6 0.17 0.2 0.2 19.5 13.1 0.21 0.3 0.0 16.3 12.5 0.26

260 0.0 0.6 22.5 13.5 0.14 0.1 0.3 17.8 11.9 0.15 0.1 0.1 13.3 9.1 0.13
2≈
90 0.1 0.0 19.1 13.8 0.11 0.0 0.0 12.6 11.1 0.08 0.1 0.0 8.9 7.8 0.07

S 3≈
90 0.2 0.0 26.2 13.6 0.10 0.2 0.0 22.2 13.3 0.08 0.1 0.0 17.0 11.5 0.07

C 230 1.0 0.0 12.7 6.6 0.47 1.0 0.0 13.3 1.5 0.49 1.0 0.0 13.8 0.9 0.50
S 240 0.9 0.0 16.0 11.4 0.45 1.0 0.0 15.4 4.2 0.47 1.0 0.0 16.4 6.9 0.48
D 250 0.7 0.0 19.1 12.1 0.38 0.8 0.0 16.5 9.6 0.43 0.8 0.0 15.0 9.3 0.45

260 0.2 0.0 20.0 12.5 0.21 0.2 0.0 15.7 11.5 0.20 0.2 0.0 12.1 8.4 0.18
2≈
90 0.0 0.5 17.9 12.2 0.11 0.0 0.4 11.5 9.0 0.08 0.0 0.4 7.8 5.3 0.07

D 3≈
90 0.0 0.0 26.7 14.7 0.08 0.0 0.0 21.5 14.9 0.06 0.0 0.0 16.4 12.8 0.06

B 230 0.6 0.1 12.6 7.0 0.31 0.7 0.0 11.7 4.1 0.35 0.7 0.0 11.5 3.9 0.36
F 240 0.4 0.1 16.0 10.9 0.26 0.3 0.2 13.5 7.1 0.24 0.2 0.1 12.0 6.7 0.23

250 0.2 0.2 17.4 10.6 0.20 0.1 0.2 13.7 9.0 0.18 0.1 0.3 10.7 6.2 0.16
260 0.0 0.3 18.0 10.9 0.15 0.0 0.3 12.6 9.0 0.13 0.0 0.3 8.8 6.2 0.10

MC Cylinder restricted diffusion, 2 Fibers 90o

SNR=10 SNR=20 SNR=30
n̄− n̄+ ε̄θ σεθ ε̄α n̄− n̄+ ε̄θ σεθ ε̄α n̄− n̄+ ε̄θ σεθ ε̄α

MDT 0.0 9.1 5.4 0.10 0.0 4.1 2.2 0.06 0.0 2.7 1.4 0.04
AQBl 0.1 0.0 12.2 7.4 0.08 0.0 0.0 6.6 4.2 0.03 0.0 0.0 4.4 2.7 0.03
MESD 0.0 0.0 8.6 4.5 0.05 0.0 0.0 4.2 2.0 0.02 0.0 0.0 2.8 1.4 0.02

SCSD 0.0 0.0 11.1 5.6 0.10 0.0 0.0 6.2 3.5 0.13 0.0 0.0 4.4 2.5 0.14
DBF 0.0 0.4 8.2 5.8 0.07 0.0 0.1 3.5 2.5 0.03 0.0 0.0 2.1 1.6 0.02
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Table 2. Comparison for human brain data, entries show how the solution changes as
the number of diffusion encoding orientations (#q) is decreased (best values in bold)

# MESD SCSD DBF
q n̄− n̄+ ε̄θ σεθ ε̄α n̄− n̄+ ε̄θ σεθ ε̄α n̄− n̄+ ε̄θ σεθ ε̄α

50 0.1 0.1 6.9 9.7 0.06 0.1 0.1 10.0 12.9 0.07 0.2 0.1 8.2 14.1 0.07
40 0.1 0.1 9.8 11.7 0.08 0.1 0.1 16.0 15.0 0.09 0.2 0.1 10.8 15.2 0.09
30 0.1 0.1 12.9 13.1 0.09 0.1 0.2 16.0 14.3 0.10 0.2 0.2 13.5 15.9 0.11

voxels of synthetic data are generated for each configuration. Rician noise was
added to each measurement to produce the desired signal to noise ratio (SNR) in
the b = 0 images. For each voxel, given the ground-truth and a set of recovered
orientations, we first compute the number of axon bundles not recovered, n−;
or the number of extra bundles n+ found by the reconstruction – if the number
of fiber bundles matches the true value, both of these quantities are zero. To
compute the orientation error, we match the orientations returned from the
methods to the ground truth, pairing directions such that the error is minimized.
Thus the angle error εθ and the absolute difference of the size compartments εα

are computed for each ground-truth orientation. We compute the mean value for
the errors and the standard deviation for the angular error (σεθ

). All of the error
metrics are defined such that the smallest number (shown in bold font) is the
best result. The comparison of the methods in the MC simulation experiment
is shown on the bottom part of Table 1. For these experiments we generate 60
voxels of data by adding noise to the data synthesized from the single-fiber and
the crossing-fiber simulations.

For human brain data we show a qualitative comparison in Figure 1 for the
three most successful methods: MESD, SCSD and DBF. For the visualization
of MESD and SCSD, we use the same diffusion tensors as in the DBF solution,
aligned to the MESD and SCSD peaks and scaled by the strength of each peak.
For the DBF visualization, tensors are scaled by the contribution of each basis

(a) MESD (b) SCSD (c) DBF

Fig. 1. Results for different methods in brain DW-MRI, the image shows the intersec-
tion of posterior corona radiata and tapetum-splenium of corpus callosum



Comparison of Multi-fiber Methods in Clinical Diffusion Imaging 311

function to the solution. We note that there is not a significant difference in
the solutions: the mean difference error among them is ε̄θ ≈ 8.5o, n̄− ≈ 0.21
and n̄+ ≈ 0.21 for 936 voxels. The performance comparison in human data
tests the consistency of the methods when there is less available DW-MRI data.
The “ground truth” is the fiber orientations calculated by using all of the data
(#q = 60) and report in Table 2 how the results differ for each as we diminish
the number of diffusion encoding orientations (# q ∈ [50, 40, 30]). The MESD
method performs most consistently with less DW-MRI data.

4 Discussion and Conclusions

For the synthetic data results in Table 1, the MDT method produces good re-
sults compared to some other methods, though here we indicate a priori the
model to fit (2 or 3 DT). In real data we would have to use a separate model
selection procedure, however, it appears that this method would perform well
given accurate model selection.

The synthetic results also suggest that AQBl, at least in the implementation
used here, cannot be successfully applied to scans acquired under our b=1000
s/ mm2

/
60-direction DTI protocol. It presents high n̄− values which indicate a

systematic underestimation of the number of fiber bundles. For the 30 degree
crossing angle all methods are detecting only one fiber in most cases, according
to the high n̄− values. The SCSD method also presents the smallest overesti-
mation of the number of fiber orientations, but it is also more likely to under-
estimate the number of fiber bundles than MESD and DBF. The DBF method
produces the smallest angular error, and performs similarly to MESD in estimat-
ing the number of fiber orientations. The relative performance of the methods
is unchanged when synthesizing data from the GMM or from a MC diffusion
simulation.

For the human brian data results in Table 2 and Figure 1, the MESD method
is most robust when the number of diffusion encoding orientations is reduced,
followed by DBF and SCSD respectively. The results for 60 diffusion encoding
orientations (in Figure 1) are very similar for MESD, SCSD and DBF methods.

Regarding computation effort, MESD is the most expensive (with an average
of 57 s per voxel, Java implementation), followed by SCSD (1.36 s per voxel,
Matlab implementation) and DBF (0.16 s per voxel, Matlab implementation)
respectively (on an AMD Opteron 2.4 GHz CPU). This study shows that it is
possible to recover competitive estimations with low computational burden (i.e.
by using SCSD or DBF).

The main contribution of this paper is the comparison of how multi-fiber
methods perform in a realistic DTI data set. The results in synthetic data sug-
gest that a small improvement in accuracy can be gained by using DBF, though
the difference in angular error is fairly small (approximately 2 degrees). The
DBF calculation is significantly faster than MESD and comparable to SCSD.
MESD performs best in human brain data with fewer diffusion gradient direc-
tions, however this comes at the expense of much longer computation time.
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