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Abstract. In this paper, a new adaptive filter intended for the atten-
uation of impulse noise in color images is proposed. The new filtering
design is based on the concept of a peer group of pixels sharing similar
chromatic properties. The novel approach adaptively determines the size
of the peer group which minimizes the aggregated distance to the peer
group members, utilizing the Fisher linear discriminant. The analysis of
the obtained noise reduction results leads to the conclusion that the new
filter is capable of reducing even strong impulse noise, while preserving
and even enhancing the edges of color images. This unique property of
the proposed filtering design is shown on examples of color biomedical
images.

Keywords: Color image processing, impulse noise reduction, image
enhancement.

1 Introduction

The Vector Median Filter (VMF) is the most popular vectorial operator used
for the removal of impulses injected into the color image by the noise process
[1]. This filter is quite efficient at reducing the impulses, retains sharp edges
and linear trends, however it does not preserve fine image structures, which
are treated as noise and therefore generally the VMF tends to produce blurry
images. This unwanted feature of the VMF is very important as much of the
image information is contained in its edges, and sharp edges are pleasing to
humans and are desirable for machine processing.

Many edge enhancement techniques that counteract blur without the knowl-
edge about its model are based on linear filters which emphasize the high-
frequency image components performing the high-pass filtering in the spatial
or frequency domain. The drawback of these simple techniques is that they
strongly amplify the image noise and texture and produce annoying overshoots
and ringing effects at sharp edges. Also the deconvolution algorithms fail in the
presence of noise and in the cases when the knowledge about the degradation
model is not available.

One of the most popular technique intended for noise reduction, while pre-
serving edges is the anisotropic diffusion, whose aim is to encourage intraregion
smoothing and to inhibit blurring of edges [2]. This powerful method has been
successfully applied to color images contaminated by Gaussian noise, however
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its main drawback is its difficulty to cope with impulse noise, which is being
retained, as it is treated like a strong edge, which should be preserved [3].

Another solution to the problem of image quality improvement with edge
enhancing abilities is provided by the shock filters, which are based on the idea
to apply locally either a dilation or an erosion process, depending on whether the
pixel belongs to the in influence zone of a local maximum or a minimum [4]. This
filter class creates a sharp discontinuity at image edges and produces piecewise
constant segmentation of the image, however it is not able to enhance the image
in the presence of impulse noise, as the impulses are treated as local extrema.

The described above filtering schemes exemplify the main difficulty when en-
hancing images polluted by impulses. The majority of the well known techniques
which are able to suppress the impulse noise tend to blur the image and those
with edge enhancing properties preserve or amplify the outliers introduced by
noise process. As a result much research has been devoted to the construction of
filters which can cope with noise while simultaneously preserving image details
and enhancing edges in the gray-scale [5] and color images [6, 7].

In this paper a solution to the problem of image noise filtering with edge en-
hancing abilities is proposed. Extending the VMF using the peer group concept
introduced in [8], it is possible to efficiently remove impulse noise while sharpen-
ing the color image edges. The proposed filtering design is comparable in noise
reduction with the VMF, preserves much better image details and what is the
most important contribution of the paper, produces images with sharp edges.

2 Adaptive Generalized Vector Median Filter (AGVMF)

To remove the impulse noise from color images various filtering approaches based
on the order statistics theory have been proposed. The most popular filtering
class operating on a sliding window is based on the vector sample ordering [6].

The reduced or aggregated ordering scheme assigns an aggregated dissimilar-
ity measure to each color pixel from the filtering window W . The aggregated
dissimilarity measure assigned to pixel xi is defined as Ri =

∑n
j=1 ρ(xi, xj),

xi, xj ∈ W , where ρ(·) denotes the distance between the color pixels belonging
to the filtering window W containing n pixels. The scalar accumulated dissimilar-
ity measures are then sorted and the associated vectors can be correspondingly
ordered. The vector median of a set of vectors from W is defined as the vector
x(1) from W for which the sum of distances to all other vectors belonging to W
is minimized: x(1) = arg minx∈W

∑n
j=1 ρ(x, xj).

The notion of the vector median can be generalized, so that the filter output
will be the vector xα

(1) for which the sum of α smallest distances to other vectors
from W is minimized. Of course for α equal to the number of pixels n in the
filtering window, the standard VMF is obtained.

If the distance between the vector xi and xj is denoted as ρi,j , then we can
order the set of distances ρi,j , for j = 1, . . . , n and obtain the following sequence:
ρ
(1)
i ≤ . . . ≤ ρ

(α)
i ≤ . . . ≤ ρ

(n)
i , where ρ

(k)
i is the k-th smallest distance from xi.

For each pixel in the filtering window the cumulated sum Rα
i is calculated as:
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Fig. 1. Dependence of the PSNR on the
value of the α parameter for a color test
image LENA contaminated with impulsive
noise of intensity p. The apparently weak
filtering efficiency for low levels of noise is
caused by the sharpening of edges which is
treated by the PSNR as a distortion.

Fig. 2. Plot of the sorted aggregated
distances R of pixels from a 3×3 win-
dow of the original and noisy color test
image. The filtering window contains
two impulses (textured bars) which
can be detected using the Fisher’s lin-
ear discriminant.

Rα
i =

∑α
k=1 ρ

(k)
i and the output of the generalized VMF is pixel, for which the

trimmed sum of distances Rα is minimized.
The experiments performed on color test images indicate that the noise re-

duction properties of such a filtering design depend on the proper setting of the
α parameter, as its optimal value is influenced by the kind of impulse noise and
its intensity. Figure 1 exemplifies this observation showing the dependence of
the PSNR image restoration measure on the value of α for a noisy LENA image
contaminated with impulse noise.

In [9] the following criterion for determining the α parameter has been pro-
posed

α = max α∗ subject to

⎛

⎝
α∗
∑

j=1

ρ
(j)
i

⎞

⎠ ≤ ρ
(n)
i , xi ∈ W , (1)

where ρ
(n)
i is the largest distance between the central pixel xi and its neighbors

from W . This definition, although yields acceptable results is quite heuristic and
therefore a new rule for the choice of α has been devised.

For the task of determining the value of α, which can be treated as the cardi-
nality of a cluster of pixels which were not disturbed by noise, we can make use
of the Fisher’s linear discriminant. Fisher’s linear discriminant is a classification
method that generally projects high-dimensional data onto a line and performs
classification in this one-dimensional space. In our case, the dimensionality re-
duction of the color vectors, is performed by the calculation of the aggregated
distances. Fig. 2 depicts the sorted aggregated distances of pixels in the filtering
window of the original and noisy test image. Utilizing the Fisher’s criterion the
impulses injected by the noise process can be easily detected.
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(a) (b)

Fig. 3. Illustration of the Fisher’s discrimination function for two distributions of the
aggregated distances R . In each case, the maximum of the Fisher’s discriminant de-
termines the α value equal to 5.

The goal of the discriminant is to maximize the distance between the means
of two classes, while minimizing the variance within each class. This defines the
Fisher criterion function F(k), where k denotes the rank of the sorted sequence
of the sorted r(k) values

F(k) =
[μ1(k) − μ2(k)]2

σ2
1(k) + σ2

2(k)
, k = 1, . . . , n − 1 , (2)

μ1(k) =
1
k

k∑

i=1

R(i) , μ2(k) =
1

n − k

n∑

i=k+1

R(i) , (3)

where the values μ1 and μ2 denote the mean values of the two classes of pixels
and σ2

1 and σ2
2 stand for the variances of the aggregated distances in each of the

two classes.
Figure 3 shows two plots of the Fisher linear discrimination function. As can

be observed in Fig. 3 (a) the set of pixels in the filtering window is divided into
two clusters. The α value is determined by the maximum of the Fisher’s function.
The division into two clusters is always performed, as shown in Fig. 3 (b), and
as a result even in the absence of impulses a reasonable value of α is delivered
by the Fisher’s criterion, which guarantees the edge enhancing effect [9].

3 Experiments

For the evaluation of the efficiency of the proposed filter, a series of experiments
has been performed utilizing natural and artificial color images contaminated by
impulse noise. The applied noise model is defined as [6]

xi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

oi, with probability 1 − p,
{ρi1, oi2 , oi3}, with probability p1 p,
{oi1 , ρi2, oi3}, with probability p2 p,
{oi1 , oi2 , ρi3}, with probability p3 p,
{ρi4, ρi4, ρi4}, with probability p4 p,

(4)

where x and o denotes the noisy and original color test image, p is the sample
corruption probability and p1, p2, p3 are corruption probabilities of each color
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(a) PSNR (b) MAE

Fig. 4. Dependence of the restoration quality measures on the noise intensity of the
proposed AGVMF as compared with VMF, SVMF, [9] and GVMF with fixed parameter
α = 5

channel, so that
∑4

1 pk = 1. The variables ρik, k = 1, . . . , 4 take the value 0 or
255 with equal probability. In this work, the following parameter setting were
used: pk = 0.25 for k = 1, . . . , 4.

For the measurement of the restoration quality, the Root Mean Squared Error
(RMSE) expressed through the Peak Signal to Noise Ratio (PSNR) was used.
For the evaluation of the detail preservation capabilities of the proposed filtering
design the Mean Absolute Error (MAE) has been utilized.

The overall good noise reduction abilities of the proposed filtering design are
presented in Fig. 4, which show the dependance of the PSNR and MAE on the
noise intensity p when restoring the LENA noisy image. As can be observed
the efficiency of the proposed AGVMF is superior to that of the Sharpening
VMF (SVMF) proposed in [9] and the Generalized VMF (GVMF) with fixed
parameter α. The noise reducing properties evaluated by means of PSNR and
MAE are comparable with VMF, however the proposed AGVMF has the unique
ability to sharpen the edges present in the color images. This feature is visible in
Fig. 5 which depicts the filtering results delivered by the new filter as compared
with the VMF, GVMF and SVMF.

The novel filtering technique can be applied for various tasks in which the
noise reduction capabilities combined with the strong edge enhancing properties
are beneficial. One of such applications is the analysis of the cDNA microarrays
which quantify the genes expression levels [10]. As can be observed, the impulse
noise is efficiently removed and the spots have sharp edges, which enable their
reliable detection and estimation of the mean expression level calculated as an
average intensity over the spot area.

The good efficiency of the proposed switching scheme can be observed in Fig.
6, which reveals the edge enhancing properties of the proposed noise reduction
filter. The edge sharpening property can be utilized also for the enhancement
of images which were not exposed to impulse noise. An example is provided by
Fig. 7 which depicts parts of images of contact endoscopy. The improvement of
the sharpness of edges can be evaluated when observing the output of the Vector
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(a) LENA (b) NOISY (c) VMF

(d) AGVMF (e) GVMGα=5 (f) SVMF

Fig. 5. Illustration of the efficiency of the proposed Adaptive Generalized VMF
(AGVMF) as compared with the VMF, GVMF and SVMF

(a) (b) (c)

Fig. 6. Illustration of the noise reduction and edge enhancing capabilities of the new
filter as compared with the VMF: (a) cDNA test image, (b) image restored with the
proposed AGVMF, (c) VMF output.

Range (VR) edge detector defined as the distance between the vectors x(1) and
x(n) from the filtering window [6]. As can be seen the quality of the edge maps is
increased when the pre-filtering with the described PGVMF filter is performed.
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(a) Test Image (b) AGVMF (c) Test Image (d) AGVMF

(e) VR (f) VR (g) VR (h) VR

Fig. 7. Illustration of the edge enhancing property of the proposed filtering deign: (a)
and (c) color images of contact endoscopy, (b) and (d) depict the new filter output.
Below (e-h) the output of the vector range edge detector is presented.

(a) original (b) enhanced

(c) original (d) enhanced

Fig. 8. Illustration of the edge enhancing properties of the proposed filtering design:
(a) microscopic histology image, (b) output of the proposed adaptive filter after three
iterations, (c-d) zoomed parts of the images above
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The final example, (Fig. 8) shows a microscopic blurry color image which can
be enhanced using the proposed adaptive approach. This example indicates that
the proposed algorithm can also be useful for the purpose of image segmentation.

4 Conclusions

In this paper, the properties of a novel adaptive filtering design has been ex-
amined. The proposed filter can be regarded as an adaptive generalization of
the standard Vector Median Filter. Besides its excellent impulsive noise reduc-
ing capabilities, its unique feature is its ability to enhance color image edges by
sharpenning their edges. This effect is really beneficial as in many applications
sharp image edges are desired to enable the success of further image processing
steps.
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