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Abstract. All three conventional c-means clustering algorithms have
their advantages and disadvantages. This paper presents a novel general-
ized approach to c-means clustering: the objective function is considered
to be a mixture of the FCM, PCM, and HCM objective functions. The
optimal solution is obtained via evolutionary computation. Our main
goal is to reveal the properties of such mixtures and to formulate some
rules that yield accurate partitions.
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1 Introduction

Zadeh’s pioneering work [19] opened new dimensions in several sciences and
research fields. The influence of fuzzy logic also reached the theory of clustering,
causing a division between crisp and fuzzy partitioning. The relaxation of the
probabilistic constraint in fuzzy clustering techniques gave birth to the absolute
or possibilistic fuzzy clustering [2]. The most popular (in the sense of most
frequently used) examples for these c-means clustering categories are the k-
means or hard c-means (in the followings: HCM), fuzzy c-means (FCM) [6], and
possibilistic c-means (PCM) [15] algorithms, probably because of their easily
understandable and implementable alternating optimization (AO) solution.

All these three algorithms have their merits and drawbacks. HCM converges
quickly, but it is very sensitive to initialization. FCM is better in partition quality
than HCM, but it converges much slower. PCM emerged by the relaxation of
the constraint that normalizes the degrees of membership, which caused several
differences. Possibilistic memberships are context-insensitive, that is, they are
only influenced by the distance of the given input vector from the given cluster
prototype, and is not influenced by other clusters [2]. PCM reportedly tends

J. Ruiz-Shulcloper and W.G. Kropatsch (Eds.): CIARP 2008, LNCS 5197, pp. 235–242, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



236 L. Szilágyi et al.

to produce coincident clusters [3], as its objective function treats each cluster
independently.

It is obvious, that none of these three algorithms are generally suitable for ev-
ery kind of clustering problem [5]. That is why, several attempts have been made
to improve these clustering techniques by combining them with each other or
with other algorithms (e.g. the improved version [14] of the generalized learning
vector quantization (GLVQ) [17], the generalized c-means clustering scheme [18],
the fuzzy J-means heuristic fuzzy clustering [4], or the suppressed FCM [10]).

In this paper we define a generalized c-means clustering model (GeCiM) ,
which minimizes a linear combination of the objective functions of HCM, FCM,
and PCM. Based on the reformulated objective functions given in [12], the op-
timal solution is reached using a genetic algorithm, and validated on the IRIS
data [1].

The remainder of the paper is organized as follows. Section 2 is a brief review of
the methods upon which GeCiM is built. Section 3 defines the GeCiM clustering
model and presents its optimization details. Section 4 relates on the clustering
results and validation, while Section 5 presents the conclusions.

2 Background

2.1 Hard, Fuzzy, and Possibilistic C-Means Clustering

By definition, clustering means the separation of a set of objects into a given
number of groups based on similarities. Objects are generally described with
feature vectors, which contain numerical and/or logical values of the object. Let
us denote the feature vectors by xk, k ∈ {1, 2, . . . , n}.

Clusters are generally represented by a prototype, centroid, or representative
element, which is either an averaged or a carefully selected vector from the class.
We will denote these prototypes by vi, i = 1 . . . c, where c represents the number
of clusters.

The degree to which feature vector xk belongs to cluster i is described by a real
variable uik, i = 1 . . . c, k = 1 . . . n. Clustering algorithms are distinguished by
the membership logic and the constraints that control these membership values.

HCM and FCM clustering minimize the same objective function, with different
parametrization. Their objective function is:

JF&H =
c∑

i=1

n∑

k=1

um
ik||xk − vi||2 =

c∑

i=1

n∑

k=1

um
ikd2

ik , (1)

where m is the so-called fuzzyfication parameter, and dik represents the distance
between vector xk and cluster prototype vi. In case of HCM we have m = 1,
while FCM uses m > 1. HCM allows only degrees of membership equaling to
0 or 1, while in FCM, uik ∈ [0, 1], but in case of both algorithms we have the
constraint

∑c
i=1 uik = 1. HCM resolves ties by chance.
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The objective function of PCM clustering contains an extra term, which helps
us find non-trivial solutions at minimization:

JP =
c∑

i=1

n∑

k=1

[
um

ik||xk − vi||2 + ηi(1 − uik)m
]

, (2)

where ηi, i = 1 . . . n represents the penalty term of cluster i, fuzzyfication
rate is m > 1, and degrees of membership are constrained by: uik ∈ [0, 1];
∀k = 1 . . . n ∃i ∈ {1, 2, . . . , c} such that uik > 0; and ∀i = 1 . . . c we have
0 <

∑n
k=1 uik < n.

All these three approaches can be optimized via AO techniques: by alternately
optimizing uik with vi fixed, and vi with uik fixed, until cluster prototypes
stabilize. The membership update rule differs from algorithm to algorithm, while
in all cases the cluster prototypes are updated using the same weighted averaging
formula.

2.2 Reformulated Objective Functions

Hathaway and Bezdek [12] introduced reformulated objective functions to all
three approaches, by eliminating the degrees of membership uik. They found the
following objective functions:

RHCM =
n∑

k=1

min{d2
1k, d2

2k, . . . , d2
ck} , (3)

RFCM =
n∑

k=1

(
c∑

i=1

d
2/(1−m)
ik

)1−m

, (4)

RPCM =
n∑

k=1

c∑

i=1

[
d
2/(1−m)
ik + η

1/(1−m)
i

]1−m

. (5)

The authors proved the equivalence of these objective functions with their
original, and proposed using these new optimization criteria for reducing the
dimensions of the search space.

In this paper, we will apply these formulae to define mixtures of the HCM,
FCM, and PCM clustering algorithms, and will optimize them via evolutionary
computation.

3 GeCiM: The Generalized Clustering Model

3.1 The Proposed Model

Based on the reformulated objective functions of HCM, FCM, and PCM, let us
formulate the following mixture criteria:

JGeCiM = βαRHCM + β(1 − α)RFCM + (1 − β)RPCM , (6)



238 L. Szilágyi et al.

where α, β ∈ [0, 1] represent balancing parameters that control the tradeoff
among the three terms. Obviously, setting β = 0 returns us to PCM, β = α = 1
means HCM, while β = 1 and α = 0 yield FCM clustering. Further parameters
are m (applied to the FCM and PCM terms) and ηi (for PCM only).

In any non-trivial case, when 0 < α, β < 1, the function JGeCiM is not likely
to have an AO scheme for minimization. That is why, in the followings, in or-
der to study the properties of the proposed clustering criteria, we will turn to
evolutionary computation techniques.

3.2 Optimization Via Evolutionary Computation

Genetic Algorithms (GAs) [11,13] are inspired and closely linked to Darwinian
evolution. They mimic many mechanisms of natural evolution like mating, mu-
tation, and survival of the fittest, in the hope that the recursive process of
recombining lower order partial results in higher order ones will ultimately yield
an optimal solution.

The complex schemes arising from the computational models of evolutionary
processes make these methods applicable to a wide spectrum of problems. Due
to their capabilities to handle several real world problems, they gained much
popularity and are applied to more and more challenging optimizations tasks
[7,8]. The behavior and performance of GAs and other heuristic based global
optimizers is determined by the diversification/intensification balance. Diversi-
fication generally refers to the exploration of the search space, whereas the term
intensification refers to the exploitation of the accumulated search experience.

As Eq. (6) can be a highly multimodal function due to its three main com-
ponents, we use a multipopulation GA approach, which creates subpopulations
within the niches defined by multiple potential optima. The employment of mul-
tiple groups of individuals facilitate a good diversity of the population as sub-
populations that are occupying different niches do not need to outperform each
other in order to propagate, resulting in a proper exploration of the search space.
Subpopulations only interact by the means of a migration process, where the
best individuals from one subpopulation are copied in another subpopulation,
replacing the worst individuals from the destination search niche.

Intensification is achieved by allocating a separate portion of the search space
to each subpopulation. After convergence of the global search, a Nelder-Mead
simplex algorithm [9,16] is further employed starting from the best solution found
so far.

The genome of the individuals is formed by a 12 element floating-point vector,
with values between 0 and 1, as we use the IRIS data set in normalized form.
These vectors can be logically regarded as a concatenation of three four-tuples,
representing potential cluster centers for the three iris specimen classes from the
Fisher’s normalized IRIS data [1].

To ensure a proper exploration of the solution space and to foster population
diversity, in our approach we use three subpopulations, each one initially slightly
biased toward a certain iris specimen class. We achieve this effect, by setting the
ith; i ∈ {1, 2, 3} four-tuple in the ith subpopulation to vectors randomly picked
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from the ith class of the normalized iris data, in 20 % of cases. The rest of the
genome partitions and the rest of 80 % individuals from the subpopulations are
uniformly randomly initialized with values from 0 to 1. While artificially intro-
ducing good genes into the subpopulations, biasing them towards certain classes,
this process also ensures enough initial raw genetic material in order to sustain
genetic variation and the opportunity for change over successive generations or
“evolution”.

Fig. 1. Graphical representation of average (left) and maximum (right) number of
correct decisions out of 150, vs. α and β tradeoff parameters

Recombination of best solutions from different subpopulations and increased
intensification is promoted by the migration process, which copies the top 5 %
individuals from each subpopulation to the other ones and discards the top 10 %
worst individuals from every subpopulations, in every 20th generation.

Each subpopulation uses scaled fitness-proportionate selection, a crossover
process that mixes up the genes with respect to original parental chromosomes
in a uniform fashion and a mutation operator that mutates selected genes to a
random number chosen uniformly from 0 to 1.

The subpopulation sizes were set to SubPopulationsize = 120, the mutation
rate to Pmut = 0.1 and the crossover rate used was Rc = 0.8.

The algorithm was run for a maximum of 100 generations or until convergence
was detected. The convergence criterion checks, whether the cumulative fitness
improvement over the last 10 generations of the best individual is not exceeding
the 10−6 threshold.

4 Results

The properties of the proposed generalized clustering method were tested using
the IRIS data, which consists of 150 labeled vectors of four dimensions. Obvi-
ously, the clustering is performed in an unsupervised manner, that is, the labels
are only used at evaluation.

We tested GeCiM with various parameter settings: α and β independently
varied from 0 to 1, with steps of 0.1. The algorithm was performed 10 times
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Fig. 2. Partition with 140/150 success rate signifying 6.67 % misclassifications. Shapes
indicate the ground truth labeling; misclassified vectors are drawn in black. Cluster
prototypes are indicated by the large circle, triangle and square.

with each parameter setting. Figure 1 shows the average and maximum number
of correctly detected vectors for all parametrized cases.

Looking at the graphs in Fig. 1 we can formulate the following. Two interesting
cases need to be remarked. Most of the accurate clustering techniques report 133-
135 correct decisions out of 150. Our graph in Fig. 1 shows two independent spots
with better decision rate. We can have 140 correct decision at β = 1, that is,
when GeCiM is reduced to a mixture of HCM and FCM. This suggests that under
certain circumstances, mixing FCM and HCM can lead to a superior clustering
algorithm. One set of prototype, which was found to give this partition, is:

v1 =

⎛

⎜⎜⎝

4.65310
3.07784
1.50021
0.20540

⎞

⎟⎟⎠ , v2 =

⎛

⎜⎜⎝

5.82625
2.70022
3.98397
1.31061

⎞

⎟⎟⎠ , v3 =

⎛

⎜⎜⎝

6.72685
3.09917
5.59478
2.43399

⎞

⎟⎟⎠ . (7)

The whole IRIS data set and its partition obtained with the vectors given above,
are represented in two-dimensional projections in Fig. 2.

The other key thing that deserves a remark is the fact, that pure PCM (β = 0)
is quite unstable, which means in most cases it leads to poor quality partitions
(as indicated in [2]), but sometimes it finds a set of prototypes offering 149
correct decisions. One such case is depicted in eq. (8), and Fig. 3:



GeCiM: A Novel Generalized Approach to C-Means Clustering 241

Fig. 3. Partition with 149/150 success rate signifying 0.67 % misclassifications

v1 =

⎛

⎜⎜⎝

5.14843
3.51076
1.51996
0.13272

⎞

⎟⎟⎠ , v2 =

⎛

⎜⎜⎝

6.02770
2.85190
4.62071
1.67480

⎞

⎟⎟⎠ , v3 =

⎛

⎜⎜⎝

5.94317
2.76658
4.81742
1.82569

⎞

⎟⎟⎠ . (8)

These poor quality results provided by pure PCM are easily corrected by
giving β a small, but non-zero value, for example 0.1. Figure 1 suggests this
choice to be the best, whatever α might be. In other words, for any α ∈ [0, 1],
the best choice is to set β = 0.1, and we get a stable and accurate solution with
136-137 correct decisions.

5 Conclusions

In this paper we proposed a mixture c-means clustering model, and involved a
genetic algorithm for its optimization. Using the IRIS data to test and evaluate
the proposed approach, we have concluded the followings:

– Mixtures of HCM and FCM, under certain circumstances, can outperform
pure HCM or pure FCM.

– Pure PCM is very unstable, but mixing 90 % of PCM with some HCM and
FCM show excellent in both partition quality and stability.

– The more FCM and less HCM we have in a mixture, the better the accuracy
will be. However, this variation is slow.
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Further works will aim at testing with lots of other data, and with smaller
steps of α and β.
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