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Abstract. In this paper, a new clustering algorithm called Dynamic Hi-
erarchical Star is introduced. Our approach aims to construct a hierarchy
of overlapped clusters, dealing with dynamic data sets. The experimen-
tal results on several benchmark text collections show that this method
obtains smaller hierarchies than traditional algorithms while achieving a
similar clustering quality. Therefore, we advocate its use for tasks that
require dynamic overlapped clustering, such as information organization,
creation of document taxonomies and hierarchical topic detection.
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1 Introduction

The World Wide Web and the number of text documents managed in organi-
zational intranets continue to grow at an amazing speed. Managing, accessing,
searching and browsing large repositories of text documents require efficient or-
ganization of the information. In dynamic information environments, such as the
World Wide Web or the stream of newspaper articles, it is usually desirable to
apply adaptive methods for document organization such as clustering.

Static clustering methods mainly rely on having the whole collection ready
before applying the algorithm. Unlike them, the incremental methods are able
to process new data as they are added to the collection. In addition, dynamic
algorithms have the ability to update the clustering when data are added or
removed from the collection. These algorithms allow us dynamically tracking
the ever-changing large scale information being put or removed from the web
everyday, without having to perform complete reclustering.

Hierarchical clustering algorithms have an additional interest, because they
provide data-views at different levels of abstraction, making them ideal for people
to visualize and interactively explore large document collections. Besides, clusters
very often include subclusters, and the hierarchical structure is indeed a natural
constraint on the underlying application domain.

In the context of hierarchical document clustering, six major challenges must
be addressed: 1) Very high dimensionality of the data: the computational com-
plexity should be linear with respect to the number of dimensions (terms).
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2) Very large size of text collections: the algorithms must be efficient and scal-
able to large data sets. 3) Documents often have several topics: it is important to
avoid confining each document to only one cluster. Thus, overlapping between
document clusters should be allowed. 4) Dynamic data sets: the algorithms must
be able to update the hierarchy when documents arrive (or are removed). 5) The
insensitivity to the input order: the generated set of clusters must be unique,
independently on the arrival order of the documents. It is one of the major is-
sues in incremental and dynamic algorithms, and 6) The number of clusters is
unknown prior to the clustering: it is difficult to specify a reasonable level of the
hierarchy. Instead of that, it makes more sense to let the clustering algorithm
find it out by itself.

Agglomerative and Divisive are two general categories of hierarchical clus-
tering algorithms. Both of them have been applied to document clustering.
UPGMA [1] of agglomerative algorithms and Bisecting K-Means (BKM) [2] of
divisive methods are reported to be the most accurate one in its category [3].
These hierarchical methods neither can deal with dynamic data sets nor allow
overlapping between clusters.

There are some incremental algorithms that update the cluster hierarchy when
new documents arrive, such as DC-tree [4] and IHC [5]. They are based on a tree
structure and obtain disjoint document hierarchies. In DC-Tree the document
assignments to clusters are irrevocable, whereas IHC is relatively not sensitive
to the presentation of input ordering. DC-Tree defines also several parameters,
thus its tunning is problematic.

On the other hand, several static hierarchical algorithms have been proposed
for overlapped clustering of documents, including HFTC [6] and HSTC [7].
HFTC algorithm attempts to address the hierarchical document clustering us-
ing the notion of frequent itemsets. Each cluster consists of a set of documents
containing all terms of each frequent term set. HSTC algorithm provides the
methodology for organizing the base clusters identified by STC algorithm [8]
into a navigable hierarchy. A base cluster consists of a set of documents that
share a common phrase. Like STC, the time complexity of HSTC is quite high
with respect to the number of terms.

To the best of our knowledge, there are no hierarchical algorithms for docu-
ment clustering that combine both processing of dynamic data and obtaining of
overlapped clusters.

In this paper, we present a novel overlapped hierarchical algorithm, called
Dynamic Hierarchical Star algorithm (DHS), for clustering of dynamic document
collections. This approach attempts to address the challenges mentioned above.
The experimental results on several benchmark text collections show that this
method obtains smaller hierarchies than traditional algorithms while achieving
a similar clustering quality.

The remainder of the paper is organized as follows: Section 2 describes DHS
clustering algorithm. The comparison with traditional hierarchical algorithms is
shown in Section 3. Finally, conclusions are presented in Section 4.
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2 Dynamic Hierarchical Star Algorithm

In this paper, we introduce a new dynamic hierarchical clustering algorithm
derived from the general hierarchical framework proposed in [9]. We will call
it Dynamic Hierarchical Star algorithm. This method updates a hierarchy of
overlapped clusters when new documents arrive (or are removed).

As our algorithm is derived from the framework, it is an agglomerative method
based on graph. It uses a multi-layered clustering to produce the hierarchy. The
granularity increases with the layer of the hierarchy, with the top layer being the
most general and the leaf nodes being the most specific. The process in each layer
involves two steps: construction of a graph and obtaining a cover for this graph.
In this context, a cover for a graph G = (V, E) is a collection V1, V2, ..., Vk of (not
necessarily disjoint) subsets of V such that ∪k

i=1Vi = V , each one representing a
cluster.

DHS algorithm uses two graphs. The first one is the β-similarity graph, which
is an undirected graph whose vertices are the clusters and there is an edge
between vertices i and j, if the cluster j is β-similar to i. Two clusters are β-
similar if their similarity is greater than or equal to β, where β is a user-defined
parameter. Analogously, i is a β-isolated cluster if its similarity with all clusters
is less than β. Like UPGMA clustering method, we use group-average as inter-
cluster similarity measure.

The second graph relies on the maximum β-similarity relationship (denoted
as max-S graph) and it is a subgraph of the first one. The vertices of this graph
coincide with vertices in the β-similarity graph, and there is an edge between
vertices i and j, if i is the most β-similar cluster to j or vice versa.

Given a cluster hierarchy previously built by the algorithm, each time a new
document arrives (or is removed), the clusters at all levels of the hierarchy must
be revised (see Figure 1). When a new document arrives (or is removed), a
singleton is created (or deleted) and the β-similarity graph at the bottom level
is updated. Then, the max-S graph is updated too, which produce (or remove)
a vertex and can also produce new edges and remove others. The star cover
routine is applied to the max-S graph in order to update the clusters. When
clusters are created or removed from a level of the hierarchy, the β-similarity
graph at the next level must be updated. This process is repeated until this
graph is completely disconnected (all vertices are β-isolated). It is possible that
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Fig. 1. Dynamic Hierarchical Star algorithm
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Algorithm 1. Dynamic Hierarchical Star method
1. Arrival of a document to cluster (or to remove).
2. Put the new document in a cluster on its own (or remove the single cluster to

which the document belongs).
3. level = 0 and update the β-similarity graph at the bottom level, G0.
4. While Glevel is not completely disconnected:

(a) Update the max-S graph at level.
(b) Update the star cover for the max-S graph.
(c) Update the β-similarity graph at the next level, Glevel+1.
(d) level = level + 1

5. If there exist levels greater than level in the hierarchy, remove them.

the β-similarity graph became completely disconnected before the top level of
the hierarchy is reached. In this case, the next levels of the hierarchy must be
removed. Notice that the algorithm uses the same β value in all hierarchy levels.

The DHS method is summarized in Algorithm 1. As it can be noticed, the
dynamic algorithm comprises the updating of both the graphs and the star cover
at each level of the hierarchy. The updating of the β-similarity graph is trivial.
The steps of the max -S graph updating are shown in Algorithm 2.

Algorithm 2. Updating of the max-S graph
1. Let N be the set of vertices to add to the max-S graph and R be the set of vertices

to remove from it.
2. Let M be the set of vertices for which a vertex in R is its most β-similar vertex.
3. Remove all vertices of R from the max-S graph and add all vertices of N to it.
4. Find the most β-similar vertices of each vertex in M∪N and add the corresponding

edges to the max-S graph.
5. Find the vertices for which a vertex in N is its most β-similar vertex and update

the corresponding edges.

2.1 Star Cover Routine

Our star cover routine approaches the minimum dominating set of the max-S
graph using a greedy heuristic that takes into account the number of neighbors
of each vertex. Each cluster is a star-shaped subgraph of l+1 vertices. It consists
of a single star and l satellite vertices, where there exist edges between the star
and each satellite vertex. Since a vertex can be neighbor of several stars, this
cover routine obtains overlapped clusters.

Several heuristics for obtaining the star cover for a graph have been proposed.
The star-based methods presented in [10, 11] are not able to update the cover
when documents arrive or are removed, and therefore can not be used in dynamic
algorithms. In contrast, Aslam [12] proposed a dynamic star cover routine but it
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Fig. 2. Star cover updating (black circles represent the stars)

depends on the data order, since if two or more neighbors with the same degree
exist, only the first of them in the arrangement is considered as a star.

Thus, our proposal follows the same idea of Aslam, but with some differences.
The first one is that in our cover routine two stars can be neighbors, and therefore
the obtained cover is independent on the data order. We considered a vertex as
star if its degree is greater than or equal to that of its neighbors. The second one
is that our star cover routine is carried out over the max-S graph instead of the
β-similarity graph. This difference demands to handle the changes produced by
adding and removing edges not connected with the new document.

Algorithm 3. Star cover updating
1. Let N be the set of vertices added to the max−S graph and R be the set of vertices

removed from it. Let also NE be the set of edges added to the max−S graph and
RE be the set of edges removed from it.

2. Let Q be a queue with the vertices to be evaluated, Q = N .
3. Put into Q all stars s such that ∃v (s, v) ∈ RE, and mark them as satellites. Put

also into Q each vertex v (if v /∈ R) and all neighbors of s.
4. Put into Q all stars s such that ∃v, v′ (v, v′) ∈ NE and v neighbor of s. Mark each

star s as satellite and put also into Q all neighbors of s.
5. While Q �= ∅:

(a) Extract the highest degree vertex v from Q.
(b) If v is a satellite vertex and (v does not have any star neighbors or the degree

of v is greater than or equal to that of all its star neighbors):
i. Mark v as star.
ii. If v has star neighbors with less degree, then mark these stars as satellites

and put into Q all neighbors of them.

The intuition behind the updating of our star cover after a new vertex is
added to a graph is depicted in Figure 2. A max-S graph and its star cover are
shown in Figure 2a. Suppose a new vertex is added to the graph, as Figure 2b.
How does the addition of this new vertex affect the star cover? (see Figure 2c).
In general, the answer depends on the changes in the max-S graph produced by
new vertex addition. All stars that decrease its degree and those whose neighbors
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increase its degree are enqueued to be re-evaluated. Vertices with highest degree
are extracted from the queue until it is empty. If the extracted vertex does not
have any star neighbors or it has a degree greater than or equal to its star
neighbors, the star structure already in place has to be modified to assign the
vertex as a star. The most difficult case that destroys the star cover is when the
evaluated vertex is adjacent to several stars, each of whose degree is less than
that of this vertex. In this situation, the satellite vertices in the stars that are
broken as a result have also to be re-evaluated (see Algorithm 3).

3 Experimental Results

The performance of the Dynamic Hierarchical Star algorithm has been eval-
uated using five benchmark text collections, whose general characteristics are
summarized in Table 1. Human annotators identified the topics in each collec-
tion. Notice that these topics are overlapped. In our experiments, the documents
are represented using the traditional vector space model. The terms of docu-
ments represent the lemmas of the words appearing in the texts (stop words are
disregarded). We use the traditional cosine measure to compare the documents.

Table 1. Description of document collections

Collection Source Documents Terms Topics Overlapping
AFP TREC-5 695 12575 25 1.02
ELN TREC-4 5829 83434 50 1.2
TDT TDT2 9824 55112 193 1.01
REU Reuters-21578 10369 35297 120 1.26
REU2 RCV1-v2 Train 23150 47152 101 3.18

There are several measures to evaluate the quality of hierarchical clustering.
We adopt a widely used Overall F-measure [13], which compares the system-
generated clusters with the manually labeled topics and combines the precision
and recall factors. The higher the Overall F-measure, the better the clustering is,
due to the higher accuracy of the clusters mapping to the topics. Our experiments
were focused on comparing the quality of the clustering produced by UPGMA
and BKM methods1 against DHS algorithm.

The obtained results are shown in Table 2. In our algorithm we only evaluated
the top level of the hierarchy and the parameter β that produced the best result
is chosen. We can do that, because of the well-defined stop condition of our
method. On the contrary, in the other algorithms we evaluated each level of
the hierarchy and considered the flat partition produced by the best one. As
it can be noticed, our method not only obtains similar quality results, but it
also offers a hierarchy easier to browse, since the less number of clusters and
levels it has.
1 We make use of the CLUTO-2.1 Clustering Toolkit to generate these results.
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Table 2. Overall F results for document collections (x=not scalable to run)

Data Algorithm Levels Clusters in hierarchy Clusters in best level Overall F
AFP UPGMA 694 694 40 0.84

BKM 694 694 10 0.75
DHS (β = 0.13) 5 421 42 0.82

ELN UPGMA 5828 5828 400 0.47
BKM 5828 5828 50 0.47

DHS (β = 0.13) 7 3965 76 0.46
TDT UPGMA 9823 9823 100 0.75

BKM 9823 9823 20 0.58
DHS (β = 0.16) 8 6571 155 0.77

REU UPGMA 10368 10368 100 0.53
BKM 10368 10368 10 0.14

DHS (β = 0.11) 9 7142 101 0.51
REU2 UPGMA x x x x

BKM 23149 23149 10 0.35
DHS (β = 0.02) 9 16156 9 0.34
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Fig. 3. F-measure over pairs

The higher the overlapping, the better Overall F-measure can be obtained
since, by definition, power set achieves the best F value. For that reason, we
have also considered F-measure calculated over pairs of documents [14], which is
proposed to evaluate overlapped clusters. In this case, precision is calculated as
the fraction of pairs correctly put in the same cluster and recall is the fraction
of actual pairs that were identified. The performance of the algorithms w.r.t. F-
measure over pairs is shown in Figure 3. Notice that our method obtains similar
quality results than representative hierarchical algorithms again. Thus, we can
conclude that our algorithm does not profit from the overlapping.

4 Conclusions

In this paper, a new clustering algorithm called Dynamic Hierarchical Star has
been proposed. Its most important novelty is the capability to handle dynamic
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data sets and to build overlapped cluster hierarchies. Other key features of the
proposed algorithm are the insensitivity to the input order, a well-defined stop
condition and linear computational complexity w.r.t. the number of dimensions.

The experiments were conducted on five benchmark text collections. Results
show that our method not only reaches similar quality than representative hi-
erarchical algorithms, but it also offers a hierarchy easier to browse, since the
less number of clusters and levels it has. Thus, we advocate its use for tasks
that require dynamic clustering, such as creation of document taxonomies and
hierarchical topic detection. Though we employ our method to cluster text data,
it can be also applied to any problem of Pattern Recognition with mixed objects.
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