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Abstract. In this work we propose an alternative image representa-
tion model to efficiently characterize iris textures based on the Hermite
transform. The Hermite transform can simulate some properties of the
mammalian visual system and it is founded on a well established mathe-
matical framework. These properties are used to extract the most impor-
tant information of the iris textures. The results show that the Hermite
transform is able to characterize iris textures as well as the Gabor model,
with the advantage on the second that the discrete analysis filters in the
Hermite transform are given by the Krawtchouk polynomials and, it is
not needed to compute the filter coefficients by means of optimization
methods, nor to suppress the zero mean (d.c. response). The proposed
iris recognition system achieved an overall performance of 97.34% and
a Correct Access Rate (CAR) of 90.29% when the False Access Rate
(FAR) was closed to zero.
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1 Introduction

Nowadays, efficient methods for confident recognition of persons on a wide range
of applications are needed. To accomplish such tasks, different biometric tech-
nologies have emerged, e.g. fingerprint, face and iris recognition systems. Iris
recognition has shown to be one of the most accurate biometric systems when a
high level of security is required.

A typical iris recognition system is composed of three major stages: acqui-
sition, feature extraction and matching. In the first stage, the iris images are
acquired with a camera, and this is frequently done under controlled conditions,
such as near infrared (NIR) illumination [I]. The feature extraction stage involves
two preprocessing tasks: a) the region of interest (ROI) on the input image, i.e.,
the iris, must be localized and b) depending on the implemented system, the iris
images are normalized in order to have the same size. The most important fea-
tures of the iris are extracted through an image representation model and then
encoded on a biometric template. During the last stage, the biometric templates
are matched and, depending on the distance criteria selected, the system accepts
or rejects a claimed identity either for authentication or for identification.
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Different image representation models for the iris texture feature extraction
have been previously reported, e.g. Gabor wavelets [I], Haar wavelet [2] and
Daubechies wavelet [3]. Image representation models inspired on biological visual
systems are of special interest, because they take advantage of some properties
at cortical levels and use them to extract visual information from images in the
same way that such systems do.

The fact that Gabor wavelets are able to fit the receptive field profiles (RFP)
of simple cells in the primary visual cortex and the optimal conjoint resolution
of information in the 2D spatial and 2D Fourier domains that can be achieved
[4], have made them widely used to extract local features in many applications
related to texture characterization. However, the selection of the filter coefficients
is not obvious and this is often done by sampling the continuous Gabor function
[5] or by optimization methods (see [6] for some filter selection methods).

The Hermite transform, firstly introduced to the digital image processing area
by Martens [7], is a local decomposition technique in which an input image is
localized through a Gaussian window and projected over orthogonal basis with
respect to such window. The connection between the Hermite transform and
mammalian visual systems comes from the fact that the elementary functions
used in the Hermite transform are similar to the Gaussian derivatives. Young [§]
discovered the match in shape between the Gaussian derivatives functions and
the RFP of primate simple cells.

We present the Hermite transform as an alternative image representation
model for feature extraction applied to iris texture characterization. The Hermite
transform has been previously used for local orientation analysis [9] and a Gabor-
like Hermite model has been used for texture indexing [I0]. In Sect.[2the Hermite
transform and the discrete Hermite analysis functions are presented. Section [3]
describes the stages involved in the proposed iris recognition system. Results
with the Hermite transform as an iris texture feature extractor are reported in
Sect. @ Finally, conclusions and future works are given in Sect.

2 The Hermite Transform

The Hermite transform is a local decomposition technique, in which an input
signal L(z) is localized through a Gaussian window V' (z) and then expanded
into orthogonal Hermite polynomials H,, (i) at every window position [7]. The
expansion coefficients L,,(x) can be derived by convolution of the signal with the
Hermite analysis functions.

2.1 Hermite Analysis Functions

The one dimensional analysis functions of the Hermite transform of degree n are
defined as follows [7]:

Pa)= iy et (5) 7 W
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where o is the standard deviation of the Gaussian window. H,,(x) are the Hermite
polynomials given by Rodrigues’ formula:

2
n ,—x
nezz d"e

H(w) = (-1 7

, o n=0,1,2,... . (2)
The two dimensional analysis functions have the advantage to be separable and
they can be written as:

-anm,m('ra y) = anm(x)Dm(y) . (3)

where n — m and m denote the analysis order in  and y direction respectively.
We then can expand a given input image L(z,y) into the basis D,,_p, m(x,y) as:

Lnfm,m('rm yO) = / / L(mvy)anm,m(mO —Z,Y0 — y)d.’bdy . (4)
xJY

for n = 0,1,...,dmer and m = 0,...,n, where d,q, is the maximum desired
derivative degree.

2.2 Discrete Hermite Analysis Functions

The discrete equivalent form of the analysis functions are the Krawtchouk filters.
These are defined as Krawtchouk polynomials multiplied by a binomial window
v%(z) = C% /2. The binomial window approximates the discrete Gaussian win-
dow, and is given by:
N!
Cy = . 5

N (N — ) 5)
where N is the length of the binomial window. Then, the orthonormal Krawtchouk
polynomials can be written as follows:

n

1 —T AN—T T
= oy LCNTTORTOr (6)
=0

forx =0,...,Nand n =0, ..., dmaz, With dpar < N. The discrete Hermite trans-
form of length N approximates the continuous form of the Hermite transform

with o = \/N/2 [1].

K, (x)

3 Proposed Iris Recognition System

A typical iris recognition system can be divided in three major stages as shown
in Fig. [ In order to test our proposed feature extractor, we have developed an
iris recognition system based on these stages [1J.
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Fig. 1. Typical iris recognition stages
3.1 Acquisition

An iris recognition system must be able to capture the iris texture informa-
tion regardless of colour and size of the iris. It has been suggested the use of
monochrome cameras and NIR illumination to avoid specular reflections [1]. We
have tested our feature extractor using the CASTAv1.0 iris image database [11],
whose images have been captured under such conditions. It comprises 756 iris
images from 108 different persons. We have used the second set, in which 4 im-
ages belong to the same eye comprising a total of 432 images. Each grayscale
iris image has a resolution of 320 x 280 pixels.

3.2 Preprocessing

Before the feature extraction begins, the iris must be localized into the image.
The circular Hough transform was adopted to approximate the pupil and iris
boundaries as two non-concentric circles [I]. In order to apply the Hough trans-
form, a binary edge map must be generated. The Canny edge detector [12] was
used to accomplish such task.

Following [I3], the gradient orientation on the circumference of a circle is
pointing towards its centre. This property is used to find the center coordinates
of the two circles with one 2D accumulator for each one, Cp[z,y] for the pupil
and Cj;[z,y] for the iris. Possible centers can be approximated by taking the
intersections from every binary edge projection along its gradient orientation
between a minimum and maximum radius (7min < 7 < Tymaz). A given projection
intersecting another one represents a vote for the possible center coordinates,
which is stored on the accumulator in such coordinates by increasing its value one
unit. Circle centers are then determined by choosing the most voted coordinates
from each one of the two accumulators C)[z,y] and C;[x,y|. Figure shows
the C}, accumulator over the input image after voting for possible pupil centers.

The pupil and iris radii are determined in a similar way. 1D accumulators were
used to store votes for possible radii, R, [r] accumulates votes for the pupil radius
and R;[r] for the iris radius. From each circle center, a search of edges belonging
to the binary edge map between a minimum and maximum radius (1, < r <
Tmaz) 18 made. The radii are selected from each of the two accumulators by
taking the most voted ones. Figure and Fig. show the pupil and iris
radii searching procedure.

The search for the parameters of both pupil and iris was restricted to edges
whose gradient orientation was into the intervals [—27 /5,27 /5], [47/5, 7] and
[—47 /5, —m] for the pupil localization and [—7/4, 7/4], [37/4, 7] and [-37 /4, —7]
for the iris localization, because of eyelids and eyelashes obstructions.
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Fig. 2. Hough transform: pupil center (a), pupil (b) and iris (c) radii parameterization

In order to have images of the same size, a normalization procedure is made
over the localized iris, which involves the use of pseudo-polar coordinates [1J:

I(x(r,0),y(r,0)) — I(r,0) . (7)

where r € [0,1] is the normalized distance taken for each 6 € [0,27] as a lineal
combination of the pupil (x,(0), y,(0)) and iris (z;(), y;(0)) elements, which are
defined as:

z(r,0) = (1 —r)zp(6) + rz;(0) . (8)

y(r,0) = (1 = 1)yp(0) +ry:(0) - 9)
Figure shows the normalized iris image. In many cases, the eyelids and
eyelashes appear after normalization as ellipses. They were approximated with
an elliptic Hough transform and then suppressed (Fig. . A mask of zeros
and ones is also created. When an artefact is detected in a given position, the
mask in such position is set to zero.

@ (b)

Fig. 3. (a) Normalization of the ROI. (b) Suppression of eyelids and eyelashes.

3.3 Feature Extraction

Since the iris texture patterns tend to extend radially across the iris, the most
important visual information is extracted from the normalized iris image by con-
volution with a pair of even (Fig. and odd (Fig. Hermite analysis filters,
which can be formed by combining the Hermite analysis functions of second and
first orders [I4]. The outputs are then encoded in a similar way as [1]:

L o(zo,10) = sgn //L(1U7Z/)D2,o($o—xvyo—y)dﬂﬁdy : (10)
zJy

L1 o(xo,y0) = sgn //L(x,y)Dl,o(fﬂo—fﬂ,yo—y)dwd?/ : (11)
zJy

where Lo o and L; o are either 1 or 0 depending on the sign of the 2D integral.
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Fig. 4. Proposed feature extractor: pair of even (a) and odd (b) Hermite analysis filters

3.4 Matching

The dissimilarity between biometric iris templates () operator) is measured
using the normalized Hamming distance (HD) criteria. The HD gives the number
of bits that differ between two biometric iris templates of size N. The N operator
avoids to take into account eyelids and eyelashes obstructions in every biometric
template comparison:

Z;V:l (TempA; @ TempB;) N maskA; N maskB;

HD = N
> oimq maskA; N maskB;

(12)

4 Experimental Results

Experiments were conducted in order to evaluate the ability of the Hermite
transform to characterize iris textures. As mentioned earlier, the CASIAv1.0
[11] iris image database was used. A total of 412 intra-class and 2628 inter-class
comparisons were made between biometric iris templates of 2048 bits. Figure
shows such distributions. The media and standard deviation for the intra-class
comparisons were p1 = 0.3146 and o7 = 0.0490. For the inter-class comparisons
the media was po = 0.4421 whereas the standard deviation was oo = 0.0187.

The overall system achieved an Equal Error Rate (EER) of 2.66%, Fig.
There is a compromise in every recognition system between correct rejections
and false accesses to impostors. Ideal recognition systems should accept every
registered user and reject all the impostors. To evaluate such requirement on
the proposed iris recognition system, the False Access Rate (FAR) was set to
zero and, then no impostor was able to access the system. With this constraint
the False Rejection Rate (FRR) was 9.71%, which means that from the whole
number of trials, when registered users try to be recognized, 90.29% are given
correctly access to the system (CAR).

As can be seen on Table [I results using the Daubechies 2 wavelet [3] show
lower FRR, however the authors use only the lower half of the iris, having less
probability to take into account artefacts due to inaccurate localization. Daug-
man [I5] reports higher performance using the Gabor wavelet, but no fair com-
parisons can be made because access to the reported database is restricted.
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Fig. 5. (a) Distributions of intra-class and inter-class comparisons. (b) Performance of
the Hermite feature extractor (zoom of the ROC curve for visualization purposes).

Table 1. Comparison with other models used for iris feature extraction

Representation ~ FAR (%) FRR (%) EER (%) Database

Hermite 0.0 9.71 2.66 CASIA
Haar [2] 0.0 17.75 2.9 Private
Daubechies 2 [3] 0.001 2.98 0.2687 CASIA
Gabor [I7] 0.001  0.12 0.11 NIST (ICE-1)

5 Conclusions and Future Improvements

Results show that the Hermite transform can be used as an alternative method
to efficiently characterize iris textures by extracting local information with a
pair of Hermite analysis filters. Every stage in an iris recognition system plays
a very important role. Since results obtained in previous stages can affect the
performance of the system, special attention must be paid in each one. Although
the proposed iris recognition system can deal with the iris localization task,
some images were less precisely localized than others and as a consequence the
CAR decreased. Future localization improvements need to be made in order to
decrease the FRR.
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