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Abstract. This paper proposes novel algorithms for computing double-
size modular multiplications with few modulus-dependent precomputa-
tions. Low-end devices such as smartcards are usually equipped with
hardware Montgomery multipliers. However, due to progresses of mathe-
matical attacks, security institutions such as NIST have steadily
demanded longer bit-lengths for public-key cryptography, making the
multipliers quickly obsolete. In an attempt to extend the lifespan of
such multipliers, double-size techniques compute modular multiplications
with twice the bit-length of the multipliers. Techniques are known for ex-
tending the bit-length of classical Euclidean multipliers, of Montgomery
multipliers and the combination thereof, namely bipartite multipliers.
However, unlike classical and bipartite multiplications, Montgomery mul-
tiplications involve modulus-dependent precomputations, which amount
to a large part of an RSA encryption or signature verification. The pro-
posed double-size technique simulates double-size multiplications based
on single-size Montgomery multipliers, and yet precomputations are es-
sentially free: in an 2048-bit RSA encryption or signature verification
with public exponent e = 216 + 1, the proposal with a 1024-bit Mont-
gomery multiplier is 1.4 times faster than the best previous technique.

Keywords: Montgomery multiplication, double-size technique, RSA,
efficient implementation, smartcard.

1 Introduction

The algorithm proposed by Montgomery has been extensively implemented to
perform costly modular multiplications which are time-critical for public-key
cryptosystems such as RSA [Mon85, RSA78]. In particular, and unlike naive im-
plementations of classical modular multiplications, Montgomery multiplications
are not affected by carry propagation delays for computing the quotient of a
modular reduction, and as a result, are suitable for high-performance hardware
implementations. However, such accelerators are penalized by a strict restric-
tion: their operand size is fixed. In order to deal with recent integer factoring
records and ensure long-term security [Len04], official security institutions are
updating their standards to longer key sizes than the mainstream 1024 bits for
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RSA [Nis07, EMV, Ecr06]; unfortunately, such bit lengths are not supported by
many cryptographic coprocessors.

This problem has motivated many studies for double-size modular multipli-
cation techniques using single-size hardware modular multipliers. On the one
hand, thanks to the Chinese Remainder Theorem, private operations (signa-
ture generation or decryption) can work with only single-size modular mul-
tiplications for computing double-size modular exponentiations [MOV96]. On
the other hand, the Chinese Remainder Theorem is no help for public oper-
ations, and double-size techniques without using private keys are necessary.
Following Paillier’s seminal paper [Pai99], several solutions were proposed for
simulating double-size classical modular multiplications with single-size classical
modular multipliers [FS03, CJP03], and later, the techniques were adapted in
order to simulate double-size Montgomery multiplications with the commonly
used single-size Montgomery multiplier [YOV07a]. Finally, the less common but
nonetheless promising bipartite multiplier [KT05], which includes a Montgomery
and a classical multiplier working in parallel, was taking advantage of for simu-
lating double-size bipartite multiplications [YOV07b].

In the context of public operations, RSA signature verification for instance,
the verifier is unlikely to know the RSA modulus in advance; we refer to this event
as on-line verification. On the one hand, classical modular multiplications are
not affected by the fact that verification is performed off-line or on-line. With
a bipartite multiplier, some modulus-dependent precomputations are required
during on-line verification. However, when the parameters of the multiplier are
appropriately chosen, the cost of precomputations is negligible [KT05]. But on
the other hand, precomputations are far from being negligible when using Mont-
gomery multipliers, especially when the public exponent is small. Assuming the
2048-bit exponentiation Xe mod Z, the basis X must be firstly converted to
its Montgomery representation, namely X ∗ 22048 mod Z, which can be accom-
plished with 2048 successive shifts or eleven 2048-bit Montgomery multiplica-
tions; in the latter case, this amounts to 36% of the total verification time when
e = 216 + 1. This is especially unfortunate considering the fact that Mont-
gomery multipliers represent the most popular architecture for cryptographic
coprocessors [NM96].

In this paper, we solve the problem of costly on-line precomputations with
a radically new approach. Although we assume a multiplier based on the cele-
brated Montgomery multiplication technique, we simulate a bipartite double-size
multiplication, where on-line precomputations are essentially free. Although our
double-size bipartite multiplication technique is slightly slower than double-size
Montgomery multiplications, the penalty is largely counterbalanced by the ben-
efit in terms of precomputations, at least when the public exponent e is small.
When e = 216 + 1, which is by far the most common choice for RSA, our tech-
nique is 1.4 times faster than the best previous techniques, and even more when
e = 3. In addition, when the CPU and the coprocessor operate in parallel, which
is possible on some low-cost microcontrollers, our proposal can be further opti-
mized, leading to even greater speed. As a consequence, our simulated bipartite
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multiplier is the fastest among double-size techniques for cryptographic devices
equipped with Montgomery multipliers, and allows the current generation of such
multipliers to comply with upcoming key-length standards of official institutes.

Notation: Let � denote operand size of hardware modular multiplication units
and L equal to 2�. Small letters such as x, y and z denote �-bit integers, and
capital letters such as X , Y and Z denote L-bit integers, where Z is an odd
modulus greater than 2L−1 like in the case of L-bit RSA.

2 Previous Double-Size Techniques

Montgomery multiplication algorithm has been extensively implemented as cryp-
tographic coprocessors to help low-end devices performing heavy modular mul-
tiplications. However, the coprocessors are designed to support the main stream
1024-bit RSA, and face with the upper limit of their bit length to comply with
upcoming key-length standards, such as the NIST recommendation; 2048-bit
RSA. The problem has motivated double-size techniques to compute modular
multiplication with twice the bit length of hardware multipliers.

2.1 Yoshino et al.’s Scheme

This subsection introduces Yoshino et al.’s work[YOV07a, YOV07b]: how to
compute a double-size Montgomery multiplication with single-size Montgomery
multiplications.

The double-size techniques proposed by Yoshino et al. require not only remain-
ders but also quotients of single-size Montgomery multiplications. The equation
xy = qmz + rmc shows the relation among products of multiplier x and multipli-
cand y, quotient qm and modulus z, and remainder rm and constant c, where the
constant c is usually selected as power of 2 for efficient hardware implementations
in practice, therefore this paper also assumes such c satisfying c = 2� [MOV96].

Definition 1 shows an mu instruction for performing single-size Montgomery
multiplications, outputting only the remainder.

Definition 1. For numbers, 0 ≤ x, y < z and z is odd, the mu instruction is
defined as rm ← mu(x, y, z) where rm ≡ xyc−1 (mod z).

Their double-size techniques assumed that an mmu instruction is available, which
can be emulated with only 2 calls to single-size Montgomery multipliers, and
computes the reminder rm and the quotient qm of Montgomery multiplications
[YOV07a] satisfying the equation xy = qmz + rmc.

Definition 2. For numbers, 0 ≤ x, y< z and z is odd, the mmu instruction is de-
fined as (qm, rm)← mmu(x, y, z)where qm =(xy−rmc)/z and rm≡xyc−1 (mod z).

Yoshino et al.’s double-size techniques need two steps other than multiplier calls.
First, every L-bit integer X , Y and Z is represented with �-bit integers which
can be handled by mmu instructions:

X = x1(c− 1) + x0c, Y = y1(c− 1) + y0c and Z = z1(c− 1) + z0c.
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Second, all quotients qm and remainders rm are sequentially gathered from mmu
instructions.

Double-size Montgomery multiplications compute a remainder Rm such that
Rm ≡ XY C−1 (mod Z) where 0 ≤ X , Y < Z, and the constant C is called
Montgomery constant, and twice bit length of the constant c: C = 2L(= c2).
Algorithm 1 shows their double-size Montgomery multiplications requiring 6
calls to mmu instructions, and 12 calls to Montgomery multipliers in total.

Algorithm 1. Double-size Montgomery multiplication [YOV07b]

Input: X, Y and Z where 0 ≤ X, Y < Z ;
Output: XY C−1 (mod Z) where C = 2L;

1. (q1, r1)← mmu(x1, y1, z1)
2. (q2, r2)← mmu(q1, z0, c− 1) //c = 2�

3. (q3, r3)← mmu(x0 + x1, y0 + y1, c− 1)
4. (q4, r4)← mmu(x0, y0, c− 1)
5. (q5, r5)← mmu(c− 1,−q2 + q3 − q4 + r1, z1)
6. (q6, r6)← mmu(q5, z0, c− 1)
7. return (q2 + q4 − q6 − r1 − r2 + r3 − r4 + r5)(c− 1) + (r2 + r4 − r6)c (mod Z)

Thanks to Algorithm 1, one can set a new MU instruction to compute L-bit
Montgomery multiplications such that Rm ← MU(X, Y, Z) where Rm ≡ XY C−1

(mod Z), 0 ≤ X , Y < Z and C = 2L.

2.2 L-Bit RSA Public Operations

The MU instruction (double-size Montgomery multiplications) introduced in last
subsection requires twelve single-size multiplications and other basic modular
operations; therefore the number of calls to the MU instruction should be as small
as possible to get better performance. This subsection explains the contributions
and weak points of previous double-size techniques to RSA public operations,
which is the most popular application for double-size techniques.

L-bit RSA public operations (signature verification and encryption) employ
an L-bit modular exponentiation with a small exponent, following that Xe

(mod Z), where the ciphertext or signature X , the public modulus Z, and a
small public exponent e. The binary method commonly used for RSA public
operations computes double-size Montgomery multiplications and squarings ac-
cording to the bit pattern of the public exponent e. Algorithm 2 shows a left-to-
right binary method, which scans e from the most significant bit ek to the least
significant bit e0 bit-by-bit.

From the view of efficient computation and mathematical security, the ex-
ponent used for RSA public operations is much smaller than for private op-
erations [MOV96, RSA95]. Currently, by far the most common value of the
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Algorithm 2. Binary method from the most significant bit

Input: X, Z and small public exponent e = (ek · · · ei · · · e0)2 where 0 ≤ X < Z ;
Output: Xe (mod Z);

1. Y ← C2 (mod Z) //C = 2L

2. T ← MU(X, Y, Z)
3. Y ← T
4. for i from k − 1 down to 0 do

(a) T ← MU(T, T, Z) //squaring
(b) if ei = 1, do

i. if i �= 0 then T ← MU(T, Y, Z) //multiplication
ii. if i = 0 then T ← MU(T, X, Z) //multiplication and reduction

5. return T

public exponent e is 216 + 1 having only two 1’s in its binary representation
(=(10000000000000001)2). In the case of public exponent e = 216 + 1, MU in-
struction is called only 18 times from Step 2 to Step 5 of Algorithm 2. In addition
to that, the Algorithm 2 Step 1 seems to be quite cheap, however, this simple
modular squaring is seriously expensive for double-size RSA public operations,
as it will be explained below.

2.3 Previous Approaches for On-Line Precomputations

There are important differences between private and public operations: off-line
precomputations are possible in the former case whereas the latter case requires
on-line precomputations.

On-line precomputations in Algorithm 2; Step 1 consists of a simple L-bit
modular squaring which might look cheap at first sight; however this is not
true for low-end devices such as smartcards. There are two known approaches
with/without help from Montgomery multipliers; unfortunately, both are se-
riously slow, and damage performances of double-size techniques on low-end
devices.

(1) Approach with MU Instruction:
In an attempt to benefit from hardware accelerators, Algorithm 3 employs MU
instructions to perform a L-bit modular squaring (C2 (mod Z)) using the binary
method. Thanks to the cryptographic coprocessor, the approach looks fast, but
in fact, the calculation costs are quite heavy: in the case of a 2048-bit modular
squaring, Algorithm 3 takes 120 calls to the multiplier, since MU instruction re-
quires 12 calls to the multiplier and is called 10 times by the binary method. As
a consequence, the approach with the MU instruction is very costly considering
that it only computes a simple modular squaring.

(2) CPU approach:
Theoretically, the CPU can compute any-bit modular multiplications without
help from hardware accelerators including the L-bit modular squaring
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Algorithm 3. L-bit modular squaring (C2 (mod Z)) with MU instructions

Input: bitlength �L = (LL−1 · · ·L� · · ·L0)2 and modulus Z ;
Output: C2 (mod Z) where C = 2L;

1. D ← 2C (mod Z) and T ← 2C (mod Z)
2. for i from �log2 L� − 2 down to 0 do

(a) D ← MU(D, D, Z)
(b) if Li = 1 then D ← MU(D, T, Z)

3. return D

(C2 (mod Z)). The approach of Algorithm 4 is taken by computers whose CPUs
are powerful enough not to need help from hardware accelerators, however, this
is not the case for the low-end devices where the performance gap between CPU
and arithmetic coprocessor is usually quite large. As a result, Algorithm 4 is
practically much slower than Algorithm 3 in these environments.

Algorithm 4. L-bit modular squaring with only CPU instructions

Input: bitlength L = (LL−1 · · ·L� · · ·L0)2 and modulus Z;
Output: C2 (mod Z) where C = 2L;

1. D ← C − Z
2. for i from �− 1 down to 0 do

(a) D ← 2D
(b) if D ≥ C, then D ← D − Z.

3. if D ≥ Z, then D ← D − Z.
4. return D

3 New Double-Size Bipartite Multiplication

L-bit RSA public operations require a simple but expensive on-line modular-
dependent precomputation for low-end devices with �-bit Montgomery multi-
pliers. This section presents new double-size techniques for such environments,
which derive their high performance from Montgomery multipliers while elimi-
nating almost all precomputations.

3.1 Overview

The proposal mixes two different modular multiplication algorithms which are
executable with the usual Montgomery multipliers. Fig. 1 shows a design of our
techniques: first, L-bit integers X , Y and Z are divided into �-bit integers, and
inputted to a hardware accelerator outputting the �-bit remainder rm of Mont-
gomery multiplications. In addition to single-size Montgomery multiplications,
the new techniques employ single-size classical multiplications. Second, their re-
mainders (rm and rc) and quotients (qm and qc) are computed based on only
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the remainder rm. Last, the remainders and quotients are assembled to build a
double-size remainder R satisfying

R ≡ XY c−1 (mod Z),

where 0 ≤ X , Y < Z. The new modular multiplication is accompanied by the
constant c, which is only half the bit length of the Montgomery constant C,
contributing to the fact that our new on-line precomputations can be performed
at much cheaper cost.

Single-size hardware

Montgomery multiplier

(mu instruction)

Extended Extended

Double-size

(BU instruction)

Montgomery multiplication classical multiplication

bipartite multiplication

(cmu instruction)(mmu instruction)

outputs qm and rm outputs qc and rc

split X, Y and Z, and

input x1, x0, y1, y0, z1 and z0

outputs R(= XY c−1 (mod Z))

outputs rm
outputs r′m

Fig. 1. Configuration of New Double-Size Bipartite Multiplication

3.2 How to Divide L-Bit Integers for the �-Bit Multiplier

In order to benefit from hardware accelerators which can handle only �-bit
arithmetic operations, L-bit integers can be simply divided into upper and
lower � bits such that X = x1c + x0, where x1 is upper and x0 is lower �
bits of X . However, Montgomery multiplications require odd moduli1. In or-
der to prepare odd moduli, Algorithm 5 derives from the following equation:
Z = z1c + z0 = (z1 + 1)c− (c− z0).

1 In fact, it is possible to perform Montgomery multiplications with even modulus
[Koc94]. However, the technique requires other arithmetic operations in addition to
the multiplications in hardware: this costly technique is not considered in our paper.
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Algorithm 5. L-bit modulus division with odd �-bit moduli

Input: odd Modulus Z;
Output: odd moduli z1 and z0 such that Z = z1c + z0 with c = 2� ;

1. z1 ← �Z/c� and z0 ← Z (mod c).
2. if z1 is even, z1 ← z1 + 1 and z0 ← z0 − c.
3. return (z1, z0)

3.3 New �-Bit Instructions Based on an �-Bit Multiplier

This subsection defines new instructions to output quotients and remainders of
classical multiplications and Montgomery multiplications, which can be built on
the usual Montgomery multiplier.

Similar with Definition 2 in Section 2.1, the equation; xy = qcz +rc shows the
relation between the remainder rc and the quotient qc of classical multiplications,
which can be implemented with only three calls to the mu instruction.

Definition 3. For numbers, 0 ≤ x, y < z and z is odd, the cmu instruction is
defined as (qc, rc)← cmu(x, y, z) where qc = (xy − rc)/z and rc ≡ xy (mod z).

Algorithm 6 shows how to simulate the cmu instruction with the mu instruction;
and the correctness is proven in Appendix A.1.

Algorithm 6. The cmu Instruction based on The mu Instruction

Input: x, y, z and t with 0 ≤ x, y < z, z is odd and t = c2 (mod z) ;
Output: qc and rc, where qc = (xy − rc)/z and rc ≡ xy (mod z);

1. x′ ← mu(x, t, z) //≡ xc (mod z)
2. rc ← mu(x′, y, z) //≡ xy (mod z)
3. r′c ← mu(x′, y, z + 2) //≡ xy (mod (z + 2))
4. qc ← (rc − r′c)
5. (a) if qc is odd, then qc ← (qc + z + 2)/2

(b) else if qc is even and negative, then qc ← qc/2 + z + 2
6. return (qc, rc)

3.4 How to Build an L-Bit Remainder with �-Bit Instructions

Finally, this subsection presents how to build a remainder of new double-size
modular multiplication on the remainders and the quotients of single-size mod-
ular multiplications.

Definition 4 shows the BU instruction for computing L-bit bipartite multipli-
cation.

Definition 4. For numbers, 0 ≤ X, Y < Z, the BU instruction is defined as
R← BU(X, Y, Z) where R ≡ XY c−1 (mod Z) and c = 2�.
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The BU instruction performs L-bit modular multiplication; XY c−1 (mod Z)
accompanied with only the �-bit constant c, which is only half the size of the
Montgomery constant C, contributing to the fact that our new precomputations
can be performed at much cheaper cost.

Algorithm 7 shows how to use the mmu instruction and the cmu instruction
to build the BU instruction; the correctness is proven in Appendix A.2.

Algorithm 7. The BU Instruction based on The mmu and cmu Instructions

Input: X, Y and Z, where X = x1c + x0, Y = y1c + y0 and Z = z1c + z0 ;
Output: XY c−1 (mod Z);

1. (q1, r1)← cmu(x1, y1, z1)
2. (q2, r2)← mmu(q1, z0, c− 1)
3. (q3, r3)← mmu(x0, y0, c− 1)
4. (a) if z0 is positive, (q4, r4)← mmu(q2 + q3, c− 1, z0)

(b) if z0 is not positive, (q4, r4)← mmu(−q2 + q3, c− 1, z0)
5. (q5, r5)← mmu(q4, z1, c− 1)
6. (q6, r6)← mmu(x1 + x0, y1 + y0, c− 1)
7. (a) if z0 is positive,

R← (−r1+r2+r3+r4+q2+q3+q5−q6)+(r1−r2−r3−r5+r6−q2−q3−q5+q6)c
(b) if z0 is not positive,

R← (−r1−r2−r3+r4−q2+q3−q5−q6)+(r1+r2+r3+r5+r6+q2−q3+q5+q6)c
8. return R (mod Z)

Since the cmu instruction based on Algorithm 6 requiring three calls to the
Montgomery multiplier is costlier than the mmu instruction requiring only two
calls [YOV07a], Algorithm 7 minimizes calls to the cmu instruction, which ap-
pears only once in Step 1.

Fig. 2 shows a design of our double-size modular multiplication: the first
three lines show components of the product XY , which is computed by the

)
X =

Y =×
x1 x0

y1 y0

z1

z1 z0

z0

r1 r0

R

0 · · · 0 0 · · · 0

product XY

reduction
+jZ =

−iZ =

+x1y1 =

+(x1y0 + x0y1) =

+x0y0 =

Fig. 2. Sketch of Double-Size Bipartite Multiplications
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mmu instruction. There are two kinds of modular reductions in the other steps:
One is to subtract Z from the most significant (left) side, which is based on
the cmu instruction, and the other adds Z from the least significant (right) side
based on the mmu instruction. Finally, one can discard each �-bit integer from
the most and least significant side, and get the L-bit remainder located in the
middle.

4 Evaluation

This section shows how the proposal speeds up on-line precomputations. NIST
recommends using 2048-bit RSA instead of the mainstream 1024-bit RSA from
2010 though 2030 [Nis07]; this paper follows the NIST recommendation, and
evaluates the proposed techniques with 2048-bit RSA on smartcards which can
only handle 1024-bit Montgomery multiplications.

4.1 Few On-Line Precomputations

L-bit RSA public operations consist of an L-bit modular exponentiation: Xe

(mod Z), with the ciphertext or signature X , the public modulus Z, and the
small public exponent e. The RSA public operations can be performed by Algo-
rithm 8, which is a left-to-right binary method with the BU instruction presented
in Definition 4, and looks similar to Algorithm 2 with the MU instruction requir-
ing heavy precomputations. However, a precomputation of Algorithm 8 (Step 1)
is essentially free thanks to the following equation: c2 (mod Z) = C−Z, where
c2 = C = 2L and 2L−1 < Z < 2L.

Algorithm 8. Binary method from the most significant bit based on BU instruction

Input: X, Z and small public exponent e = (ek · · · ei · · · e0)2 where 0 ≤ X < Z ;
Output: Xe (mod Z);

1. Y ← c2 (mod Z) //= C − Z
2. T ← BU(X, Y, Z)
3. Y ← T
4. for i from k − 1 down to 0 do

(a) T ← BU(T, T, Z) //squaring
(b) if ei = 1, do

i. if i �= 0 then T ← BU(T, Y, Z) //multiplication
ii. if i = 0 then T ← BU(T, X, Z) //multiplication and reduction

5. return T

The BU instruction requires other on-line precomputation c2 (mod z) for cmu
instruction, which is called at Algorithm 7 Step 1. This precomputation can
easily be performed using Algorithm 9 with only several calls to the hardware
multiplier.



84 M. Yoshino, K. Okeya, and C. Vuillaume

Algorithm 9. �-bit modular squaring with mu instructions

Input: bitlength � = (��−1 · · · �i · · · �0)2 and modulus z ;
Output: c2 (mod z) where c = 2�;

1. d← 2c (mod z) and t← 2c (mod z)
2. for i from �log2 �� − 2 down to 0 do

(a) d← mu(d, d, z)
(b) if �i = 1 then d← mu(d, t, z)

3. return d

4.2 Performance Improvement

The proposed double-size techniques are evaluated for smartcards which can
only handle 1024-bit Montgomery multiplications in the case of 2048-bit RSA
public operations with the common exponent e = 216 + 1 to follow the NIST
recommendation [Nis07]. Table 1 includes the performance of the 2048-bit RSA
with three columns; on-line precomputations, a modular exponentiation and
the total, which are evaluated by the binary (square-and-multiply) methods
following Algorithm 2 or Algorithm 8.

The proposal eliminates almost all on-line precomputations, and contributes
to improve the total performance: One of the on-line precomputation; C (mod Z)
is replaced with a subtraction; C−Z, and the other precomputation; c2 (mod z)
requires only 9 calls to the Montgomery multipliers, therefore the proposal ad-
vantages in the on-line precomputations. As a result, the proposed method costs
only 70%(� 243/336) of the best previous method.

Figure 3 depicts how the cost, expressed in number of calls to the single-size
Montgomery multiplier, varies with the exponent e in the case of a 2048-bit RSA
encryption. For exponents of less than 32 bits, our proposal is always better than
previous techniques. The turnover when double-size Montgomery multiplications
[YOV07a] becomes more competitive than our proposal occurs for the 65-bit ex-
ponent e = (11 . . .11)2. However, we argue that in practice, small RSA exponents
of less than 32 bits represent the overwhelming majority of cases [RSA95].

4.3 Further Performance Improvement

Some micro processor can perform modular operations in parallel with help of
cryptographic coprocessors and CPU: while the coprocessors work, CPU can
compute other arithmetic modular operations. Despite gap between the speed

Table 1. Calls to the multiplier in the 2048-bit RSA public operation

Scheme
On-line Modular

Total
precomputations exponentiation

[YOV07a] 140 252 392

[YOV07b] 120 216 336

This paper 9 234 243
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Fig. 3. Calls to the Montgomery multiplier for several exponents e

of those processors, such environments can accelerate double-size modular mul-
tiplication assigning some step of Algorithm 8 in the arithmetic processor and
the other steps in CPU such as Step 1–5 in the coprocessor and Step 6 in CPU,
or Step 1,2,4,5 in the coprocessor and the others in CPU. Therefore, parallel
operations help to optimize our proposal, leading to even greater speed.

5 Conclusion

This paper proposed novel double-size modular multiplication algorithms with
few modulus-dependent precomputations for on-line RSA public operations,
which gave birth to double-size bipartite multiplication on the most commonly
used single-size Montgomery multipliers in order to eliminate heavy precomputa-
tions required by all previous double-size Montgomery multiplication techniques.
Although the proposed double-size bipartite multiplication technique is slightly
slower than the best technique of double-size Montgomery multiplication, the
penalty is largely counterbalanced by the benefit in terms of precomputations:
when the public exponent is e = 216 + 1, which is by far the most common
choice for RSA, our method is 1.4 times faster than the best previous tech-
niques. In addition, when the CPU and the coprocessor operate in parallel,
which is possible for some low-cost micro controllers, our proposal can be fur-
ther optimized, leading to even greater speed. As a consequence, our double-size
bipartite multiplication technique is the fastest among all double-size techniques
for the cryptographic devices equipped with hardware Montgomery multipliers.
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A Proof for Correctness

A.1 Algorithm 6: The cmu Instruction Based on a mu Instruction

Algorithm of Montgomery multiplications is different from classical multiplica-
tions; however, one can simulate classical multiplications easily using the �-bit
mu instruction implementing Montgomery multiplications thanks to the follow-
ing equation:

rc = xy (mod z) = x′yc−1 (mod z)

where 0 ≤ x, y < z and x′ = xc (mod z). Therefore, the mu instruction can
output the classical remainder rc according to the following two intuitive steps:

1. x′ ← mu(x, c2 (mod z)i)
2. rc ← mu(x′, y, z)

Thanks to these steps, one can compute rc with help from the multipliers.
There is a requirement for Montgomery multiplications: only odd moduli are

available. The following proof show how to compute classical quotient qc =
(xy − rc)/z from two different classical remainders.

Proof. For numbers, where 0 ≤ x, y < z and z is odd, classical multiplication
outputs a quotient qc and a remainder rc, which satisfy the following equation:
xy = qcz + rc where qc = (xy − rc)/z and rc ≡ xy (mod z). Equivalently,

xy = qcz + rc

= qc(z + 2) + (−2qc + rc) (1)
= q′c(z + 2) + r′c (2)

From the equation (1) and (2),

qc = (rc − r′c + δ(z + 2))/2

holds with some integer δ.
Since 0 ≤ x,y < z holds, qc, rc and r′c satisfy the following conditions: 0 ≤

qc < z, 0 ≤ rc < z and 0 ≤ r′c < z+2. From the equation−(z+2) < (rc−r′c) < z,
the following condition holds:

If value of (rc−r′c) is

⎧
⎨

⎩

even and non negative, then δ = 0
odd, then δ = 1

even and negative, then δ = 2
��

A.2 Algorithm 7: The BU Instruction Based on a mmu and cmu
Instruction

Algorithm 7 builds the BU instruction on a cmu instruction and an mmu instruc-
tion, and needs to process branches in Step 4 and Step 7 whether z0 is positive
or not. This paper only introduces a proof in the case that z0 is positive, but
one can follow the other case similarly.
i Algorithm 9 can help to precompute the equation c2 (mod z).



88 M. Yoshino, K. Okeya, and C. Vuillaume

Proof. L-bit modulus Z is represented by Algorithm 5 as the followings:

Z = z1c + z0

where 0 < z1 < c and −c < z0 < c, and the other L-bit integers X and Y are
simply divided into upper and lower �-bit integers.

X = x1c + x0 and Y = y1c + y0.

where 0 ≤ x1, x0, y1, y0 < c. Then, the following equation holds.

XY = x1y1c(c− 1) + (x1 + x0)(y1 + y0)c− x0y0(c− 1) (3)

The first term of Equation (3) is transformed into the following equations with
the first call to a cmu instruction and the second call to an mmu instruction.

x1y1c(c− 1) = (q1z1 + r1)c(c− 1)
≡ (−q1z0 + r1c)(c− 1) (∵ z1c ≡ −z0 (mod Z))
= (q2 + (r1 − r2 − q2)c)(c− 1)

The third term of Equation (3) is also transformed into the following equation
with a call to the mu instruction.

x0y0(c− 1) = (−q3 + (r3 + q3)c)(c− 1)

Therefore, the first and third term of Equation (3) are combined with twice the
help from the mmu instruction.

x1y1c(c − 1) + x0y0(c − 1)
= (q2 + q3)(c − 1) + (r1 − r2 − r3 − q2 − q3)c(c − 1)
= (q4z0 + r4c) + (r1 − r2 − r3 − q2 − q3)c(c − 1)
≡ (−q4z1 + r4)c + (r1 − r2 − r3 − q2 − q3)c(c − 1) (∵ z0 ≡ −z1c (mod Z))
= ((q5 + r4) − (q5 + r5)c)c + (r1 − r2 − r3 − q2 − q3)c(c − 1)

The second term of Equation (3) is transformed into the followings with last call
to the mu instruction.

(x1 + x0)(y1 + y0)c = (−q6 + (r6 + q6)c)c

Finally, Equation (3) consisting of three terms are concluded with the following
equations.

XY ≡ (−r1 + r2 + r3 + r4 + q2 + q3 + q5 − q6)
+ (r1 − r2 − r3 − r5 + r6 − q2 − q3 − q5 + q6)c (mod Z). ��
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