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Abstract. This paper proposes novel algorithms for computing double-
size modular multiplications with few modulus-dependent precomputa-
tions. Low-end devices such as smartcards are usually equipped with
hardware Montgomery multipliers. However, due to progresses of mathe-
matical attacks, security institutions such as NIST have steadily
demanded longer bit-lengths for public-key cryptography, making the
multipliers quickly obsolete. In an attempt to extend the lifespan of
such multipliers, double-size techniques compute modular multiplications
with twice the bit-length of the multipliers. Techniques are known for ex-
tending the bit-length of classical Euclidean multipliers, of Montgomery
multipliers and the combination thereof, namely bipartite multipliers.
However, unlike classical and bipartite multiplications, Montgomery mul-
tiplications involve modulus-dependent precomputations, which amount
to a large part of an RSA encryption or signature verification. The pro-
posed double-size technique simulates double-size multiplications based
on single-size Montgomery multipliers, and yet precomputations are es-
sentially free: in an 2048-bit RSA encryption or signature verification
with public exponent e = 2'6 + 1, the proposal with a 1024-bit Mont-
gomery multiplier is 1.4 times faster than the best previous technique.

Keywords: Montgomery multiplication, double-size technique, RSA,
efficient implementation, smartcard.

1 Introduction

The algorithm proposed by Montgomery has been extensively implemented to
perform costly modular multiplications which are time-critical for public-key
cryptosystems such as RSA [Mon85|, [RSATE|. In particular, and unlike naive im-
plementations of classical modular multiplications, Montgomery multiplications
are not affected by carry propagation delays for computing the quotient of a
modular reduction, and as a result, are suitable for high-performance hardware
implementations. However, such accelerators are penalized by a strict restric-
tion: their operand size is fixed. In order to deal with recent integer factoring
records and ensure long-term security [Len04], official security institutions are
updating their standards to longer key sizes than the mainstream 1024 bits for
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RSA [Nis07, [EMV], [Ecr06]; unfortunately, such bit lengths are not supported by
many cryptographic coprocessors.

This problem has motivated many studies for double-size modular multipli-
cation techniques using single-size hardware modular multipliers. On the one
hand, thanks to the Chinese Remainder Theorem, private operations (signa-
ture generation or decryption) can work with only single-size modular mul-
tiplications for computing double-size modular exponentiations [MOV96]. On
the other hand, the Chinese Remainder Theorem is no help for public oper-
ations, and double-size techniques without using private keys are necessary.
Following Paillier’s seminal paper [Pai99], several solutions were proposed for
simulating double-size classical modular multiplications with single-size classical
modular multipliers [FS03|, [CTP03], and later, the techniques were adapted in
order to simulate double-size Montgomery multiplications with the commonly
used single-size Montgomery multiplier [YOV07a]. Finally, the less common but
nonetheless promising bipartite multiplier [KT05], which includes a Montgomery
and a classical multiplier working in parallel, was taking advantage of for simu-
lating double-size bipartite multiplications [YOVOT7D].

In the context of public operations, RSA signature verification for instance,
the verifier is unlikely to know the RSA modulus in advance; we refer to this event
as on-line verification. On the one hand, classical modular multiplications are
not affected by the fact that verification is performed off-line or on-line. With
a bipartite multiplier, some modulus-dependent precomputations are required
during on-line verification. However, when the parameters of the multiplier are
appropriately chosen, the cost of precomputations is negligible [KT05]. But on
the other hand, precomputations are far from being negligible when using Mont-
gomery multipliers, especially when the public exponent is small. Assuming the
2048-bit exponentiation X¢ mod Z, the basis X must be firstly converted to
its Montgomery representation, namely X * 22048 mod Z, which can be accom-
plished with 2048 successive shifts or eleven 2048-bit Montgomery multiplica-
tions; in the latter case, this amounts to 36% of the total verification time when
e = 2'6 4 1. This is especially unfortunate considering the fact that Mont-
gomery multipliers represent the most popular architecture for cryptographic
coprocessors [NM96].

In this paper, we solve the problem of costly on-line precomputations with
a radically new approach. Although we assume a multiplier based on the cele-
brated Montgomery multiplication technique, we simulate a bipartite double-size
multiplication, where on-line precomputations are essentially free. Although our
double-size bipartite multiplication technique is slightly slower than double-size
Montgomery multiplications, the penalty is largely counterbalanced by the ben-
efit in terms of precomputations, at least when the public exponent e is small.
When e = 26 + 1, which is by far the most common choice for RSA, our tech-
nique is 1.4 times faster than the best previous techniques, and even more when
e = 3. In addition, when the CPU and the coprocessor operate in parallel, which
is possible on some low-cost microcontrollers, our proposal can be further opti-
mized, leading to even greater speed. As a consequence, our simulated bipartite
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multiplier is the fastest among double-size techniques for cryptographic devices
equipped with Montgomery multipliers, and allows the current generation of such
multipliers to comply with upcoming key-length standards of official institutes.

Notation: Let ¢ denote operand size of hardware modular multiplication units
and L equal to 2¢. Small letters such as z, y and z denote ¢-bit integers, and
capital letters such as X, Y and Z denote L-bit integers, where Z is an odd
modulus greater than 27~! like in the case of L-bit RSA.

2 Previous Double-Size Techniques

Montgomery multiplication algorithm has been extensively implemented as cryp-
tographic coprocessors to help low-end devices performing heavy modular mul-
tiplications. However, the coprocessors are designed to support the main stream
1024-bit RSA, and face with the upper limit of their bit length to comply with
upcoming key-length standards, such as the NIST recommendation; 2048-bit
RSA. The problem has motivated double-size techniques to compute modular
multiplication with twice the bit length of hardware multipliers.

2.1 Yoshino et al.’s Scheme

This subsection introduces Yoshino et al.’s work[YOV07a, YOVO7b]: how to
compute a double-size Montgomery multiplication with single-size Montgomery
multiplications.

The double-size techniques proposed by Yoshino et al. require not only remain-
ders but also quotients of single-size Montgomery multiplications. The equation
TY = ¢mz + rmc shows the relation among products of multiplier z and multipli-
cand y, quotient g, and modulus z, and remainder r,, and constant ¢, where the
constant ¢ is usually selected as power of 2 for efficient hardware implementations
in practice, therefore this paper also assumes such c satisfying ¢ = 2¢ [MOV96].

Definition [Tl shows an mu instruction for performing single-size Montgomery
multiplications, outputting only the remainder.

Definition 1. For numbers, 0 < x,y < z and z is odd, the mu instruction is
defined as vy, — mu(z,y, z) where rp, = vyc™ ! (mod z).

Their double-size techniques assumed that an mmu instruction is available, which
can be emulated with only 2 calls to single-size Montgomery multipliers, and
computes the reminder r,, and the quotient g,, of Montgomery multiplications
[YOVQTa| satisfying the equation xy = ¢,z + rmec.

Definition 2. For numbers, 0 < x, y< z and z is odd, the mmu instruction is de-
fined as (G, ) < mmu(z,y, 2) where ¢, = @Yy —7rm09/z andry, =xye™t (mod z).

Yoshino et al.’s double-size techniques need two steps other than multiplier calls.
First, every L-bit integer X, Y and Z is represented with /-bit integers which
can be handled by mmu instructions:

X=zi(c—1)+z0c, Y =y1(c— 1) +yocand Z = z1(c — 1) + zpc.
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Second, all quotients ¢, and remainders r,, are sequentially gathered from mmu
instructions.

Double-size Montgomery multiplications compute a remainder R,, such that
R, = XYC~! (mod Z) where 0 < X, Y < Z, and the constant C is called
Montgomery constant, and twice bit length of the constant c¢: C = 2L(= ¢?).
Algorithm [ shows their double-size Montgomery multiplications requiring 6
calls to mmu instructions, and 12 calls to Montgomery multipliers in total.

Algorithm 1. Double-size Montgomery multiplication [YOVQT7D]

InpUT: X, Y and Z where 0 < XY < 7 ;
OutpuT: XYC™! (mod Z) where C = 2%;

(q1,71) < mmu(z1,y1,21)

(q2,72) < mmu(q1, z0,c — 1) /Jc=2°
(g3,73) < mmu(zo + z1,y0 + y1,¢ — 1)

(qa,74) < mmu(zo, yo,c — 1)

( ) —mmu(c—1,—q2+¢q3 — qa +71,21)

(g6,76) < mmu(gs, z0,c — 1)

return (g2 +q—qgs — 11 —r2+rs—ra+715)(c—1)+ (ro + 74 — 76)c (mod Z)

N T W

Thanks to Algorithm [Il one can set a new MU instruction to compute L-bit
Montgomery multiplications such that R,, « MU(X,Y, Z) where R,, = XY C~*
(mod Z),0< X, Y < Z and C = 2%

2.2 L-Bit RSA Public Operations

The MU instruction (double-size Montgomery multiplications) introduced in last
subsection requires twelve single-size multiplications and other basic modular
operations; therefore the number of calls to the MU instruction should be as small
as possible to get better performance. This subsection explains the contributions
and weak points of previous double-size techniques to RSA public operations,
which is the most popular application for double-size techniques.

L-bit RSA public operations (signature verification and encryption) employ
an L-bit modular exponentiation with a small exponent, following that X¢
(mod Z), where the ciphertext or signature X, the public modulus Z, and a
small public exponent e. The binary method commonly used for RSA public
operations computes double-size Montgomery multiplications and squarings ac-
cording to the bit pattern of the public exponent e. Algorithm P shows a left-to-
right binary method, which scans e from the most significant bit ej to the least
significant bit eg bit-by-bit.

From the view of efficient computation and mathematical security, the ex-
ponent used for RSA public operations is much smaller than for private op-
erations [MOV96, [RSA95]. Currently, by far the most common value of the
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Algorithm 2. Binary method from the most significant bit

INPUT: X, Z and small public exponent e = (ex ---e;---eg)2 where 0 < X < Z ;
OutpuT: X¢ (mod Z);

1. Y «— C? (mod %) //C = 2*F
2. T — MU(X,Y, Z)
3.V T
4. for i from k — 1 down to 0 do
(a) T «— MU(T,T, Z) //squaring
(b) if e, =1, do
i. if i #0 then T'+— MU(T,Y, 2) //multiplication
ii. if i =0 then T — MU(T, X, Z) //multiplication and reduction

5. return T

public exponent e is 2!6 + 1 having only two 1’s in its binary representation
(=(10000000000000001)5). In the case of public exponent e = 216 4+ 1, MU in-
struction is called only 18 times from Step 2 to Step 5 of Algorithm[2l In addition
to that, the Algorithm [2] Step 1 seems to be quite cheap, however, this simple
modular squaring is seriously expensive for double-size RSA public operations,
as it will be explained below.

2.3 Previous Approaches for On-Line Precomputations

There are important differences between private and public operations: off-line
precomputations are possible in the former case whereas the latter case requires
on-line precomputations.

On-line precomputations in Algorithm B} Step 1 consists of a simple L-bit
modular squaring which might look cheap at first sight; however this is not
true for low-end devices such as smartcards. There are two known approaches
with/without help from Montgomery multipliers; unfortunately, both are se-
riously slow, and damage performances of double-size techniques on low-end
devices.

(1) Approach with MU Instruction:

In an attempt to benefit from hardware accelerators, Algorithm [Bl employs MU
instructions to perform a L-bit modular squaring (C? (mod Z)) using the binary
method. Thanks to the cryptographic coprocessor, the approach looks fast, but
in fact, the calculation costs are quite heavy: in the case of a 2048-bit modular
squaring, Algorithm [B] takes 120 calls to the multiplier, since MU instruction re-
quires 12 calls to the multiplier and is called 10 times by the binary method. As
a consequence, the approach with the MU instruction is very costly considering
that it only computes a simple modular squaring.

(2) CPU approach:
Theoretically, the CPU can compute any-bit modular multiplications without
help from hardware accelerators including the L-bit modular squaring
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Algorithm 3. L-bit modular squaring (C? (mod Z)) with MU instructions

INPUT: bitlength L. = (Lp—1 -+ L¢- -+ Lo)2 and modulus Z ;
OutpPuT: C? (mod Z) where C' = 2%,

1. D« 2C (mod Z) and T < 2C (mod Z)
2. for ¢ from |log, L| — 2 down to 0 do
(a) D« MU(D, D, Z)
(b) if L; =1 then D «— MU(D, T, Z)
3. return D

(C? (mod Z)). The approach of Algorithm @ is taken by computers whose CPUs
are powerful enough not to need help from hardware accelerators, however, this
is not the case for the low-end devices where the performance gap between CPU
and arithmetic coprocessor is usually quite large. As a result, Algorithm [M] is
practically much slower than Algorithm [3]in these environments.

Algorithm 4. L-bit modular squaring with only CPU instructions

INPUT: bitlength L = (Lr—1---L¢ -+ - Lo)2 and modulus Z;
OutpPuT: C? (mod Z) where C' = 2%;

1. D—C—-Z

2. for i from ¢ — 1 down to 0 do
(a) D« 2D

(b) if D>C,then D — D — Z.
if D>7 then D «— D — Z.

4. return D

w

3 New Double-Size Bipartite Multiplication

L-bit RSA public operations require a simple but expensive on-line modular-
dependent precomputation for low-end devices with ¢-bit Montgomery multi-
pliers. This section presents new double-size techniques for such environments,
which derive their high performance from Montgomery multipliers while elimi-
nating almost all precomputations.

3.1 Overview

The proposal mixes two different modular multiplication algorithms which are
executable with the usual Montgomery multipliers. Fig. [l shows a design of our
techniques: first, L-bit integers X, Y and Z are divided into ¢-bit integers, and
inputted to a hardware accelerator outputting the ¢-bit remainder r,, of Mont-
gomery multiplications. In addition to single-size Montgomery multiplications,
the new techniques employ single-size classical multiplications. Second, their re-
mainders (r,, and r.) and quotients (¢, and ¢.) are computed based on only
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the remainder r,,,. Last, the remainders and quotients are assembled to build a
double-size remainder R satisfying

R=XYc ' (mod Z),

where 0 < X, Y < Z. The new modular multiplication is accompanied by the
constant ¢, which is only half the bit length of the Montgomery constant C|
contributing to the fact that our new on-line precomputations can be performed
at much cheaper cost.

split X, Y and Z, and
input z1, xo, Y1, Yo, 21 and 2o

Single-size hardware
Montgomery multiplier
(mu instruction)

outputs r,, | outputs 7,

v v

Extended Extended
Montgomery multiplication classical multiplication
(mmu instruction) (cmu instruction)
outputs g, and 7, outputs g. and r.
\4 \4

Double-size
bipartite multiplication
(BU instruction)

l outputs R(= XYc¢™* (mod Z))

Fig. 1. Configuration of New Double-Size Bipartite Multiplication

3.2 How to Divide L-Bit Integers for the ¢-Bit Multiplier

In order to benefit from hardware accelerators which can handle only /¢-bit
arithmetic operations, L-bit integers can be simply divided into upper and
lower ¢ bits such that X = z1¢ + zg, where x; is upper and zg is lower /¢
bits of X. However, Montgomery multiplications require odd modulf]. In or-
der to prepare odd moduli, Algorithm [0l derives from the following equation:
Z =zic+z0= (21 + 1)ec— (c— 20).

! In fact, it is possible to perform Montgomery multiplications with even modulus
[Koc94]. However, the technique requires other arithmetic operations in addition to
the multiplications in hardware: this costly technique is not considered in our paper.
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Algorithm 5. L-bit modulus division with odd ¢-bit moduli

INPUT: odd Modulus Z;
OUTPUT: odd moduli z1 and zp such that Z = z1¢c + 29 with ¢ = 2¢ ;

1. 21+ |Z/c| and zp < Z (mod c).
2. if z; is even, z1 «— z1 + 1 and zp < 20 — c.
3. return (z1,z0)

3.3 New £-Bit Instructions Based on an ¢-Bit Multiplier

This subsection defines new instructions to output quotients and remainders of
classical multiplications and Montgomery multiplications, which can be built on
the usual Montgomery multiplier.

Similar with Definition [2in Section 211 the equation; xy = g.z +r. shows the
relation between the remainder r. and the quotient ¢, of classical multiplications,
which can be implemented with only three calls to the mu instruction.

Definition 3. For numbers, 0 < x, y < z and z is odd, the cmu instruction is
defined as (qe,7:) + cmu(x,y, z) where q. = (xy — r.)/z and r. = xy (mod z).

Algorithm [G shows how to simulate the cmu instruction with the mu instruction;
and the correctness is proven in Appendix [A ]

Algorithm 6. The cmu Instruction based on The mu Instruction

INPUT: z, ¥, z and ¢t with 0 < z, y < 2, z is odd and t = ¢* (mod 2) ;
OUTPUT: ¢. and r., where ¢. = (zy — r.)/z and r. = zy (mod 2);

1. 2’ — mu(x,t,2) //= zc (mod z)
2. re — mu(z’,y,z) //= zy (mod 2)
3. 7, —mu(z’,y,z +2) //=zy (mod (z + 2))
4 g (re —re)

5. (a) if ¢. is odd, then g. < (¢c + 2z +2)/2

(b) else if ¢. is even and negative, then gc — ¢./2 + z + 2
6. return (gc,rc)

3.4 How to Build an L-Bit Remainder with ¢-Bit Instructions

Finally, this subsection presents how to build a remainder of new double-size
modular multiplication on the remainders and the quotients of single-size mod-
ular multiplications.

Definition @ shows the BU instruction for computing L-bit bipartite multipli-
cation.

Definition 4. For numbers, 0 < X,Y < Z, the BU instruction is defined as
R « BU(X,Y,Z) where R= XYc ! (mod Z) and ¢ = 2°.
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The BU instruction performs L-bit modular multiplication; XYc¢™! (mod Z)
accompanied with only the /-bit constant ¢, which is only half the size of the
Montgomery constant C, contributing to the fact that our new precomputations
can be performed at much cheaper cost.

Algorithm [ shows how to use the mmu instruction and the cmu instruction
to build the BU instruction; the correctness is proven in Appendix

Algorithm 7. The BU Instruction based on The mmu and cmu Instructions

INpPUT: X, Y and Z, where X = xic+ x0,Y =yic+yo and Z = z1¢c + 20 ;
OuTpPUT: XY™ ! (mod Z);

1. (q1,71) <« cmu(z1,y1,21)
2. (q2,7r2) < mmu(q1, z0,c — 1)
3. (g3, 73) < mmu(zo,yo,c — 1)
4. (a) if zo is positive, (q4,74) — mmu(q2 + g3,¢c — 1, 20)
(b) if 20 is not positive, (q4,74) < mmu(—g2 + g3,¢c — 1, 20)
5. (g5,75) < mmu(qa, z1,¢ — 1)
6. (g6,76) < mmu(z1 + xo,y1 + yo,c — 1)
7. (a) if zo is positive,

R« (=ri+ro+r3+ratge+gs+gs—qe)+(r1—r2—r3—r5+re —g2—qs—q5+qs)c
(b) if 20 is not positive,
R« (=r1—r2—r3+ra—q2+q3—q5—qs)+(r1+r2+r3+rs+re+g2—qs+g5+qs)c
8. return R (mod Z)

Since the cmu instruction based on Algorithm [ requiring three calls to the
Montgomery multiplier is costlier than the mmu instruction requiring only two
calls [YOV0Ta)], Algorithm [7] minimizes calls to the cmu instruction, which ap-
pears only once in Step 1.

Fig. @ shows a design of our double-size modular multiplication: the first
three lines show components of the product XY, which is computed by the

x= [™© v |
X ) y= | wu vo |
: +xoyo —| |
+(z1y0 + oY1) :1 | product XY
+x1y1 = | | :
TiZ= 2 © | : reduction
+jZ = 21 20 |
ool o T P00

Fig. 2. Sketch of Double-Size Bipartite Multiplications
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mmu instruction. There are two kinds of modular reductions in the other steps:
One is to subtract Z from the most significant (left) side, which is based on
the cmu instruction, and the other adds Z from the least significant (right) side
based on the mmu instruction. Finally, one can discard each ¢-bit integer from
the most and least significant side, and get the L-bit remainder located in the
middle.

4 Evaluation

This section shows how the proposal speeds up on-line precomputations. NIST
recommends using 2048-bit RSA instead of the mainstream 1024-bit RSA from
2010 though 2030 [NisO7]; this paper follows the NIST recommendation, and
evaluates the proposed techniques with 2048-bit RSA on smartcards which can
only handle 1024-bit Montgomery multiplications.

4.1 Few On-Line Precomputations

L-bit RSA public operations consist of an L-bit modular exponentiation: X¢
(mod Z), with the ciphertext or signature X, the public modulus Z, and the
small public exponent e. The RSA public operations can be performed by Algo-
rithm B which is a left-to-right binary method with the BU instruction presented
in Definition 4] and looks similar to Algorithm lwith the MU instruction requir-
ing heavy precomputations. However, a precomputation of Algorithm[§ (Step 1)
is essentially free thanks to the following equation: ¢* (mod Z) = C — Z, where
2 =C=20and 2871 < Z < 28,

Algorithm 8. Binary method from the most significant bit based on BU instruction

INPUT: X, Z and small public exponent e = (ex ---¢e;---eg)2 where 0 < X < Z ;
OutpuT: X¢ (mod Z);

1. Y « ¢ (mod Z) //=C—-2Z
2. T—BU(X,Y,Z2)
3.V T
4. for i from k — 1 down to 0 do
(a) T «— BU(T,T, Z) //squaring
(b) if e, =1, do
i. if i #0 then T — BU(T,Y, 2) //multiplication
ii. if i =0 then T — BU(T, X, 2) //multiplication and reduction

5. return T

The BU instruction requires other on-line precomputation ¢? (mod z) for cmu

instruction, which is called at Algorithm [ Step 1. This precomputation can
easily be performed using Algorithm @ with only several calls to the hardware
multiplier.
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Algorithm 9. ¢-bit modular squaring with mu instructions

INPUT: bitlength £ = (€g—1---¥4; - - £o)2 and modulus z ;
OuTPUT: ¢ (mod z) where ¢ = 2%;

1. d < 2¢ (mod z) and ¢ « 2¢ (mod z)
2. for ¢ from |log, ¢| — 2 down to 0 do
(a) d«— mu(d,d,z)
(b) if ¢; =1 then d «— mu(d,t,z2)
3. return d

4.2 Performance Improvement

The proposed double-size techniques are evaluated for smartcards which can
only handle 1024-bit Montgomery multiplications in the case of 2048-bit RSA
public operations with the common exponent e = 2'6 + 1 to follow the NIST
recommendation [NisO7]. Table [[] includes the performance of the 2048-bit RSA
with three columns; on-line precomputations, a modular exponentiation and
the total, which are evaluated by the binary (square-and-multiply) methods
following Algorithm [ or Algorithm

The proposal eliminates almost all on-line precomputations, and contributes
to improve the total performance: One of the on-line precomputation; C' (mod Z2)
is replaced with a subtraction; C'— Z, and the other precomputation; ¢? (mod z)
requires only 9 calls to the Montgomery multipliers, therefore the proposal ad-
vantages in the on-line precomputations. As a result, the proposed method costs
only 70%(~ 243/336) of the best previous method.

Figure [3] depicts how the cost, expressed in number of calls to the single-size
Montgomery multiplier, varies with the exponent e in the case of a 2048-bit RSA
encryption. For exponents of less than 32 bits, our proposal is always better than
previous techniques. The turnover when double-size Montgomery multiplications
[YOV07a] becomes more competitive than our proposal occurs for the 65-bit ex-
ponent e = (11...11),. However, we argue that in practice, small RSA exponents
of less than 32 bits represent the overwhelming majority of cases [RSA95].

4.3 Further Performance Improvement

Some micro processor can perform modular operations in parallel with help of
cryptographic coprocessors and CPU: while the coprocessors work, CPU can
compute other arithmetic modular operations. Despite gap between the speed

Table 1. Calls to the multiplier in the 2048-bit RSA public operation

On-line Modular

Scheme . . Total
precomputations exponentiation

[YOV07a) 140 252 392

[YOVO7D] 120 216 336

This paper 9 234 243
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Fig. 3. Calls to the Montgomery multiplier for several exponents e

of those processors, such environments can accelerate double-size modular mul-
tiplication assigning some step of Algorithm [§] in the arithmetic processor and
the other steps in CPU such as Step 1-5 in the coprocessor and Step 6 in CPU,
or Step 1,2,4,5 in the coprocessor and the others in CPU. Therefore, parallel
operations help to optimize our proposal, leading to even greater speed.

5 Conclusion

This paper proposed novel double-size modular multiplication algorithms with
few modulus-dependent precomputations for on-line RSA public operations,
which gave birth to double-size bipartite multiplication on the most commonly
used single-size Montgomery multipliers in order to eliminate heavy precomputa-
tions required by all previous double-size Montgomery multiplication techniques.
Although the proposed double-size bipartite multiplication technique is slightly
slower than the best technique of double-size Montgomery multiplication, the
penalty is largely counterbalanced by the benefit in terms of precomputations:
when the public exponent is e = 2'6 + 1, which is by far the most common
choice for RSA, our method is 1.4 times faster than the best previous tech-
niques. In addition, when the CPU and the coprocessor operate in parallel,
which is possible for some low-cost micro controllers, our proposal can be fur-
ther optimized, leading to even greater speed. As a consequence, our double-size
bipartite multiplication technique is the fastest among all double-size techniques
for the cryptographic devices equipped with hardware Montgomery multipliers.
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A Proof for Correctness
A.1 Algorithm [6t The cmu Instruction Based on a mu Instruction

Algorithm of Montgomery multiplications is different from classical multiplica-
tions; however, one can simulate classical multiplications easily using the ¢-bit
mu instruction implementing Montgomery multiplications thanks to the follow-
ing equation:

re=xy (mod 2)=2'yc' (mod 2)

where 0 < z,y < z and ' = zc¢ (mod z). Therefore, the mu instruction can
output the classical remainder 7. according to the following two intuitive steps:

1. 2’ « mu(z, ¢* (mod zﬁ)

2. 7. — mu(z’,y, 2)

Thanks to these steps, one can compute 7. with help from the multipliers.

There is a requirement for Montgomery multiplications: only odd moduli are
available. The following proof show how to compute classical quotient ¢. =
(zy — r.)/z from two different classical remainders.

Proof. For numbers, where 0 < z, y < z and z is odd, classical multiplication
outputs a quotient ¢. and a remainder 7., which satisfy the following equation:
Yy = ¢ez + e where ¢. = (zy — r.)/z and r. = zy (mod z). Equivalently,

TY = (qcz +7e
=qc(z +2) + (—2qc +7¢) (1)
=q,(z+2) + 7, (2)

From the equation () and (),
Ge = (re =re +0(2+2))/2

holds with some integer §.

Since 0 < z,y < z holds, ¢., r. and 7/, satisfy the following conditions: 0 <
qe < 2,0 <r. < zand0 <7, < z+2. From the equation —(z+2) < (r.—7r.) < z,
the following condition holds:

even and non negative, then § =0
If value of (r.—rl) is odd, then §=1 0
even and negative, then § =2

A.2 Algorithm [t The BU Instruction Based on a mmu and cmu
Instruction

Algorithm [ builds the BU instruction on a cmu instruction and an mmu instruc-
tion, and needs to process branches in Step 4 and Step 7 whether z( is positive
or not. This paper only introduces a proof in the case that zy is positive, but
one can follow the other case similarly.

I Algorithm [ can help to precompute the equation ¢? (mod z).
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Proof. L-bit modulus Z is represented by Algorithm [l as the followings:
Z =zic+ 2o

where 0 < z1 < c and —c < zp < ¢, and the other L-bit integers X and Y are
simply divided into upper and lower ¢-bit integers.

X =x1c+29and Y = y1¢c+ yo.
where 0 < z1, xg, Y1, Yo < ¢. Then, the following equation holds.
XY =myic(c — 1) + (w1 + 20)(y1 + Yo)c — zoyo(c — 1) (3)

The first term of Equation (@) is transformed into the following equations with
the first call to a cmu instruction and the second call to an mmu instruction.

r1yic(c — 1) = (121 +r1)e(c — 1)
=(—qzo+ric)(c—1) (zic=—-2 (mod 7))
= (g2 + (r1 —r2 —g2)c)(c — 1)

The third term of Equation (3] is also transformed into the following equation
with a call to the mu instruction.

zoyo(c — 1) = (—gs + (r3 + g3)c)(c — 1)

Therefore, the first and third term of Equation (B]) are combined with twice the
help from the mmu instruction.

r1yrc(c — 1) + zoyo(c— 1)

=(+@)(c=1)+(r1 —r2—7r3 —q2 — q3)c(c — 1)
(qazo +71ac) + (r1 —ro — 73 — g2 — g3)c(c — 1)
(=qaz1+ra)e+(r1—ro—r3s—q —q3)c(c—1) (20 =—2z1¢ (mod 7))
= ((g5s +14) — (g5 +7r5)c)c+ (r1 —r2 — 13 — ¢2 — g3)c(c — 1)

The second term of Equation (@] is transformed into the followings with last call
to the mu instruction.

(z1+20)(y1 + yo)c = (—g6 + (16 + g6)c)c

Finally, Equation () consisting of three terms are concluded with the following
equations.

XY= (-rmi+ro+r3+rata+as+a—q)
+(r1i—ra—rs—rs+r6—q2—q3— g5+ gs)c (mod Z). .
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