
Integration of GRID Superscalar
and GridWay Metascheduler with the

DRMAA OGF Standard�

R.M. Badia1, D. Du3, E. Huedo2, A. Kokossis3, I.M. Llorente2,
R.S. Montero2, M. de Palol1, R. Sirvent1, and C. Vázquez2

1 Barcelona Supercomputing Center
2 Universidad Complutense de Madrid

3 University of Surrey

Abstract. This paper shares the experiences with one of the BEinGRID
pilots, BE14, from a technological point of view. The experiment has in-
tegrated GRID superscalar (as programming model) with GridWay (as
metascheduler) through the DRMAA standard. Additionally, a portal
based in GridSphere has been developed. The portal enables the man-
agement of the grid and the automatic deployment and monitoring of
applications. This environment has been successfully used to speed up
an application that enables new processes and products development in
the Chemistry sector with considerable success.

Keywords: Grid Computing, DRMAA, GRID superscalar, GridWay
Metascheduler.

1 Introduction

Business Experiments in GRID (BEinGRID), is an European Union integrated
project funded by the Information Society Technologies (IST) research, part of
the EUs sixth research Framework Programme (FP6). The BEinGRID consor-
tium is composed of 75 partners who are running eighteen Business Experiments
designed to implement and deploy grid solutions in industrial key sectors.

The main objective of BEinGRID project is to foster the adoption of the so-
called Next Generation Grid technologies by the realization of several business
experiments and the creation of a toolset repository of grid middleware upper
layers. BEinGRID is undertaking a series of targeted business experiment pilots
designed to implement and deploy grid solutions in a broad spectrum of Eu-
ropean business sectors (entertainment, financial, industrial, chemistry, gaming,
retail, textile, etc). Eighteen business experiments are ongoing in the initial stage
of the project with a second open call that recently accepted a second bunch of
experiments. Secondly, a toolset repository of grid service components and best
practise will be created to support European businesses that wish to take-up the
� This research was supported by European Union, through BEinGRID project EU

contract IST-2005-034702.

E. Luque, T. Margalef, and D. Beńıtez (Eds.): Euro-Par 2008, LNCS 5168, pp. 445–455, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

446 R.M. Badia et al.

grid. To minimise redevelopment of components, BEinGRID will deploy inno-
vative grid solutions using existing grid components from across the European
Union and beyond.

The authors of this paper are involved in the Business Experiment 14 (BE14),
”New Product and Process Development,” that addresses the creation of an inte-
grated environment that enables the automation of new products and processes
in the Chemistry sector in a grid environment.

The process industry spends a lot of resources in the development of new
products and processes. Nowadays these processes depend heavily on computers
and are basically manual and sequential. The objective of this work is to imple-
ment a development environment that is able to automate these processes in a
computational grid. Grids appear as the ideal venue to enable such an applica-
tion since they offer tremendous scope to automate studies with virtual access
to experts and resources and capabilities to launch integrated experiments.

The added value of the experiment is the increase of the efficiency measured
by reductions in development times, systematic accumulation of industrial know-
how, and effective use (and re-use) of knowledge and expertise. The application is
developed on top of the integration of two powerful grid tools: GRID superscalar
(GRIDSs) [1], which provides a grid-unaware programming environment and
GridWay [2], a metascheduler which provides reliable execution in heterogeneous
grids. The integration of both tools have been performed through the OGF
standard DRMAA [3,4], which has also become the first OGF recommendation.
This integration give benefits to both GRIDSs and GridWay: GRIDSs is enabled
to run now with DRMAA schedulers, like GridWay, being able to rely on their
features (fault tolerance, monitoring, migration...) and also with a general view
of all the applications run in the grid; and GridWay benefits of a higher level
programming environment, that from a sequential application is able to general
a graph-dependency graph and exploit the concurrency of the application at
task level.

In this work we focus on the technical aspects of the experiment: how GRIDSs
and GridWay have been extended and modified to be able to work in cooper-
ation and how an end-user application has been successfully developed on top
of this environment. The paper structure is as follows: section 2 presents the
Grid Applications Development solution (GridAD) developed in the framework
of the BE14. Section 3 gives an overview of the enabling technologies of GridAD:
GRIDSs and GridWay. Section 4 describes how GRIDSs and GridWay have been
modified to enable their integration through the DRMAA OGF standard. In sec-
tion 5 we present the early results obtained with the BE application. Finally,
section 6 concludes the paper and presents future work.

2 Grid Applications Development Solution (GridAD)

GridAD is the result of the integration through the DRMAA OGF standard of
two powerful grid tools: GRIDSs and GridWay Metascheduler. The combination
of GRIDSs and GridWay (GridAD) provides a complete and powerful toolset for

Integration of GRID Superscalar and GridWay Metascheduler 447

the development and deployment of applications in the grid. GRIDSs is specially
unique for the possibility that it offers to the programmers to make the grid “in-
visible”. On the other hand, GridWay is an efficient metascheduler, worldwide
known and used. Additionally, there is no solution equivalent to the combina-
tion of both. GridAD can be used for computational grids and also on clusters,
by linking to other DRMAA libraries intended for DRMS (Condor, SGE, etc).
Figure 1 shows the flow that a GridAD application follows on execution. From a
final’s user sequential application, GRIDSs is able to find the existing task-level
parallelism and schedules the tasks for execution through GridWay. GridWay
then performs resource management and monitoring of the application.

Fig. 1. Execution in GridAD environment

3 Enabling Grid Technologies

3.1 GRID Superscalar

GRID superscalar (GRIDSs) [1,5] is an innovative grid programming framework
that enables non-grid experts to develop applications that can be run in a com-
putational grid. GRIDSs provides a very user-friendly programming framework
to grid environments. GRIDSs not only provides an abstract layer to program
applications in the grid, but also is able to increase the performance of the appli-
cations by automatically parallelising parts of the application. Applications that
can take advantage of GRIDSs are those composed of one or more coarse grain
tasks that are called several times during the application execution. GRIDSs
will execute the coarse grain tasks in independent grid servers and will exe-
cute sequentially those that have data dependencies. However, when no data
dependencies exist between two or more tasks, GRIDSs is able to execute them
concurrently.

448 R.M. Badia et al.

GRIDSs is composed of:

– User Interface: GRIDSs applications are composed of three parts: main pro-
gram, tasks’ code, and interface of the tasks. A small set of primitives (up
to seven) are offered for the main program, and two primitives for the tasks’
code. The interface of the tasks is simply an interface specification that in-
cludes the direction of the tasks’ parameters (input, output or input/output).
Expert users can complete their applications by giving resource constraints
(memory, disk, OS, ...) and performance costs models of their tasks.

– Automatic code generation: From the interface definition some code is auto-
matically generated by gsstubgen, a tool provided with the GRIDSs distri-
bution. This automatically generates code for stubs and skeletons that will
be run on the grid servers and clients.

– Deployment Center: The deployment center is a graphical interface that
performs the automatic deployment of the applications in the grid, by trans-
fering the code files, automatic building of the binaries in the servers and
configuration file generation.

– GRID superscalar Monitor: The GRID superscalar monitor (GSM) visualizes
the task dependence graph (TDG) at run time, so the user can study the
structure of the application and track the progress of execution.

– Run-time: The runtime is the more complex component of the system and
performs: task dependency maintenance, task scheduling, file renaming (to
further exploit the application concurrency), file transfer taking into account
shared file systems, checkpointing, and fault tolerance. It is important to
emphasize here that the runtime of GRIDSs makes the decision on which grid
resource should be used to execute each task. To take this decision, several
parameters are considered: location of input files, to reduce file transfers (and
therefore exploiting file locality) and resource constraints specified by the
user in the constraints interface. Another important feature is file renaming:
this technique consists in the generation of several instances of the same file
(i.e., several temporal files that are the same in the application, but in fact
are different instances) to further increase the application parallelism.
GRID superscalar run-time handles the renaming, maintaining at each mo-
ment for each renamed file the original filename and which is the last renamed
filename, and this renaming is taken into account in the data dependence anal-
ysis. The run-time also keeps track of the server where each file is located. Files
are transferred only on demand and if required. Together with a locality-aware
scheduling policy, the number of file transfers is largely reduced.

GRIDSs is distributed as Open Source under Apache v2 license [5].

3.2 GridWay Metascheduler

GridWay [6] provides the end-user with a working environment and functionality
similar to those found on local DRM systems, such as SGE, LSF or PBS. The
end-user is able to submit, monitor and control his jobs by means of DRM-like
commands (gwsubmit, gwwait, gwkill...) or standard programming interfaces.

Integration of GRID Superscalar and GridWay Metascheduler 449

– Efficient, reliable and unattended execution of jobs: GridWay automatically
performs all the job scheduling steps, provides fault recovery mechanisms,
and adapts job scheduling and execution to the changing grid conditions

– Broad application scope: GridWay is not bounded to a specific class of appli-
cation generated by a given programming environment and does not require
application deployment on remote hosts, which extends its application range
and allows reusing of existing software. GridWay allows Submission of single,
array or complex jobs consisting of task dependencies, which may require file
transferring and/or database access.

– DRM-like command line interface: The GridWay command line interface
is similar to that found on Unix and resource management systems such as
PBS or SGE. It allows users to submit, kill, migrate, monitor and synchronize
jobs, that could be described using the OGF standard JSDL.

– DRMAA application programming interface: GridWay provides full support
for OGF standard DRMAA to develop distributed applications (C, JAVA,
Perl, Python and Ruby bindings).

Moreover, GridWay modular architecture (see Figure 2) offers easy deployment,
adaptability and extension capabilities, as well as support for site autonomy and
dynamic environments. GridWay and the Globus Toolkit support the deploy-
ment of enterprise grids, that enable diverse resource sharing to improve inter-
nal collaboration and achieve a better return from their information technology
investment; partner grids, allowing access to a higher computing performance to
satisfy peak demands and also provide support to face collaborative projects; and
outsourced grids, managed by dedicated service providers, that supply resources
on demand over the Internet.

Since the release of GridWay 4.0, intended for Globus Toolkit 4 components,
in January 2005, it is distributed under Apache v2 license [6]. GridWay is a
Globus project [7] and, starting with GridWay 5.2.2, it is included in Globus
Toolkit [8].

4 Integration

In this section, we discuss about the integration of the technologies explained
above by means of DRMAA. The OGF Distributed Resource Management Appli-
cation API Working Group (DRMAA-WG)1 has developed an API specification
for job submission, monitoring and control that provides a high level interface
with Distributed Resource Management Systems (DRMS) [3]. In this way, DR-
MAA could aid scientists and engineers to express their computational problems
by providing a portable direct interface to DRMS. DRMAA has been the first
recommendation proposed by the OGF.

The functional description of the system was devised as follows: GRID super-
scalar runtime generates tasks that will be submitted to the GridWay metasched-
uler taking into account data dependencies between the tasks. The GridWay
1 http://www.drmaa.org

450 R.M. Badia et al.

Fig. 2. Architecture of the GridWay Metascheduler

metascheduler receives the tasks submitted by GRID superscalar runtime, fol-
lowing the DRMAA standard, and run them in a remote resource through Globus
Toolkit 4. GRIDSs polls GridWay for notifications on job state changes. The
application makes several requests to GRIDSs runtime, which derives in the
creation of a task in the task-graph. This task, whenever does not have data de-
pendencies with other tasks, is submitted to GridWay for execution in a remote
resource.

4.1 DRMAA Implementation in GridWay Metascheduler

In the following list we describe the DRMAA interface routines implemented in
GridWay [4]:

– Initialization and finalization routines: drmaa init and drmaa exit.
– Job template routines: drmaa set attribute, drmaa allocate job

template and drmaa delete job template. These routines enable the ma-
nipulation of job definition entities (job templates) to set parameters such
as the executable, its arguments or the standard input/output streams.

– Job submission routines: drmaa run job and drmaa run bulk jobs. Grid-
Way has native support for bulk jobs, defined as a group of n similar jobs
with a separate job id.

– Job monitoring and control routines: drmaa control, drmaa wait, drmaa ps,
drmaa synchronize... These routines are used for holding, releasing, sus-
pending, resuming and killing jobs, to monitor job status (see Figure 3), to
wait for the completion of a job and check its exit status, or to synchronize
jobs.

– Auxiliary routines: These routines are needed to obtain a textual represen-
tation of errors and other DRMAA implementation-specific information.

Integration of GRID Superscalar and GridWay Metascheduler 451

GridWay provides both C and Java bindings for DRMAA, as a dynamic li-
brary (libdrmaa.so), and as a JAR package (drmaa.jar), respectively. It also
provides binding for scripting languages like Python, Perl and Ruby by using
SWIG. Thanks to the use of DRMAA, only slight changes (mainly related to file
manipulation) were needed in GridWay.

4.2 DRMAA Usage in GRIDSs

We faced here problems with the job submission with DRMAA and with the
direct transfer of files, both of them related to the implementation of the file
transfer and resource selection policy in GRIDSs. As explained in section 3.1
originally, GRIDSs decides where to submit a job taking into account the task
resource requirements and its own information about file location. With
the integration with GridWay, we faced two options: either to delegate GridWay
the decision where to execute the tasks, but this would have meant either losing
the file-locality exploitation policy or a large reimplementation of GridWay; or
to allow GRIDSs to take the resource selection decisions. Current implementa-
tion is based on the second option, using GridWay in order to get information
regarding the available machines.

Another problem detected is that GRIDSs is event-driven, while DRMAA only
provides polling and blocking synchronization routines. This is due to the fact
that GRIDSs originally worked with Globus directly, which gives notifications
about the change of the jobs status. DRMAA blocking synchronization routines
are just about one job status change, and that is when the job status changes to
finished. This is not enough for GRIDSs, since it needs to know other changes as
well, like from Queued to Running (as seen in Figure 3), to take better advantage
of file locality, since then it knows that data needed for one job and that may be
useful for another is already present in a particular worker node. To overcome this
problem GRIDSs changed the way it waits for events, implementing a proactive
polling to GridWay using DRMAA polling routines that enables it to be aware
of GridWay jobs state changes.

Fig. 3. DRMAA job state transition diagram [3]

452 R.M. Badia et al.

4.3 Portal Development

We’ve implemented a Web Portal for providing the end-users a graphical, easy
to use interface for some of the main functionalities of GridAD, these are: File
management, uploading and downloading of files, let it be source code files or
data files; and binary application deployments to worker nodes. The second
functionality requires the portal the ability to deal with source code and being
able to send the code to all the machines in the grid as well as compiling that
code in the machines and checking the results.

The portal is implemented using GridSphere 2.2.9 [9], which is a portlet based
open-source portal framework which supports an interface for working with the
Globus Toolkit version 4. The deployment functionality of the portal is based on
the GRID superscalar Deployment Center [1], a java based tool, which deploys
the code and compiles it in all worker nodes on an execution. This application
has been migrated to portlets, which run within the GridSphere framework and
we’ve used the GridSphere grid framework (Gridportlets) to implement the usage
of grid services from the portal. With this new grid portlet and MyProxy [10], the
user can easily upload the source code of his/her application into the portal, from
there select the machines that will run the application, splitting them between
workers and a master node and then deploy the code, which will be compiled in
a transparent way in each machine, and leave the system ready to be run.

5 Experiences

In the framework of the BE14 experiment, an application is presented that in-
tegrates the computation stages of a high-throughput environment for product
and process development. The experiment allows the integration of models for
optimization and simulation providing a flexible environment on top of Gri-
dAD [11,12]. As a result of using the grid, the performance of the experiment
is dramatically increased. The high-throughput environment involves generic
stages common to a variety of industrial problems, product synthesis applica-
tions, process design, materials design, and high-throughput experimentation
in specialties, pharmaceuticals, and high-value chemicals. Such problems involve
multiple runs, each using availablephysico-chemical and economic data, to target
and screen options for products and processes. The combined use of computer
and experiments is seen as the future environment for the development of novel
products and processes.

In the specific experiment a process and catalyst development problems are
modelled mathematically and solved with a combination of stochastic algo-
rithms, deterministic algorithms, and graph-based methods. Among others, the
application inputs contain (see Figure 4) superstructure models, kinetic data,
configuration seeds and solver controls. The stochastic search takes the form of
a Tabu search with parallel steps for intensification and diversification. In each
step of the Tabu search, m different initial solutions goes through s slots, and
in each slot 4 tasks are executed. Therefore, the number of tasks in one slot is
m× s×4 . The system then updates the solutions with the best results, and the

Integration of GRID Superscalar and GridWay Metascheduler 453

Fig. 4. Application environment

process is repeated i iterations and h times for a neighborhood factor. The total
number of simulations is calculated as m × s × 3 × i × h since one of the 4 initial
tasks is very small.

The original sequential code was written in Fortran. Since GRIDSs does not
currently support Fortran, the main program of the application, that follows
an optimization TABU search scheme, was re-written in C. The computational
intensive parts of the application were kept in Fortran and linked to the main
program through C wrappers. This new code is still sequential and to adapt it
to GRIDSs, a few calls to the GRIDSs API are added in the main program (2 or
3 calls) and the GRIDSs IDL file is written, which includes the interfaces of the
computational tasks. The application code is then deployed in the grid using the
portal and afterwards run in the grid. At runtime, the GRIDSs runtime exploits
the concurrency between the tasks of the application and GridWay manage and
monitors the task execution.

Table 1 presents a summary of statistical information for three different pro-
cesses: a Van de Vusse kinetic scheme, a catalyst design experiment for acetic
acid production, and a biotechnology (biocatalytic) process with excessive re-
quirements for computing. The number of tasks and simulations required for
each experiment are summarized in table 1. Real-life applications would require
multiples of such simulations (typically by 3-5 orders of magnitude).

Main barriers for the adoption of the grid technology have been the differ-
ences in the supporting environment: whereas the language bindings offered by
GRIDSs are mainly C/C++ (and Java) and GRIDSs can only run on Linux/
UNIX based platforms (due to GT4), the user application is in Fortran (as many
similar industrial models) and the users’ environment is based on Windows OS.
The language barrier was overcome by the use of wrappers from C to Fortran.
The implementation of the portal subsequently allows now to link Windows OS
to a grid based on Linux/UNIX machines.

454 R.M. Badia et al.

Table 1. Summary of application cases configuration

Application case Van de Vusse Acetic Acid Biocatalytic
Number of initial solutions (m) 10 6 6

Number of slots (s) 50 20 50
Number of tasks (N) 2,000 480 1,200

Number of iterations per slot (i) 5 5 35
Neighborhood size (h) 7 20 20

Total number of tasks (n) 52,500 36,000 157,500
Sequential execution time 5 hours 22 mins 90 hours 55 hours

Grid execution time 40 mins 45 secs 15 hous 6 mins 7 hours
Speed up 8 6 7.9

GridAD environment has been installed and deployed in a grid composed by
3-site machines (UCM in Madrid, BSC in Barcelona and UniS in Surrey) with up
to 20 servers. Preliminary execution results are also shown in Table 1. For these
runs, 5 machines were used, with 8 workers. The speedup regarding the initial
execution time is given as a reference of the speedup observed by the final user,
although this speedup can be missleading: the reference sequential execution time
was obtained using a different environment (the original workstation used by the
final user) with different Operating System and performance characteristics. In
any case, this results have been considered very promising for the final users. The
results explain that a computer-based, high-throughput experimentation is now
possible and viable. The deployment of a larger network of computers and better
automation could further offer much smaller times to handle the actual volume
of experiments in real-life problems. Moreover, the authors currently research
asynchronous versions of the optimization search to reap additional benefits in
the intelligence of the search and a better parallelization of the computing.

6 Conclusions and Future Work

GridAD benefits from its components. From GRIDSs takes the ability to be able
to write gridified applications in a really easy way, by just defining which func-
tions we want to execute remotely on an IDL file. GRIDSs then automatically
generated the necessary code and in run-time it uses techniques to assure an opti-
mal use of data locality. From GridWay it takes the fault tolerance mechanisms,
the ability to dynamically deploy the application, the ability to interoperate
with different middlewares (EGEE, TeraGrid, Open Science Grid ,etc) and the
resource provisioning among others. Also, there are benefits for their separated
components. We can see this in the use of DRMAA for the components com-
munication, how it benefits GRIDSs since now it can be plugged to traditional
DRMS and run the application on a local cluster or it can be plugged to GridWay
and run it on a grid infrastructure.

The paper presented the application of a high-throughput prototype that
would enable the synthesis and design of novel products and processes. The

Integration of GRID Superscalar and GridWay Metascheduler 455

use of grids facilitated the combined deployment of optimization and simulation
searches, using problems and data from real-life cases. Grid-enabled computing
produces realistic times to complete the experiments and reports a rather promis-
ing message for the future of similar applications. Work in progress includes the
gridification of the algorithmic stages, the automation of the underlying work-
flows, and the parallel visualization of the synthesis search, all beyond the scope
of our initial effort.

One should note that there exist hundreds of thousands of models in reaction,
separation, catalysis, and energy integration. On the basis of the evidence shown
in the paper, one could envisage future utility services that could be offered
through the grid. Apparently, future models are left with a task to upgrade
their communication capabilities, possibly through ontologies and semantics, so
that to fully exploit the available computing power and enable their abilities to
integrate in similar high-throughput experiments.

References

1. Badia, R.M., Labarta, J., Sirvent, R., Pérez, J.M., Cela, J.M., Grima, R.: Pro-
gramming grid applications with grid superscalar. Journal of Grid Computing 1(2),
151–170 (2003)

2. Huedo, E., Montero, R.S., Llorente, I.M.: A Framework for Adaptive Execution on
Grids. Software - Practice and Experience 34(7), 631–651 (2004)

3. Rajic, H., Brobst, R., Chan, W., Ferstl, F., Gardiner, J., Robarts, J.P., Haas, A.,
Nitzberg, B., Tollefsrud, J.: Distributed Resource Management Application API
Specification 1.0. Technical report, DRMAA Working Group – The Global Grid
Forum (2003)

4. Herrera, J., Huedo, E., Montero, R.S., Llorente, I.M.: GridWay DRMAA 1.0 Imple-
mentation – Experience Report. Document GFD.E-104, DRMAA Working Group
– Open Grid Forum (2007)

5. GRID superscalar website, http://www.bsc.es/grid/gridsuperscalar
6. website, G.: GridWay Metascheduler website, http://www.gridway.org
7. GridWay dev.globus website, http://dev.globus.org/wiki/GridWay
8. Globus Toolkit website, http://www.globus.org
9. Gridsphere website, http://www.gridsphere.org

10. MyProxy website, http://grid.ncsa.uiuc.edu/myproxy
11. Antonopoulos, N., Linke, P., Kokossis, A.: A prototype GRID framework for the

Chemical Process Industries. Chemical Engineering Communications 192(10-12),
1258–1271 (2005)

12. A., K.: Modelling power as a utility. White Paper for the future of simulation,
optimization, and engineering computing (2005)

http://www.bsc.es/grid/gridsuperscalar
http://www.gridway.org
http://dev.globus.org/wiki/GridWay
http://www.globus.org
http://www.gridsphere.org
http://grid.ncsa.uiuc.edu/myproxy

	Integration of GRID Superscalar and GridWay Metascheduler with the DRMAA OGF Standard
	Introduction
	Grid Applications Development Solution (GridAD)
	Enabling Grid Technologies
	GRID Superscalar
	GridWay Metascheduler

	Integration
	DRMAA Implementation in GridWay Metascheduler
	DRMAA Usage in GRIDSs
	Portal Development

	Experiences
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

