
Interprocedural Speculative Optimization
of Memory Accesses to Global Variables

Lars Gesellensetter and Sabine Glesner

Institute for Software Engineering and Theoretical Computer Science,
Technical University of Berlin, FR 5-6, Franklinstr. 28/29, 10587 Berlin, Germany

{lgeselle,glesner}@cs.tu-berlin.de
http://pes.cs.tu-berlin.de/

Abstract. The discrepancy between processor and memory speed,
also known as memory gap, is steadily increasing. This means that
execution speed is more and more dominated by memory accesses.
We investigate the use of globals, which reside inherently in memory,
in standard applications and present an approach to reduce the num-
ber of memory accesses, thereby reducing the effect of the memory
gap. Our approach can explicitly deal with uncertain information
and, hence, optimize more aggressively with the help of speculative
techniques while not changing the semantics of the optimized pro-
grams. We present an implementation of the proposed optimization
in our compiler framework for the Intel Itanium and show that our
techniques lead to an increased performance for the SPEC CPU2006
benchmarks, thus showing that the impact of the memory gap can
be effectively mitigated with advanced speculative optimization.

1 Introduction

Over the past decade, program performance has been increasingly influenced by
memory system performance rather than CPU speed. This phenomenon, termed
memory wall or memory gap, was foreseen in the 1990s [WM95] and is due
to the fact that, as technology evolves, CPU speed is increasing faster than
memory speed. This can have severe consequences, e.g. modern processors like
the Intel Itanium stall up to 50% of the time during program execution. While
this effect may not be that drastic for all classes of applications, e.g. for scientific
computations on arrays, it poses a challenge for general-purpose applications.
This is especially severe if complex data structures on the heap are used, because
then the cache cannot mitigate all the effects of the memory system. Novel
optimization techniques are therefore required to overcome the memory wall.

In this paper, we consider the class of memory accesses induced by the use
of global variables. The concept of globals is widely used across programming
languages. In languages with an explicit notion of memory, like C, globals gen-
erally lead inherently to memory accesses. Since all functions of a program may
read or even change a global, they cannot be safely kept in a register across a
call. Our goal is to optimize this class of memory accesses in order to reduce the

E. Luque, T. Margalef, and D. Beńıtez (Eds.): Euro-Par 2008, LNCS 5168, pp. 350–359, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Interprocedural Speculative Optimization of Memory Accesses 351

induced memory traffic and to increase overall program performance. The effect
of an optimization for a given program can be measured by the number of issued
loads and stores during program run-time on the one hand, and by the overall
run-time performance on the other.

Our solution is based on the idea that the memory gap can be reduced if we
preload data from memory early enough. While in the classic approach, this idea
is constrained by the numerous dependencies between memory accesses, spec-
ulative techniques allow for more optimization potential: By speculating about
which memory dependencies will be actually present at run-time, irrelevant false
dependencies can be neglected. This leads in general to more optimization and
to a substantial increase in performance. Certain processors, e.g. the Intel Ita-
nium, offer hardware support for speculatively executing instructions. We have
exploited this feature in the work presented here.

In this paper, we present an algorithm to reduce the memory overhead induced
by the use of global variables. Our algorithm works in two stages. First, we
perform a global program analysis on global usage and use this information to
keep globals in registers as long as possible. Secondly, we extend this algorithm
by enriching the analysis with results from static branch prediction, and by
optimizing more aggressively with the help of speculation, while still strictly
preserving program semantics. As a case study, we implemented the optimization
in our compiler framework and performed measurements on the Intel Itanium
platform using the SPEC 2006 benchmark suite. We show that run-time improves
significantly in many cases, and even more with the speculative variant.

The rest of this paper is organized as follows: In Section 2, we present empir-
ical results on the actual use of globals in the SPEC benchmarks and introduce
the concept of speculative optimizations. Section 3 presents our global program
analysis for the use of global variables. The optimizations based on this informa-
tion are presented in Section 4. In Section 5, we describe our case study, where
we implemented the optimization for the Intel Itanium, and present the results.
Related work is reviewed in Section 6, and we end with a conclusion in Section 7.

2 Background

2.1 Globals in the SPEC2006 Suite

We analyzed the use of global variables in the SPEC2006 benchmark suite to in-
vestigate the relevance of globals in standard application programs. The number
of globals defined in the source programs ranges from a few to over thousand. A
significant fraction (up to 75%) thereof is constituted by globals of integer and
pointer type. The number of used globals correlates mainly with program size,
and is similar for integer and floating-point programs, respectively.

We performed typical program runs using the train data of the SPEC bench-
marks to measure the dynamic usage of globals at run-time (see Tab. 1). Using
the instrumentation tool Pin [LCM+05], we counted all read and write accesses
to main memory, resp., and compared them to the total number of issued in-
structions. We then distinguished between accesses to heap, stack, and global

352 L. Gesellensetter and S. Glesner

data. The latter were further broken down by different data types. We see that
the amount of memory accesses ranges from 10% to almost 40% of all instruc-
tions. More specifically, in some cases accesses to globals constitute a significant
fraction of all memory accesses (up to 50% for sjeng, over 20% for perlbench,
still significant for gcc, gobmk, h264ref, and milc). Especially, integer globals are
often the major contributors (sphinx3, milc, sjeng, perlbench, bzip2, gcc).

2.2 Speculation on Data Dependencies

On modern processors, a load can cause the processor to stall up to 200 cycles.
To mitigate this problem, loads can be moved upwards to hide their latency, or
redundant loads can be eliminated. In doing so, one has to consider the depen-
dencies among the instructions. Speculative techniques can be used to neglect
memory dependencies and thus provide more potential for optimization. An ex-
ample is given in Fig. 1. On the left (Fig. 1(i)), a value is loaded into register r9
and then used. The load can entail a long stall. Moving up the load is not safe
in general since r8 and r11 may refer to the same address. However, if we have
some evidence that the addresses are different, we can optimize speculatively (see
Fig. 1(ii)). We move the load across the store and make it an advanced load.
Then, after the store, we check whether the loaded value is still valid. If so, we
avoided a long stall. Otherwise, we simply reload it again, and the program run-
time is similar to the left program. It is important to note that speculation does
not sacrifice correctness. If we misspeculate, we only get additional overhead.

In the example, we assumed hardware support for speculation, which allows for
efficient checks whether the speculation was correct. On the Itanium, this is done
by the ALAT (Advanced Load Address Table), which collects the addresses of
advanced loads. Whenever a store conflicts with one of the entries, it is removed
from the table. Thus a validity check simply checks whether the corresponding
address is still in the ALAT. Alternatively, this can be carried out solely by
software. Then, for all intervening stores, additional instructions must check
whether the addresses overlap, and recovery code has to be added to reload the

Table 1. Number of executed instructions, fraction of accesses (reads/writes) to mem-
ory at run-time, split up by accesses to heap, stack and globals, the latter split up again
by the different datatypes (’0’ close to 0, ’–’ really 0)

ins % ins % of memory % of global
Benchmark (109) mem heap stack global int ptr float arr other

IN
T

perlbench 4.86 8.6/2.1 78/66 1.7/5.1 21/29 26/25 68/68 –/– 2.1/1 4.3/5.3
bzip2 47.3 14/4.4 85/58 14/42 0.7/0 26/0.1 –/– –/– 74/100 –/–

gcc 6.36 13/4.1 82/59 4/9.2 14/33 19/1.6 14/0.2 –/– 50/69 17/30
mcf 4.77 25/3 98/99 1.6/1.1 0.5/0.1 –/– –/– –/– –/– 100/100

gobmk 101 15/4.5 76/72 17/28 6.5/0.5 0/0.3 0/0 –/– 94/73 6.4/27
hmmer 29.2 18/4.2 91/100 8.3/0 0.3/0 0.6/2.6 –/– –/– 99/97 –/–

sjeng 26.6 15/3.4 30/9 18/40 52/51 34/38 –/– 0/0 66/62 0/0
h264ref 142 21/2.3 70/51 24/39 5.9/10 0.2/0.2 35/0 –/– 0.9/0.9 64/99

F
P

milc 35.3 27/11 77/52 19/48 3.9/0.01 50/0.1 27/0 0/95 23/4.9 0/0
lbm 11,0 8.4/5.1 100/100 0/0 0/0 –/– –/– –/– –/– –/–

sphinx3 8,96 13/0.9 98/90 1.8/7.5 0.2/2.8 100/100 0/0 –/– 0/0 –/–

Interprocedural Speculative Optimization of Memory Accesses 353

. . .
st [r8] = r12
ld r9 = [r11]

STALL
. . . = r9

(i)

ld.adv r9 = [r11]
. . .

st [r8] = r12
ld.chk r9 = [r11]

. . . = r9

(ii)

ld.adv r9 = [r11]
. . .

st [r8] = r12
cmp r8,r11
beq recovery code

back: . . . = r9

(iii)

Fig. 1. Speculative optimization of memory accesses

value if necessary (see Fig. 1(iii)). This leads to a larger overhead, but can still
pay off if the expected gain is sufficiently high. The proposed approach of this
paper can be used for both alternatives. It is only reflected in the cost model
which way is chosen. We performed a case study on the Intel Itanium, which has
hardware support for speculation.

3 Analysis of the Usage of Globals

In this section, we describe the analysis of the usage of globals. The optimization
needs to know which pieces of code might use or change the value of a global.
While this is directly known for simple instructions, it is not for function calls.
We first describe a basic analysis collecting the information which globals are
affected by a function. Then we make the analysis more precise and also consider
information from static branch prediction. This information will later be used
to decide about applicability and profitability in the speculative optimization.
Finally, we briefly present the characteristics of the SPEC2006 benchmarks.

3.1 Basic Analysis on Globals

The basic analysis is a straight-forward interprocedural data flow analysis (see
e.g. [NNH99]). We first determine for every function, which globals are directly
used and modified. Then we propagate this information along the call graph and
calculate the fixed point. At the moment, only unaliased globals are considered,
hence it is evident whether or not a statement changes a global. If a function call
cannot be resolved statically, we assume that all globals are possibly changed by
that call. We finally get for every function the list of affected globals.

3.2 Extended Analysis

The analysis presented so far is a quite conservative estimation of the global us-
age. In this section, we make it more precise. First, we determine which globals
definitely must be changed by a function. These are globals that are modified
in post-dominators of the start block of a function. This information is prop-
agated across function calls that are definitely (i.e., unconditionally) executed
(yielding MustDef(f)). Next, we consider potential changes of globals. We have
implemented a state of the art static branch predictor, following [WL94]. This
yields for every basic block a static estimate of its execution frequency (relative

354 L. Gesellensetter and S. Glesner

to function invocation). We use this to attach a frequency to every access to a
global. Initially, for every function f and every global g, we collect the maximum
frequency of g’s use and definition within f (UseFreq(f,g), DefFreq(f,g)). We also
collect the maximum frequency for a function call from f to f ’ (CallFreq(f,f ’)).
In a fixed point iteration over the call graph, we propagate the frequencies: The
frequency UseFreq(f,g) is updated at a call to a function f ’ if the resulting fre-
quency CallFreq(f,f ’) × UseFreq(f ’,g) is higher than the previous value.

3.3 Analysis Results

The analysis gives us for every function a list of globals that may be affected by
a call to it. For the extended analysis, this information is annotated with the
estimated frequency, and we also know which globals are definitely changed. This
raises the opportunity for speculation: If a global is not definitely changed by a
function call, we can speculate that it remains unchanged. The frequency can be
used for cost estimation. For the SPEC benchmarks, on average 23 globals may
be changed by a function. However, only 1.2 globals are definitely changed. The
discrepancy between these numbers constitutes the opportunity for speculation.

4 Optimization

The optimization keeps selected globals in registers throughout a function to
reduce memory accesses and to avoid stalls. With the results from the previous
section, we know to which extent globals are affected by function calls. This in-
formation is required to decide where to insert compensation code (synchronizing
the global’s value with memory), which influences the profitability.

4.1 Overview

The optimization considers each function in turn, identifies the globals used
within the function and estimates the performance gain. Then it selects the best
candidates and performs the actual transformation. We present two versions of
the optimization: In the basic version, no speculation is used. This optimization
can be used on any architecture that can spare registers for optimization. The
extended version uses speculation to reload globals only if necessary.

Identify Candidates. Candidates are all globals that are used within the func-
tion and have integral data type (i.e. fit in a register).

Rate Candidates. For all candidates in turn, the optimization is performed
virtually. We collect the information where compensation code (i.e. loads and
stores) has to be placed for a given global (see Sec. 4.2). We then have the
following parameters to calculate the estimated gain of the optimization: The
number of uses and definitions of the global (UseCount/DefCount), which repre-
sents the number of loads and stores that could be removed by the optimization,
and the number of newly introduced loads and stores (LoadCount, StoreCount),

Interprocedural Speculative Optimization of Memory Accesses 355

which keep the global valid at function call borders. All counts are weighted by
the estimated frequency of the corresponding block. The score is then calculated
by the following weighted sum (with coefficients w ∈ R):

score = wuse ·UseCount+wdef ·DefCount+wld ·LoadCount+wst ·StoreCount

Since UseCount and DefCount correspond to the gain, the corresponding coef-
ficients will be positive. On the other hand, LoadCount and StoreCount indicate
the introduced overhead, hence their coefficients will be negative. In case of the
speculative optimization, the newly introduced loads will be further broken down
into advanced and check loads (with corresponding weights wlda, wldc). The score
function together with the weights constitutes the cost model.

Select Best Candidates. Only candidates that have a score exceeding a given
threshold are considered. Since every selected candidate will eventually require
a fixed register, only the best MaxGlob candidates are chosen per function.

Perform Optimization. This step actually performs the transformation by
replacing all occurences of the global by references to the selected fixed register
and by inserting compensation code, as determined before.

4.2 Placement of Compensation Code

The optimization keeps a global in a register throughout the complete function.
To ensure correctness, it has to make sure that on the one hand the correct value
is in the register whenever it is used internally in the function, and on the other
hand that the correct value of the global is in the memory whenever a function is
called that may use it. Those two tasks are actually dual to each other, as we see
in the following. The optimization uses the results from the analysis presented
in the previous section to determine the effects of a statement w.r.t. a global.

Effects of Statements. A statement can have the following effects w.r.t. a
given global: The global may be used (USE) or defined (DEF) directly by the
statement. Furthermore, the statement may make a call to a function in which
again the global could be used (XUSE) or defined (XDEF), this time externally.

Fig. 2. Constructed Tree

Compensation Code for Internal Uses.
First, for all uses of the considered global in
turn, a backwards traversal of the CFG is
started. It considers all possible paths leading to
the use and stops only on statements that define
the global’s state, i.e. a DEF/USE (in register)
or XDEF (in memory). The search yields a tree
of basic blocks. Fig. 2 gives an example. Starting
from a use of glob, a tree consisting of all possi-
ble paths to this use is constructed, stopping at
(internal or external) definitions of glob. Func-
tions f and g can possibly change glob. Nodes

356 L. Gesellensetter and S. Glesner

that have an effect on glob are annotated correspondingly. Note that the first
basic block of a function has always a DEF mark since initially the global is
loaded from memory. To decide whether the global is available at the use site,
we propagate these marks from leaves to root. If all children of a node have the
same mark, it is also set for the parent. Otherwise, in all children with XDEF,
a load instruction is inserted, and they receive now the DEF mark, as does the
parent. Thus the global is now in a register. If the XDEF mark is propagated
to the root, a load instruction is inserted direct before the regarded use, and the
root node is marked accordingly.

Fig. 3 illustrates the marking algorithm for our example. Left, we see the
initially constructed tree with its marks, starting from a use of the global at the
root. In the middle, we see an intermediate step. The left child has two children
with different marks, hence it is marked with DEF, as well as its right child, in
which also compensation code is inserted. The right child has only children with
XDEF marks and hence gets the same mark. The rightmost figure shows the
final step. Both children of the root have different marks, hence the root as well
as its right child get the DEF mark, and compensation code is again inserted in
the right child. From now on, the modified nodes will keep their DEF marks.

Compensation Code for External Uses. To cope with the dual case, namely
to ensure that the correct value of a global is in memory when used by a called
function, we proceed almost equally. Now we consider all external uses of the
global in turn. We construct a tree of basic blocks as before, and whenever we
encounter siblings with different marks, we convert DEF nodes to XDEF nodes
by inserting a store and change the mark of the corresponding parent to XDEF.
Hence in the end, we receive a tree where the root is marked with XDEF.

Aliased Globals. Our approach can be easily extended to aliased globals by
treating aliased accesses to the global as XUSE/XDEF.

4.3 Speculative Compensation Code

As we have seen before, function calls may affect many globals, but only in very
few cases this happens definitely. Hence in many cases, the reload of a global after
a function call is not necessary and can be made speculative. On the other hand,
the cost of misspeculation has to be considered thoroughly. If p is the probability
that a given global was changed by a function call, lat the load latency, and mis

(i) (ii) (iii)

Fig. 3. Example for the different steps of the marking algorithm. Changes are shown
boldface, insertion of compensation code is indicated by circles.

Interprocedural Speculative Optimization of Memory Accesses 357

the misspeculation penalty, the expected gain will be gain = (1−p) · lat−p ·mis.
We use the previously collected frequencies to approximate p.

The tree is constructed as before, except that we now distinguish between
XDEF and XMUSTDEF. The latter is used to mark external definitions that are
definitive or have a frequency above a given threshold MaxSpecFreq. XDEF, on
the other hand, indicates now that speculation should be used. Additionally, the
estimated block frequencies are annotated. When a node has only children with
XDEF and XMUSTDEF nodes, it receives the mark for which the sum of the
corresponding children’s frequencies is maximal. When a node has children both
with DEF and XDEF/XMUSTDEF marks, loads are inserted appropriately as
before, but speculation is used only in nodes marked with XDEF. All formerly
regular loads become advanced loads since they initiate the bookkeeping required
to check for misspeculation. For speculation, check loads are used.

In summary, the results from our analysis can be used for reducing the number
of memory accesses induced by globals. We have presented a cost-aware algo-
rithm for the optimization. The cost model allows the algorithm to be applied
to different settings, e.g. hardware vs. software supported speculation. Results
from a case study are described in the next section.

5 Case Study: Speculation on the Intel Itanium

5.1 Implementation

We implemented the optimization in our compiler framework, which is based
on the compiler development system CoSy R© by [ACE]. CoSy includes an ex-
tensive set of optimizations and the backend generator BEG [ESL89], for which
we developed a specification for the Itanium architecture. The Itanium sup-
ports speculation by special hardware. A successful check load takes one cycle,
opposed to 1/5/12 minimum latency for L1/L2/L3 cache accesses (cache size:
16k/256k/1.5M). Misspeculation costs a penalty of 10 cycles extra, plus the time
needed to reload the value. Thus speculation has to be used carefully.

5.2 Results

We measured all SPEC CPU2006 C benchmarks1. For all measurements, we took
the median of three runs. All improvement is compared against the -O4-setting
of the CoSy compiler, which includes over 50 standard compiler optimizations.

Fig. 4 shows the results using the reference data of the SPEC CPU2006 bench-
marks. At first glance we see that the base optimization leads to an improvement
in many cases, and that the speculative variant significantly adds further im-
provement. For gobmk and hmmer, no speculation is done and the optimization
merely leads to prefetching of globals, hence both variants perform equally. In
the other cases, the misspeculation rate is low and shows that our cost model
worked out well. Concludingly we see that speculative reloading outperforms
blind re-loading (as in the base optimization).
1 Except for 462.libquantum since the CoSy frontend is not fully C99 compliant.

358 L. Gesellensetter and S. Glesner

Fig. 4. Results of the SPEC CPU2006 benchmarks

6 Related Work

The presented approach performs register promotion for globals. Much work has
been done on register promotion in general. [Wal86] and [CH90] present ap-
proaches to global register allocation, which perform register promotion. [CL97]
propose register promotion as a separate optimization and focus especially loops.
[LCK+98] and [SJ98] exploit partial redundancy to perform register promotion.
[BGS99] also focus on eliminating partial redundancy. They investigate how good
candidates for register promotion can be statically predicted. The approaches
presented so far require conservative, safe information about dependencies, which
means especially for memory accesses a very rough overapproximation. This can
be solved with speculative techniques. [PGM00] propose a hardware extension
that allows to speculate on dependencies and to issue run-time checks to ensure
correctness. [LCHY03] present the speculative extension of [CL97]. They report
performance improvements for the Intel Itanium. The work discussed so far tries
to optimize memory accesses in general. Our presented work, in contrast, tack-
les a certain class of memory accesses, namely those induced by globals, and
therefore can make use of a more precise analysis.

There are also approaches which propose register promotion for global vari-
ables. [S090] consider inter-procedural register allocation and also optimize glob-
als. Results from simulation report a significant improvement, but without
regarding cache behavior. [CC02] also examine the effects of promoting glob-
als to registers, mainly focusing on reducing power consumption. They perform
an architectural exploration to investigate how many separate registers are re-
quired for the optimization, and find that already 4–8 registers are sufficient.
Differing from our approach, both works promote a global to a register for the
whole program, and they do not consider speculative techniques.

7 Conclusion

As it has been foreseen in the past, the memory gap has become a major limiting
factor on general-purpose architectures. Hence novel optimization techniques
have to be developed to mitigate this effect. Speculation on data dependencies
is required to allow more aggressive optimization, and modern architectures are
offering efficient support for it. With the work presented in this paper, we have
done a step towards that direction. We tackled a certain class of memory accesses,
namely those induced by global variables. In our experiments, we could show that

Interprocedural Speculative Optimization of Memory Accesses 359

our optimization leads to significant improvement on some benchmarks, and this
effect is even stronger for the speculative variant.

For the future, we plan to go one step further and consider a broader class
of memory accesses. We think that on the one hand, more precise analyses are
required that try to make use of the rich information provided in the intermediate
representation and also can yield unsure, or speculative, information, and on the
other hand, novel optimizations have to be developed that make use of this
information and have a precise, architecture-dependent cost model to achieve an
overall performance improvement, while preserving the semantics of the program.
We think that this will be the key to sustainably reduce the impact of the memory
gap on general-purpose applications.

References

[ACE] Associated Compiler Experts bv., Amsterdam, The Netherlands,
http://www.ace.nl

[BGS99] Bodik, R., Gupta, R., Soffa, M.L.: Load-reuse analysis: design and evalua-
tion. In: PLDI (1999)

[CC02] Cilio, A.G.M., Corporaal, H.: Global variable promotion: Using registers to
reduce cache power dissipation. In: Horspool, R.N. (ed.) CC 2002. LNCS,
vol. 2304. Springer, Heidelberg (2002)

[CH90] Chow, F.C., Hennessy, J.L.: The priority-based coloring approach to reg-
ister allocation. ACM Trans. Program. Lang. Syst. 12(4) (1990)

[CL97] Cooper, K.D., Lu, J.: Register promotion in C programs. In: PLDI (1997)
[ESL89] Emmelmann, H., Schröer, F.-W., Landwehr, L.: Beg: a generation for effi-

cient back ends. In: PLDI (1989)
[LCHY03] Lin, J., Chen, T., Hsu, W.-C., Yew, P.-C.: Speculative register promo-

tion using advanced load address table (ALAT). In: CGO 2003. IEEE, Los
Alamitos (2003)

[LCK+98] Lo, R., Chow, F., Kennedy, R., Liu, S.-M., Tu, P.: Register promotion by
sparse partial redundancy elimination of loads and stores. ACM SIGPLAN
Notices 33(5) (1998)

[LCM+05] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wal-
lace, S., Reddi, V.J., Hazelwood, K.: Pin: building customized program
analysis tools with dynamic instrumentation. In: PLDI (2005)

[NNH99] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis.
Springer, Heidelberg (1999)

[PGM00] Postiff, M., Greene, D., Mudge, T.: The store-load address table and spec-
ulative register promotion. In: Proceedings of ACM/IEEE MICRO (2000)

[SJ98] Sastry, A.V.S., Ju, R.D.C.: A new algorithm for scalar register promotion
based on SSA form. In: PLDI (1998)

[S090] Santhanam, V., Odnert, D.: Register allocation across procedure and mod-
ule boundaries. In: PLDI (1990)

[Wal86] Wall, D.W.: Global register allocation at link time. SIGPLAN Not. 21(7)
(1986)

[WL94] Wu, Y., Larus, J.R.: Static branch frequency and program profile analysis.
In: Proceedings of ACM/IEEE MICRO (1994)

[WM95] Wulf, W.A., McKee, S.A.: Hitting the memory wall: implications of the
obvious. SIGARCH Comput. Archit. News 23(1) (1995)

http://www.ace.nl

	Interprocedural Speculative Optimization of Memory Accesses to Global Variables
	Introduction
	Background
	Globals in the SPEC2006 Suite
	Speculation on Data Dependencies

	Analysis of the Usage of Globals
	Basic Analysis on Globals
	Extended Analysis
	Analysis Results

	Optimization
	Overview
	Placement of Compensation Code
	Speculative Compensation Code

	Case Study: Speculation on the Intel Itanium
	Implementation
	Results

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

