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Abstract. Task pools have been shown to provide efficient load balancing for
irregular applications on heterogeneous platforms. Often, distributed data struc-
tures are used to store the tasks and the actual load balancing is achieved by task
stealing where an idle processor accesses tasks from another processor. In this
paper we extent the concept of task pools to adaptive task pools which are able to
adapt the number of tasks moved between the processor to the specific execution
scenario, thus reducing the overhead for task stealing significantly. We present
runtime experiments for different applications on two execution platforms.

1 Introduction

The efficient parallel execution of applications with an unpredictable computational be-
havior requires the use of sophisticated load balancing methods. In this paper, we con-
sider task-based load balancing methods for platforms with a shared address space. The
computations performed by an application are arranged as fine-grained single-processor
tasks which can be executed by an arbitrary processor. Tasks can be created dynami-
cally during the execution of the application, and usually there are much more tasks
available than processors for execution. Tasks that are ready for execution are stored
in specific data structures, so-called task pools, from which they can be accessed by
idle processors for execution. The task pool runtime environment schedules these tasks
to the available processors on demand using varying strategies. The processors inde-
pendently fetch new tasks from the task pool as soon as their previous task has been
completed. As long as there are enough tasks available for execution the processors re-
main busy up to the end of the application. Smaller tasks enable a better load balancing
but lead to a larger overhead.

A simple implementation of a task pool for storing and scheduling tasks is a central
data structure. Since all processors need to access this shared data structure, scalability
may be limited due to the synchronization required, especially if the data structure is
accessed often. Distributed data structures are often better suited as the synchronization
overhead can be reduced, e.g., by using a separate task list for each processor. For load
balancing the distributed data structure still needs to be shared in some way so that idle
processors can obtain tasks from other processors for execution. Moving tasks from one
processor to another is referred to as task stealing.

In previous work we have shown that the task pool overhead can be reduced by
improving the synchronization operations [[1]]. This enables an efficient realization of
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task-based applications also if fine-grained tasks are used. A small task granularity and
therefore many fine-grained tasks enables a good load balancing especially for large
parallel systems. But using many fine-grained tasks may increase the number of steal-
ing operations performed, thus increasing the overhead for the load balancing. In this
paper we present an adaptive task pool implementation which is especially suited for
storing a large number of tasks. The new implementation adapts the number of tasks ac-
cessed by a single stealing operation to the total number of tasks stored in the task pool.
Experiments with several large applications show that the overhead for task stealing and
other operations can be significantly improved by using the adaptive implementation.

The rest of the paper is organized as follows: Section 2 presents the adaptive data
structure and Section 3 describes the adaptive task pool. Section 4 presents experimental
results. Section 5 discusses related work and Section 6 concludes the paper.

2 Adaptive Data Structure

For fine-grained tasks, an important requirement for the data structure to store the ex-
ecutable tasks is a fast insertion and removal of tasks. To improve the task stealing
operation the data structure needs to support the removal of large chunks of tasks in a
single operation. Distributed queues implemented as linear lists are often used to store
the task, and their performance can be improved by additionally using blocks of tasks
for task stealing. A linear list takes constant time for insertion or removal of tasks but
each task has to be removed in a separate step. Using blocks of tasks allows to steal
several task with one operation but it may limit the parallelism if there are only a few
executable tasks available which might be stored in a single block on a single processor.

The data structure described in the following solves this problem by using adaptive
blocks of tasks which grow or shrink with the number of tasks available. The tasks are
stored in a set of fully balanced trees so that for a tree 7} the length of every path from
the root to a leaf is ¢. Each node of a tree stores a pointer to the first child and a pointer
to the next sibling in the same level.

The trees are stored in a forest vector F'[0..w] forming a forest of fully balanced trees
where w is the depth of the largest tree to be stored. Each entry F[i] is a pointer to a list
of trees T; of depth 4, i.e. F'[0] only stores fully balanced trees of tasks with one level,
F[1] stores trees with two levels and so on. Since all trees are fully balanced, new tasks
can only be inserted in the first level F'[0] or by combining existing trees with the same
depth into a new tree with a larger depth.

Although the use of a list of children does not limit the width of a tree level we still
limit the length by a specific criterion. This criterion can be used to control the growing
of the individual trees. The limit can be any fixed number of children or even dynamic
limits based on the actual work described by each tasks. For simplicity we assume a
fixed limit [ for the following description of the insertion and removal process.

Insertion of tasks: New tasks are inserted into the forest vector as outlined in Figure[Il
FigurePlillustrates the process of inserting a new task (T) for [ = 2. Since the first level
of F' is fully occupied and the first non-full level is 1, the new task becomes the root of
a new tree containing all trees of level 0 as children. The new tree now forms a fully
balanced tree of level 1 and is therefore inserted into F'[1].
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Task removal: The removal is done similarly (in opposite direction) as described in
Figure[3lbut the ordering is not strictly FIFO (first in, first out). This may have a negative
impact on the locality of the executed tasks, but implementing strict FIFO order would
definitely have a performance penalty for both task insertion and removal, since the
removal operation would need to search for an empty slot and split the following tree
into sub-trees to undo the insertion. Especially for a large number of tasks the insertion
and removal operations would always work with large trees. On the other hand, the
proposed implementation tries to access tasks from the smaller side of the forest making
the find operation faster.

Task stealing: The data structure facilitates migration of several task with one operation
by moving a tree from F'[0..w] from one processor to another. To reduce the total num-
ber of stealing operations, we choose to remove the largest tree from another processor
using the algorithm described in Figure @l

Access times and number of tasks: To approximate the number of task stolen in a single
operation we consider a completely filled data structure using a fixed limit /. Each tree
. . i+l .

in level  stores ', " tasks and a full forest £'[0..w] contains

AN (-1



256 R. Hoffmann and T. Rauber

tasks. The steal operation removes a tree from level ¢ so the fraction of tasks stolen in
one operation is

f_zi+1—1* (1—1)
-1 3 — (i 4+2)12+ (i + 1)1
li+1_1 1

=(-1) L g2 (2P (1)
L+t

The largest value for f is f = 1/l for i = 0 and the smallest value for f is f = 11—21 for
i — oo. For a binary tree (I = 2) one steal operation removes between 1/4 and 1/2 of
all available tasks. The fraction may be higher if the forest is not completely filled but
the lower limit still applies. After removing a tree from a processor the task stealer puts
the remaining sub-trees into its own data structure so /= 1/1 of these tasks can be stolen
by other processors again in a single operation. In a situation where only one processor
stores most of the tasks the work can still be redistributed using only a few operations.

Inserting or removing a task takes O(log ¢4, ) steps in the worst case as the number
of tasks stored in the forest vector grows exponentially with its length. Typically the
operation uses much less steps as the find operation does not need to walk through the
whole vector all the time but can stop at the first non-empty entry. Task stealing is also
O(log tsum ) butis O(1) when storing the largest ¢ < w with size (F;) > 0.

3 Adaptive Task Pool

The current task pool implementation uses the data structures as described in the pre-
vious section with a limit [ = 2, thus using fully balanced binary trees. Each processor
stores its own instance of this data structure. To reduce the synchronization overhead
the locks uses hardware operations for mutual exclusion.

If a processors runs out of work, i.e. its forest vector is empty, it will search for new
work by task stealing. For this, the processor visits all other processors in a given order
for an available tree in their forest vector. The tree is then split into two sub-trees which
are stored in the forest vector of the stealing processor for later execution but they are
also available for stealing. The root of the stolen tree is the task to be executed next.

Stealing work from other processors may have negative locality effects as the data
for the work units is possibly not in the cache of the current processor, so it needs to
be transferred from remote memory (especially on NUMA systems there is an addi-
tional access cost for remote memory from other processors). But grouped stealing as
implemented by the adaptive task pool may reduce this effect. Task created by the same
processor in direct succession often solves sub-problems of some part of the whole in-
put problem so they may access the same portion of input data. Each tree in the forest
vector can potentially contain such related tasks so stealing it may impose an access
penalty for some but not all tasks in this group. Due to the tree combine and split steps
in the algorithm some sub-trees might be created by a different processor than some
other sub-tree. In rare scenarios a tree may contain tasks created by many different pro-
cessors but these potentially related tasks will still be grouped in some sub-trees. To
additionally reduce the locality problems when stealing tasks, the processors search for
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available tasks in their neighborhood (based on their IDs). So a processor steals work
from the nearest processor with available work.

Since lock contention can be a problem when using a large number of processors,
private and public areas are used to reduce the overhead as the data structure owner can
access the private area without any locking. The size of the private area is a tradeoff
between synchronization overhead and available parallelism. If the private area stores
a relatively large number of tasks the parallelism may be limited as these task cannot
be stolen by other processors. Smaller private areas on the other hand limit the positive
effect of lock-less access for the owner.

We use the forest vector to implement a dynamical resizing of private and public
areas. Two parameters are used to control these areas. The forest vector F' is divided
into a private part F'[0..priv length — 1] and a public part F[priv length..w]. The
private area is limited to 0 < priv length < MAX PRIV LENGTH. As an additional
criterion for the size of the private area, we use another variable pub length with a
higher priority than priv length. The private area is only non-empty if pub length >
MIN PUB LENGTH. This decision is made because exploiting parallelism has a high
priority, so there will only be a private area if there are enough trees available in the
public area. Limiting the private area to an upper limit also reduces the number of
updates of these variables for frequent accesses.

The adaptive task pool implementation takes significant advantage of the existence of
a large number of tasks. The trees grow with the number of tasks; therefore the number
of tasks stolen also increases. The size of the private area also depends on the number
of available tasks, i.e., so creating many tasks actually reduces the overhead for storing
and scheduling them.

4 Experimental Results

Runtime experiments are performed on a SGI Altix 4700 machine with 4864 dual-core
Itanium2 processors running at 1.6 GHz and an IBM p690 machine with 32 Powerd+
processors running at 1.7 GHz. To evaluate the implementation we use several irregular
applications. Additionally, the use of a synthetic application makes it possible to directly
measure the overhead of the task pool implementation.

4.1 Synthetic Task Application

The synthetic application uses two parameters f for controlling the task size and ¢ for
controlling the number of tasks created. The work S of a task with an argument ¢ can
be described by the following recursive definition:

S(i) = 100f for i <0
() =10 + (i — 2) + 50 + S(i — 1) + 100 else

For i > 1 task S(4) creates two tasks S(i — 1) and S(7 — 2) and simulates some
work depending on the parameter f before, between and after the task creation. Ini-
tially there is one task S(¢) created for each 0 < i < ¢ so there are ¢ tasks available for
execution. For our experiments we use a constant parameter ¢ = 35. For comparison
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Synthetic application f=0 [Altix4700] Synthetic application f=5 [Altix4700]
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Fig. 5. Speedups for the synthetic application on the Altix4700

we use two different implementations of the adaptive task pool and two non-adaptive
task pool implementations. Additionally we also use the TBB [2] library to execute the
tasks of the synthetic application. For the comparison with TBB it should be noted that
TBB is based on C++ while the adaptive task pool framework is based on C. The non-
adaptive task pool dg2 uses a plain linear list for each processor to store each tasks. The
block-oriented implementation dg8 stores a fixed number (4) of tasks in a single block
and stores these blocks in linear lists, one for each processors. Due to the implemen-
tation at least one block is always private so it can be accessed without locking. The
adaptive task pool implementations atp and atp2 use the data structure as described in
the previous sections. The forest is completely public in the afp implementation while
atp2 uses private and public areas using the parameters MIN PUB LENGTH = 2 and
MAX PRIV LENGTH = 3.

Figure [5 shows the speedups for the implementations based on the best sequential
execution for f = 0 (Figure[Bh) and f = 5 (Figure[3b). For empty tasks the speedups
do not exceed 22 for a maximum of 64 threads. For up to 32 threads the dg8 task pool
performs best. This is due to the lower overhead in handling the data structure and the
availability of enough tasks for execution. In our test with ¢ = 35 there are 35 tasks
at the beginning distributed round robin over all threads. With more threads even new
tasks will still be stored in the private block so some threads have to wait. The adaptive
task pools (atp and atp2) can handle this situation better and are at least as fast as the
block-distributed task pool dg8. The use of private and public areas does not give an
advantage in this case, since the overhead of dynamically adjusting the areas is higher
than the benefit from the reduced number of locks required in the private area. The dg2
implementation with public lists cannot compete and is significantly slower with 64
threads. The alternative implementation of the synthetic application using TBB scales
well (almost linearly in respect to sequential execution of the TBB implementation) but
is still slower due to the additional overhead in the C++ implementation.

For slightly larger tasks with a factor f = 5 (Figure Bb) all implementations can
achieve a significantly better scalability reaching a speedup of almost 50. The adaptive
task pools and the block-distributed task pool dg8 achieve similar speedups. Only the
dq2 implementation cannot keep up with the other implementations. This is remarkable
as dq2 as well as atp uses a lock to protect access to the data structure and no private



Fine-Grained Task Scheduling Using Adaptive Data Structures 259
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Fig. 6. Speedup for the quicksort application on the Altix4700 (a) and on the p690 (b)

area. The additional benefits for the adaptive task pool, especially task grouping and
grouped stealing, actually improve the performance in this case.

4.2 Quicksort

The sequential quicksort creates two sub-arrays based on a pivot element and recur-
sively sorts both arrays. The parallel implementation creates new tasks for sorting the
sub-arrays (if the array is large enough based on the fixed limit). As both arrays typi-
cally do not have the same size, depending on the pivot element, both tasks created also
take different time to complete. Task based execution can cope with this irregularity
but the main key is making the existing parallelism available. At the beginning there is
only a single task partitioning the whole array. In the next step there exist two tasks,
then four and so on. In this implementation the speedup cannot be linear (as described
in 1) and it is important to allow task stealing even for a single task.

Figure[6] shows the speedups for sorting 100,000,000 integers. The best speedup for
the Altix4700 machine is 7.39 for 16 threads reached by the adaptive task pool imple-
mentation atp without private areas and 6.97 for 32 thread on the p690 machine also for
the implementation atp. The block-distributed task pool dq8 shows bad performance
never reaching a speedup above 4.3 and 2.74 respectively. This is however expected as
the tasks stored in the private block cannot be stolen by other idle threads. As the paral-
lelism is already limited at the beginning, this significantly reduces the overall speedup.
The adaptive task pool implementations can also handle this special situation making
all task available if necessary and building large blocks for stealing when possible.

4.3 Ray Tracing and Hierarchical Radiosity

The parallel ray tracing application [3]] is a more complex irregular application which
creates images from three-dimensional scenes. For each pixel in the image a ray is
traced through the geometrical scene. The work associated with a ray depends on the
location and complexity of the objects in the scene. We use a modified implementa-
tion from the SPLASH-2 suite [4]]. As second large application we consider the hier-
archical radiosity [5] which computes the light distribution between the objects of a
three-dimensional scene. The application uses four different task types to compute the
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Fig. 7. Speedups for the ray tracing application on the Altix4700 (a) and on the IBM p690 (b)
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visibility factors as well as the light distribution between patches. Another task type
refines the scenes into smaller patches as required to achieve a specific error bound and
a fourth task type performs some post-processing actions. New tasks will be created at
runtime to refine the patches so there are read-write accesses from different tasks creat-
ing additional dependencies. We use the parallel implementation from the SPLASH-2
suite for evaluation.

Figure [7] shows the results of the ray tracing application on the Altix4700 machine
and the p690 machine. The ray tracing application shows good speedups for any task
pool implementation. The dg8 implementation performs best with a speedup of 47.7 for
64 threads on the Altix4700 machine and 31.2 for 32 threads on the p690 system. The
low overhead and guaranteed existence of private blocks gives an advantage. However,
the adaptive implementations also show good performance and are slightly faster than
the dg2 implementation with very low overhead. In this application the use of private
and public areas in the adaptive task pools helps to improve the performance; on the
p690 systems the implementation atp?2 is the fastest with a speedup of 31.7.

The speedups for the hierarchical radiosity (Figure ) are significantly worse than
the for the ray tracing due to the additional dependencies and small task sizes. The best
speedup is 6.47 for 16 threads for both adaptive task pool implementation on the Al-
tix4700 system while the adaptive task pools can reach a speedup of 11.5 for 32 threads
on the p690 machine. The previous results suggested that the non-adaptive implemen-
tation dg8 should be faster because of the lower overhead. But if there are not always
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enough task available or more task stealing is required the adaptive implementation
can outperform the other implementations. Because of this the ray tracing applications
works well for dg8 as all tasks are created at the beginning with no additional task
creation. Radiosity on the other hand spawns new tasks so the adaptive task pools can
handle this situation better.

5 Related Work

Dynamic load balancing is often used to execute irregular applications efficiently [6].
There are several libraries and programming languages which utilize dynamic load bal-
ancing. Charm++ [7] is based on C++ and offers load balancing by using object migra-
tion. TBB [2] is a C++ library and allows the use of different programming paradigms.
It offers, for example, parallel loops to describe data parallelism but also enables the
programmer to explicitly create tasks for a task parallel execution. TBB uses hardware
operations to implement synchronization with low overhead, it is however currently
available only for a limited number of architectures. Similar approaches are used in
language like Fortress [8] or X10 [9] which focus on data parallelism but task paral-
lelism is also supported.

Task based execution becomes more important for modern architectures to keep the
growing number of processing units busy. The Cell architecture is well suited for task
based execution [10] and CellSs [11]] proposes a programming environment using an-
notations similar to OpenMP to schedule tasks to the available SPEs. [[12] proposes a
hardware accelerated support for dynamic task scheduling.

Adaptive methods have been used in many applications to handle irregularity. [13]]
shows the effectiveness of dynamic loop scheduling with adaptive techniques. pro-
poses an adaptive scheduler which uses runtime information to dynamically adapt the
number of processors used to execute a job. Data structures to adapt the amount of work
stolen for load balancing are proposed in which enables the stealing of about half
of the tasks from a given queue but the approach needs dynamically executed balancing
steps. The data structure proposed in this paper does not need rebalancing steps and
has a lower limit for the number of task stolen but it also takes more time to insert and
remove tasks.

6 Conclusions

We have presented an adaptive data structure which is used to implement adaptive task
pools. The forest vector storing the trees of tasks introduces a small overhead in contrast
to linear lists but it provides advantages for a task based execution. The tasks are stored
in larger groups with a growing number of tasks while the groups shrink as the number
of tasks shrinks. The size of the private area of tasks also dynamically depends on the
number of task available for execution. Creating many fine-grained tasks actually leads
to a benefit as the forest vector owner can access parts of it without locks. Also, the cost
for task stealing is reduced as a single operation can move a large group of task at once
with only one write access to a remote forest vector. The stolen tree contains, to some
degree, related tasks which can reduce the penalty for stealing tasks.
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Runtime experiments have shown that the adaptive task pool implementation can
cope with a large number of fine-grained tasks but is still able to handle situations with
a limited degree of parallelism. Non of the previous implementations could handle both
situations equally well.
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