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Abstract. Processor co-allocation can be of performance benefit. This is
because breaking jobs into components reduces overall cluster fragmen-
tation. However, the slower inter-cluster communication links increase
job execution times. This leads to performance deterioration which can
make co-allocation unviable. We use intra-cluster to inter-cluster com-
munication speed ratio and job communication intensity to model the
job execution time penalty due to co-allocation. We then study viability
of co-allocation in selected job and system based instances. We also study
performance variation with selected job stream parameters. We observe
that co-allocation is viable so long as the execution time penalty caused
is relatively low. We also observe that the negative performance effect
due to co-allocation is felt by the entire job stream rather than only the
(few) co-allocated jobs. Finally, we observe that for every value of com-
munication time penalty, there is a job size s∗, where if all jobs whose
size is greater than s∗ are co-allocated, we get the best performance.

1 Introduction

The load, like the processing power on supercomputers, has been growing fast
over the past decade [17]. Supercomputer resources, therefore, remain scarce.
This calls for efficient scheduling of competing (job) requests so as to put the
resources to optimal utility.

A lot of research has been done in parallel job scheduling [7]. This has mostly
been on shared memory computers, distributed memory multi-processors, clus-
ters, multi-cluster systems and the grid. Currently, clusters are the most popu-
lar supercomputing platform with over 70% of the top 500 supercomputers [21].
This can be attributed to their cost-effectiveness, scalability and fault tolerance.
Multi-cluster systems are set up by combining multiple clusters into a bigger
computational infrastructure. Different clusters are connected by wide-area links
so that they can collaboratively process large jobs.

Large jobs may be broken into components and each component (simul-
taneously) processed in a different cluster [4] (co-allocation). Co-allocation is
beneficial because it makes use of scattered resources and hence minimizes
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fragmentation. However, co-allocated components communicate across (slower)
inter-cluster links which increase their run times leading to poorer performance.
Co-allocation may become unviable.

The negative effect of co-allocation is the extension of the job run time. We
use the ratio of intra to inter cluster speed and job communication intensity
compute the execution time penalty. We investigate parameter bounds within
which co-allocation is beneficial. We investigate optimal parameter combinations
for co-allocation as well as their variation with other job stream parameters. We
also investigate the effect of dispersion in job communication intensities.

We observe that (i) co-allocation is viable if the execution time penalty caused
is low; (ii) the threshold of co-allocation viability is a function of intra/inter-
cluster speed ratio and jobs’ communication intensity; (iii) entire job stream
results are insufficient to deduce co-allocation viability; (iv) for any execution
time penalty, there exists a job size s∗ where if all jobs with size greater than
s∗ are co-allocated, we get best results; and (v) due to possible heterogeneous
communication pattern, co-allocation may not be as viable as previously implied.

In the rest of the paper, we discuss related work, the research model and
scheduling algorithm used in Sections 2, 3 and 4 respectively. The experimental
instances used are discussed in Section 5. We investigate the viability of co-
allocation in Section 6 and the effect of selected parameters on performance and
viability of co-allocation in Section 7. We study how the dispersion of commu-
nication intensity among the jobs affects performance in Section 8 and make
conclusions and suggestions for future work in Section 9.

2 Related Work

2.1 Communication and Its Effect on Co-allocation

Ignoring communication is one of the common pitfalls in parallel job schedul-
ing [8]. It leads to artificially good but misleading deductions. In multi-cluster
systems, communication is more problematic due to relatively slow wide-area
speeds. Parallel jobs consist of tasks that communicate as they execute. Commu-
nication may be synchronous or asynchronous. In synchronous communication,
the tasks communicate after specific time intervals. Job execution is broken into
a sequence of processing and communication steps. In asynchronous communica-
tion, tasks process independently but different pairs occasionally communicate.

Bucur and Epema [3] studied an all-to-all synchronous communication model
with the First Come First Served (FCFS) scheduler. They focused on the in-
tra/inter cluster speed ratio to determine the execution time penalty. They ob-
served that there exists a communication ratio beyond which co-allocation is
unviable. Sonmez et al. [13] considered a case where the penalty is proportional
to the number of clusters the job is processed. They proposed placement poli-
cies that minimize the effect of communication. Components are placed in such
a way that the number of clusters processing a job is minimized. Jones et al.
[11][10] studied the effect of communication from a bandwidth point of view.
They consider a case where a job needs certain amount of bandwidth to process
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for the initially allotted time. If within the process of execution the link gets over
saturated and the job uses less bandwidth, the job’s rate of processing lowers in
proportion to the bandwidth shortfall. This leads to a job execution time which
is pegged on link states as the job processes.

2.2 Workloads

Using unrealistic workloads leads to unrealistic deductions [8]. Workloads are
generated synthetically or from archived logs of existing supercomputers [18, 19].
Synthetically, job characteristics are generated from statistical distributions esti-
mated by workload trace studies. Since they are easy to generate and extrapolate,
the stable state can easily be achieved. However, coming up with an accurate
distribution is hard; it may therefore be preferable to use archived logs. Work-
load logs avail job characteristics without necessarily knowing their statistical
distribution. However, the job stream may be too short to generate a stable
state and extrapolation is hard. The load is also hard to vary. Changing the
inter-arrival time for example, as a means of changing load, changes the daily
and weekly peaks which is unrepresentative of the real life situation of different
traffic. Aspects like communication patterns are not archived. Traces may also
contain flurries which highly affect results [20].

2.3 Performance Evaluation

A performance metric used in parallel job scheduling has to put the scheduling
scenario into consideration [8]. The deductions made are sometimes more metric
than system dependant. The Shortest Job First (SJF) scheduling algorithm, for
example, gives an impressive performance when measured by throughput despite
obvious starvation of long jobs. Some metrics may have different implications
depending on the system studied. Average waiting time (AWT) and average
response time (ART) have similar performance implications for dedicated pro-
cessing but have different implications for time sliced/preemptive cases. Making
performance conclusions based on entire job stream metric value may hide in-
ternal performance details. Grouping jobs by the characteristics that constrain
schedulability provides deeper understanding of performance [5, 14, 15, 16].

3 Research Model

We consider a system of homogeneous clusters C1, C2, · · · Cn that process by pure
space slicing. They are connected by wide-area communication links that are
slower than intra-cluster links. They are served by one queue and one scheduler.

3.1 Job Stream

We use synthetic online jobs with exponentially distributed inter-arrival and
execution times. These distributions have also been used in previous related
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work [2][9]. Job execution time is finite but unknown to the scheduler. Job sizes
are generated from the distribution D(q) (0 < q < 1) where the probability pi

that a job has size i is ( qi

Q ) 3qi

Q if i is (not) a power of 2. It is defined over an
interval [n1, n2] (0 < n1 < n2). Parameter q varies mean job size while Q is in
such a way that pi sums up to 1. It favors small jobs and those whose size is a
power of 2 which is known to be a realistic choice [6].

Jobs with size greater than a threshold thres are broken into components and
co-allocated. If a job of size s is broken into k components, one component has
width s − (k − 1)� s

k� while the other k − 1 has � s
k � each.

3.2 Communication

We consider a synchronous communication pattern (like in [3]). The execution
time (TE) of the job is made up of the processing (TP ) and communication (TC)
components. Like in [10][11], we represent the total execution time on one cluster
as:

TE = TC + TP (1)

If TC = αTE , where α (0 < α < 1) represents the job communication intensity,
then (1) can be rewritten as

TE = αTE + (1 − α)TE (2)

If the ratio of the time taken by an inter-cluster packet to an intra-cluster packet
is (1+λ) (λ > 0), then co-allocating a job increases TC by (1+λ). The execution
time of a co-allocated job T ′

E is therefore given by T ′
E = α(1+λ)TE +(1−α)TE =

(1 + αλ)TE . If we define ψ = αλ, then;

T ′
E = (1 + ψ)TE (3)

This model is similar to the fixed penalty approach employed in [3] though it
considers two aspects instead of one.

4 Scheduling Algorithm and Placement Policy

We use the Fit Processors First Served (FPFS) [1] scheduling algorithm.
In FPFS, jobs are queued in their arrival order. The scheduler starts from

the head and searches deeper into the queue for the first job that fits into the
system. In case one is found, it jumps all jobs ahead of it and starts processing.
If none is found, the scheduler waits either for a job to finish execution or a job
to arrive and the search is done again. To avoid possible starvation of some jobs,
the scheduler limits (to maxJumps) the number of times a job at the head of
the queue can be jumped. After being jumped maxJumps times, no other job is
allowed to jump it until enough processors have been freed to have it scheduled.
We use FPFS (x) to represent FPFS when maxJumps = x.

To map components onto clusters, we use the Worst Fit (WFit) policy. In the
WFit policy, the kth widest component is processed in the kth freest cluster. It
distributes free processors evenly among the clusters.
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Fig. 1. Comparing co-allocation with no co-allocation

5 Experimental Set Up

We consider a system of 5 homogeneous clusters of 20 nodes each. The jobs are
generated from D(0.85) over the interval [1, 19]. Jobs have a mean execution
and inter-arrival time of 10 and 0.54 respectively. This leads to a load of 0.786
(when ψ = 0). ART is used to measure performance. Performance evaluation is
done for the entire job stream as well as for job-size based groups. We use four
approximately equal size-based groups S1, S2, S3 and S4. They are bounded
by the (size) lower quartile, median and upper quartile. They have a numerical
representation of 25.3%, 27.7%, 22.9% and 24.1% and load representation of
6.0%, 27.7%, 23.1% and 57.6% respectively.

6 Viability of Co-allocation

Co-allocation studied without considering communication (like in [12]) is always
viable. This is due to the packing advantage of breaking up large jobs but no
communication penalty. We now compare performance at different ψ values with
a case of no co-allocation. We use thres = 10 (effect of thres studied in 7). Where
co-allocation is used, jobs where size > thres are broken into 4 components. We
present the results in Figure 1.

In Figure 1, we observe that co-allocation is viable for low ψ. We observe that
the value of ψ beyond which co-allocation is unviable is different for different
job groups. It is 0.185 for the entire job stream, 1.60 for S4 and over 0.3 for S1.

Like in [3], we observe that there is a threshold beyond which co-allocation is
not viable. However, (i) the threshold is not only dependant on the intra and inter
cluster speed ratio. It also depends on the communication intensity of the jobs.
Co-allocation is viable for any speed ratio so long as the jobs’ communication
intensity is low enough. (ii) The (entire) job stream threshold value is practically
misleading. This is because large jobs have a lower threshold and they constitute
a larger part of the load in the system.
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7 The Effect of System and Job Parameters

7.1 The Effect of Thres on Performance

We set ψ = 0.05 (investigation of ψ in 7.2), vary thres from 3 to 19 (Figure 2).

Fig. 2. Performance variation with thres

From Figure 2, we observe that increasing thres leads to poorer performance.
It is therefore better to keep thres low. We also observe that all groups take
the same trend. The rate of performance deterioration is higher for large jobs.
Co-allocation affects both co-allocated and non co-allocated jobs.

7.2 The Effect of ψ on Performance Sensitivity to Thres

We now investigate the effect of ψ on the way performance varies with thres.
Since S4 jobs perform worst and constitute over half of the load, we consider
them more representative. We therefore use S4 jobs only. We use four values of
ψ and summarize the performance trend in Figure 3.

We observe that there exists an optimal value of thres for each ψ value. This
optimal value increases with ψ. An increase in ψ reduce the thres range in which
co-allocation is viable.

7.3 The Effect of Load

We now investigate performance trends at different loads. The loads are com-
puted when co-allocation is not employed. Loads are varied by changing the
mean inter-arrival time. We consider ψ = 0.1 and summarize the performance
trends in Figure 4. We observe that an increase in load leads to a poorer per-
formance. Increase in load however does not affect the optimal thres value for
co-allocation.
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Fig. 3. Performance variations for different ψ values

Fig. 4. Performance variation with thres for different values of load

7.4 Overall Effect of System/Job Parameters

We now discuss the overall effect of the parameters investigated in 7.1 - 7.3.
First, we observe that at low values of ψ, co-allocation is beneficial. Breaking

up of jobs make them easier to pack but the execution time penalty leads to
more occupation of processors. If processor hours due to the penalty exceed those
saved from reduced fragmentation, then there is no net benefit in co-allocation.
Secondly, we observe that there is an optimal thres value for any ψ value. It
increases with ψ and independent of the load. This is due to the fact that at
high ψ, if a lot of jobs are broken into components, a lot of processor hours
are lost due to the increased execution time which exceeds those saved from
fragmentation. This leads to unnecessary occupation of the processors which
leads to jobs over delaying in the queue. This translates into poor performance.
This can be solved by breaking fewer jobs (increasing thres). If however thres is



250 J. Ngubiri and M. van Vliet

Fig. 5. Group-wise performance for ψ = 0.1 and ψ ∼ U [0.001, 0.199]

too high, the packing problem of unbroken jobs becomes significant. The system
suffers fragmentation and hence poor performance.

8 Communication Intensity Distribution

So far, we have considered cases where ψ is fixed. This implies that both α and λ
are fixed. As far as we know, there are no documented studies on the extent and
distribution of communication intensities in supercomputer workloads. However,
we believe that due to the diversity of the sources and applications processed
by supercomputers, α (hence ψ) is not fixed. We therefore assume λ to be fixed
but α to vary among jobs. We consider a case where ψ ∼ U [0.001, 0.199]. We
compare its performance with a case when ψ = 0.1. We also study the relative
performance of jobs grouped by ψ.

8.1 The Effect of ψ Distribution

We now compare the performance of S1, S2, S3 and S4 for the job stream when
with ψ = 0.1 and ψ ∼ U [0.001, 0.199] (Figure 5). We observe that more disper-
sion in ψ leads to poor performance. Deterioration in performance is felt by both
co-allocated and non co-allocated jobs.

8.2 Classification by Communication Intensity

In 8.1, we observed that communication heterogeneity negatively affect perfor-
mance. We now study group-wise performance of co-allocated jobs grouped by
ψ. We create four groups C1, C2, C3 and C4 consisting jobs whose ψ lies in
the ranges (0.00, 0.05), (0.05, 0.10), (0.10, 0.15) and (0.15, 0.20) respectively. We
summarize their performance variation with thres in Figure 6.

We observe small deviations in performance of the different groups. This im-
plies that the effect of communication is felt in the entire job steam rather than
the individual co-allocated jobs.
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Fig. 6. Performance of communication based groups

9 Conclusion and Future Work

We have used communication intensity and intra to inter cluster speed ratio
to represent execution time penalty. The approach is synonymous to the fixed
penalty approach but more elaborate. We have also studied the limits of co-
allocation viability as a function of ψ, load and thres. We have observed that
there are parameter limits within which the co-allocation is viable. They depend
on both α and λ. We have also observed poorer performance for heterogeneously
communicating jobs. This implies that co-allocation is not as viable as depicted
in earlier studies that considered fixed penalties.

Our work opens up more avenues for future research. This includes studying
asynchronously communicating jobs and communication cognizant scheduling.
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