
E. Luque, T. Margalef, and D. Benítez (Eds.): Euro-Par 2008, LNCS 5168, pp. 151–161, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Performance Implications of Cache Affinity
on Multicore Processors

Vahid Kazempour, Alexandra Fedorova, and Pouya Alagheband

Simon Fraser University, Vancouver Canada
vahid_kazempour@sfu.ca, fedorova@cs.sfu.ca,

 palagheb@cs.sfu.ca

Abstract. Cache affinity between a process and a processor is observed when
the processor cache has accumulated some amount of the process state, i.e., data
or instructions. Cache affinity is exploited by OS schedulers: they tend to
reschedule processes to run on a recently used processor. On conventional (uni-
core) multiprocessor systems, exploitation of cache affinity improves perform-
ance. It is not yet known, however, whether similar performance improvements
would be observed on multicore processors. Understanding these effects is cru-
cial for design of efficient multicore scheduling algorithms. Our study analyzes
performance effects of cache affinity exploitation on multicore processors. We
find that performance improvements on multicore uniprocessors are not signifi-
cant. At the same time, performance improvements on multicore multiproces-
sors are rather pronounced.

Keywords: multicore processors, cache affinity, performance evaluation,
scheduling.

1 Introduction

Our study investigates performance effects of cache affinity on multicore processors.
Cache affinity between a process and a processor (or a processing core) is observed
when the processor cache has accumulated some amount of the process’s state, i.e., its
data or instructions. Affinity may be high or low depending on how much state has
been accumulated. In modern multiprocessor operating systems, schedulers exploit
high cache affinity by scheduling a process on a recently used processor whenever
this is possible [11]. When a process runs on a high-affinity processor it will find
most of its state already in the cache and will thus run more efficiently [14]. While
exploitation of cache affinity is known to improve performance on unicore multiproc-
essors, its effect on multicore processors has not been studied. Understanding this
effect is crucial for building efficient multicore scheduling algorithms. Many of these
algorithms (aiming to improve performance [2,6,9,13], reduce energy consumption
[8] or improve thermal regulation [4,12]) work via frequent migrations of processes
among CPU cores. Frequent migrations prevent the scheduler from exploiting cache
affinity and may thus hurt performance. To understand whether performance may in
fact suffer, we study how variations in cache affinity affect performance of applica-
tions on multicore processors. Specifically, we compare performance of benchmarks

152 V. Kazempour, A. Fedorova, and P. Alagheband

when they run in conditions of high and low cache affinity. These data tell us to what
extent performance can be improved by exploiting high cache affinity and to what
extent performance may suffer if affinity is not exploited. Our results will help multi-
core OS designers built better systems.

We analyze performance effects of cache affinity on multicore uniprocessors and
multicore multiprocessors (see Figures 1(a) and 1(b)). The difference between the two
is the physical placement of cores with respect to processor caches. In multicore
uniprocessors all cores placed on a single chip, typically sharing the L2 cache. In
multicore multiprocessors, there are several multicore chips, and the cores on the
same chip share a per-chip L2 cache. The importance of studying both kinds of
processors is that on the multicore uniprocessor, only the L1 cache affinity may be
exploited (because there is only a single L2 cache), so any performance differences
would come from L1 affinity. In contrast, on a multicore multiprocessor, both L1 and
L2 cache affinity can be exploited because there are multiple L2 caches. Our goal is to
understand the impact of both kinds of cache affinity. Processors used in our study are
Sun Microsystems UltraSPARC T2000 “Niagara” (a multicore uniprocessor) and
Intel Quad-Core E5320 Xeon “Clovertown” that can be configured both as a
multicore uniprocessor and a multicore multiprocessor.

In the multicore uniprocessor study, we analyze how performance of applications
changes if at each new scheduling quantum they run on a high-affinity core vs. a low-
affinity core. Running on a high-affinity core lets the application capitalize on its L1
cache state; running on a low-affinity core requires that the L1 cache state be re-
loaded. Reloading the L1 cache state on multicore uniprocessors processors is gener-
ally inexpensive, however, because it can be usually restored from the low-latency L2
cache. Therefore, we propose a hypothesis that failure to exploit L1 cache affinity on
multicore uniprocessors has a small effect on performance.

On multicore multiprocessors, there are two kinds of affinities: affinity to the L1
cache and affinity to the L2 cache. In our multicore multiprocessor study, we focus
on the effects of L2 cache affinity, i.e., how the performance of applications changes
if they are always scheduled near a high-affinity L2 caches as opposed to being arbi-
trarily moved between high and low-affinity cores. Here, we are interested in evaluat-
ing differences between multicore multiprocessors and conventional (unicore)

Fig. 1. Schematic view of (a) a multicore uniprocessor consisting of a single chip and four
cores, (b) multicore multiprocessor consisting of two multicore chips, and (c) a conventional
multiprocessor consisting of two unicore chips

 Performance Implications of Cache Affinity on Multicore Processors 153

Table 1. Experimental hardware

 Niagara:
UltraSPARC T2000

Clovertown:
Intel Quad-Core Xeon E5320

Clock Frequency 1.2 GHz 1.86 GHz

L2 cache groups, Cores/group 1, 8 2, 2

L1 caches 8KB D-cache,
16KB I-cache per core

32KB D-cache,
32KB I-cache per core

L2 cache 3MB unified 2x4MB unified

multiprocessors (Figure 1(c)). We hypothesize that performance improvements on
multicore multiprocessors will be insignificant in comparison with conventional
multiprocessors. On multicore multiprocessors, L2 caches are shared and competition
for them can be high. As a result it is harder to retain cache state across invocations of
a process. Since the degree of L2 cache state retention will be small, the benefits of
exploiting L2 cache affinity will be insignificant.

Our study confirmed the first hypothesis: exploitation of L1 cache affinity has vir-
tually no effect on performance (4% at most in an isolated case). Our second hypothe-
sis, however, was refuted. Although we do find that L2 cache affinity has a smaller
performance impact on multicore multiprocessors than on conventional (unicore)
multiprocessors, we still observe that the impact is quite significant, especially for
applications with large working sets. Those applications experience as much as 27%
performance degradation when L2 cache affinity is not exploited on multicore multi-
processors.

The rest of the paper is organized as follows. In Section 2 we present our study on
multicore uniprocessors, and in Section 3 on multicore multiprocessors. In Section 4,
we discuss related work. In Section 5 we summarize our findings.

2 Multicore Uniprocessors

2.1 Methodology

In this section we restrict our study to multicore uniprocessors (Figure 1(a)). We use
two hardware platforms for our study (Table 1). One is Sun Microsystems UltraS-
PARC T2000 “Niagara” with eight cores and a shared L2 cache. Although each core
is multithreaded, we run only one thread per core. Another system is Intel Quad-core
Xeon E5320 “Clovertown”. Although this processor is built of two dual-core chips, in
the experiments of this section we use only one of the chips for running benchmarks,
hence we have a multicore uniprocessor.

We experiment with benchmarks from the SPEC CPU2000 suite [1]. We selected
eight benchmarks with varied temporal reuse patterns of cached data, because tempo-
ral reuse behaviour determines the impact of cache affinity on performance. Our se-
lected benchmarks are art, crafty, gap, gcc, gzip, mcf, parser, twolf. Temporal reuse
behaviour of benchmarks like gzip and mcf is good. This causes them to be sensitive

154 V. Kazempour, A. Fedorova, and P. Alagheband

Table 2. Summary of experiments ran for each benchmark

 Low L1 cache affinity High L1 cache affinity

 D-cache I-cache D-cache or I-cache

High L2
retention

Run benchmark inter-
leaved with BV_L1D;

Run benchmark inter-
leaved with BV_L1I;

Run benchmark inter-
leaved with BV_0;

Low L2
retention

Run benchmark inter-
leaved with BV_L1D;
Run BV_L2 concur-

rently

Run benchmark inter-
leaved with BV_L1I;
Run BV_L2 concur-

rently

Run benchmark inter-
leaved with BV_0;

Run BV_L2 concurrently

to their cache states, so cache affinity may play an important role in their perform-
ance. On the other hand, benchmarks such as art have a poor temporal locality. As a
result they are less sensitive to their cache states and cache affinity may not be as im-
portant.

We run each benchmark in two experimental scenarios: (1) low affinity – when no
state is retained in the core’s L1 cache at each new scheduling quantum, and (2) high
affinity – when the benchmark’s state is almost entirely retained in the L1 cache at
each new scheduling quantum. We measure the instructions per cycle (IPC) com-
pleted by the benchmark and its cache miss rate. Comparison of these metrics in the
low and high-affinity scenarios allows us to gauge the upper bound on potential per-
formance improvements from exploiting cache affinity. As such, this experiment’s
results tell us whether affinity scheduling would matter under any affinity-aware
scheduling policy, all else being equal.

Here is how we create low and high cache affinity for this experiment. We run the
SPEC benchmark together with a base vector application [5]. Base vector (BV) is a
simple application that can be configured to use a pre-defined cache footprint. We
bind the SPEC benchmark and the base vector to the same virtual processor, so their
scheduling quanta are interleaved. Therefore, the base vector may displace the cache
state of the SPEC benchmark at each quantum. We use two base vectors, BV_L1 and
BV_0. BV_L1 has the cache footprint equal to the size of the L1 cache, so it com-
pletely displaces the cache state of the SPEC benchmark at each scheduling quantum.
This creates the conditions of low cache affinity. BV_0 has the cache footprint of a
negligible size, so it leaves the cache state of the SPEC benchmark almost intact. This
creates the conditions of high cache affinity.

In addition to varying the degree of L1 cache affinity, we vary other parameters of
the experiment, which are discussed below.

The size of the L1 cache. The larger the L1 cache the longer it takes to rebuild its
state. Therefore, performance impact from exploiting cache affinity will be higher on
systems with larger caches. To account for that, we experiment on systems with dif-
ferent L1 cache sizes (see Table 1).

Retention of state in the L2 cache. Performance effect of L1 cache affinity will de-
pend on if the process reloads its L1 cache state from the L2 cache or from the main
memory. To force the reloading from the L2 cache we run our experiments in condi-
tions of high L2 cache retention. To force the reloading from the main memory, we
run with low L2 cache retention. To create low L2 cache retention we run the SPEC

 Performance Implications of Cache Affinity on Multicore Processors 155

benchmark concurrently with a base vector application configured to have a working
set equal to the size of the L2 cache (BV_L2). BV_L2 is run on a different core than
the main benchmark, but that core shares the L2 cache with the core on which the
SPEC benchmark is run. Therefore, when the SPEC benchmark is de-scheduled,
BV_L2 completely displaces its L2 cache state. For high L2 cache retention, we run
no BV_L2 with the SPEC benchmark.

Type of cache. Performance effects of cache affinity may differ for L1 data cache
and L1 instruction cache. Therefore, we experiment with these caches separately. We
vary cache affinity using different base vectors for L1 I-cache and L1 D-cache. BV_
L1I is a base vector configured with the I-cache footprint equal to the size of the I-
cache and a negligible D-cache footprint. BV_L1D is a base vector configured with
the D-cache footprint equal to the size of the D-cache and a negligible I-cache
footprint.

Scheduling time quantum. When affinity is not exploited, the process must reload
its cache state at each new scheduling quantum. Per-core L1 caches tend to be small,
thus reloading them is cheap. So the failure to exploit L1 cache affinity will hurt per-
formance only when the L1 cache state must be reloaded very frequently (i.e., when
the scheduling time quantum is small). Therefore, while a large time quantum amor-
tizes the penalty of reloading the cache, a small quantum causes the negative perform-
ance effects to be more pronounced. The time quantum assigned to a thread by the
scheduler depends on the thread’s workload characteristics. I/O intensive or interac-
tive programs will have shorter time quanta (often as short as a few milliseconds),
while CPU-bound programs may be assigned time quanta of hundreds of milliseconds
[11]. To account for this variation, we used three different scheduling quanta in our
experiments: two, ten and 200 milliseconds.

Pipeline architecture. Due to the ability of masking the cache miss latency with dy-
namically scheduling instructions, deep out-of-order pipelines have a higher tolerance
to L1 cache misses than shallow in-order pipelines Therefore, performance effects of
cache affinity could vary depending on the pipeline architecture. In our study we con-
sider processors with both deep super-scalar out-of-order pipelines (Clovertown) [10]
and shallow in-order single-issue pipelines (Niagara) [7].

For each SPEC benchmark we run six experiments shown in Table 2. Further, we
run each experiment from Table 2 with the three scheduling quanta on the two ex-
perimental machines. This gives us 288 experiments in total. We run each experiment
three times.

2.2 Results

We found that in most cases retaining L1 cache affinity had no measurable impact on
performance. There was only a single experimental scenario where exploiting L1
cache affinity resulted in measurable performance difference. This was the case where
the cache was large, the scheduling quantum was small, and the L2 cache retention
was low. We observed it in the experiment with the Intel system (that has a larger
32KB instruction cache) with low L2 cache retention and a timeslice of 2ms (the ex-
periment from the second row and the second and third columns in Table 2). Figure 2
shows the average IPC and Figure 3 the misses per instruction (MPI) of this

156 V. Kazempour, A. Fedorova, and P. Alagheband

Fig. 2. IPC on the Intel system. Low L2 reten-
tion, 2ms time quantum.

Fig. 3. MPI on the Intel system. Low L2
retention, 2ms time quantum.

experiment. Black bars show the high-affinity scenario (the benchmark runs with
BV_0), white bars show the low-affinity scenario (the benchmark runs with BV_L1I).
Twolf is the only benchmark that experienced a statistically significant decrease in the
IPC when the cache affinity was low. Twolf’s IPC dropped by 4%, accompanied by a
174% increase in the miss rate. All other benchmarks experienced IPC degradation of
less than 1%.

Referring now to Figure 3, where the difference in the I-cache miss rates between
the low and high-affinity scenarios is shown on top of each pair of bars, we note that
although five out of eight benchmarks experienced dramatic increases in miss rates
(from 99% for gap to 294% for mcf), their IPC stayed unchanged. The reason is that
the cache miss rates of these benchmarks were small in absolute terms, so they had
little effect on performance. These benchmarks have a good reuse of their I-cache,
and that is why their cache miss rates are low. That is also why their miss rates sky-
rocket if cache affinity is not exploited – good cache reuse implies sensitivity to varia-
tions in the cache affinity. Benchmarks whose cache miss rates are high, such as
crafty and gcc, are not sensitive to variations in the cache affinity, because their cache
reuse is low.

As to the rest of our experimental scenarios, on both systems, with all scheduling
quanta and L2 retention levels, we observed no statistically significant effect on the
IPC as the degree of affinity varied. We did not observe any positive effects on the
Intel system due to the ability of its out-of-order pipeline to mask cache latency (Ni-
agara has an in-order pipeline). Both on Intel and Niagara systems cache affinity ef-
fects were negligible with the exception of the case reported above.

We have two explanations for these results: in the case when the L1 cache is re-
loaded from the L2 cache (high L2 retention) reloading the entire L1 cache is cheap,
even with a small scheduling timeslice. In the case when the L1 cache is reloaded
from the main memory (low L2 cache retention), the performance impact is small as
well, because L1 caches tend to be small, and reloading them is cheap. On the Intel
platform with larger L1 caches performance penalty is also masked by aggressive pre-
fetching.

These results confirm our hypothesis that exploiting L1 cache affinity has negligi-
ble performance effect on multicore uniprocessors.

 Performance Implications of Cache Affinity on Multicore Processors 157

Table 3. Benchmark combinations

MMP UMP
Main Interfering Main Interfering

2x art crafty 4x art 2x crafty
2x crafty gap 4x crafty 2x gap
2x gap gcc 4x gap 2x gcc
2x gcc gzip 4x gcc 2x gzip
2x gzip mcf 4x gzip 2x mcf
2x mcf parser 4x mcf 2x parser
2x parser twolf 4x parser 2x twolf
2x twolf art 4x twolf 2x art

3 Multicore Multiprocessors

In this section we study multicore multiprocessors (Figure 1(b)) and compare them to
conventional multiprocessors (Figure 1(c)). For a multicore multiprocessor (MMP),
we used the Intel system shown in Table 1, but unlike in the previous section, we con-
figured it to use both chips. For a conventional unicore multiprocessor (UMP), we
configured the Intel system to use only one core per chip, effectively creating a con-
ventional two-way multiprocessor. We could use Niagara for the experiments in this
section, because (by virtue of having only a single chip) it cannot be configured as a
multicore multiprocessor.

We compare performance of multiprogram workloads running in conditions of
high core/chip affinity and in conditions of low core/chip affinity. To create high-
affinity conditions, the measured benchmark is bound to a processing core for the
duration of the run. Therefore, it is always rescheduled to run on a high-affinity core.
To create low-affinity conditions, the benchmark is not bound to a particular core and
may thus be rescheduled to run on any core or chip, including the ones of low affinity.
In the low-affinity conditions, we use the Solaris time-sharing scheduler with affinity
settings disabled. This experiment thus lets us compare performance achievable by the
ideal affinity-aware scheduler with the performance achieved by the affinity-oblivious
scheduler. As we learned from the previous section, L1 cache affinity makes no dif-
ference for performance, so if there are any performance gains they would be due to
L2 cache affinity. Therefore, in the rest of this section we talk about evaluating the
effects of L2 cache affinity.

In each experiment, we use two groups of benchmarks: main benchmarks and in-
terfering benchmarks. Main benchmarks are those whose performance we measure.
Table 3 shows main and interfering benchmarks for the MMP and UMP experiments.
Each benchmark gets to be in the main and in the interfering role. This creates a wide
range of experimental scenarios with respect to cache reuse patterns and degrees of
contention. We run several copies of the same main benchmark, to avoid measuring
any effects due to cache contention and isolate the effects of cache affinity only.

158 V. Kazempour, A. Fedorova, and P. Alagheband

Fig. 4. IPC on UMP Fig. 5. IPC on MMP

An experiment consists of running a group of benchmarks concurrently (from Ta-
ble 3), on the MMP and on the UMP configuration. For each configuration we run
two experiments: the high-affinity experiment, where the main benchmarks are bound
each to its own core, and the low-affinity experiments where they are not bound. In-
terfering benchmarks are not bound to any core in any experiment.

We run the benchmarks with a 2ms scheduling time quantum, because this is
where cache affinity has the most impact – our goal is to measure the upper bound.
We run each main benchmark three times to measure the IPC and another three times
to measure the L2 cache miss rate. (Separate runs were needed because only a single
hardware counter was operational on our Intel system.)

Figures 4 and 5 show the IPC of the main benchmarks on UMP and MMP systems
with high affinity (HI_AFF) and with low affinity (LOW_AFF). (Note the difference
in scale on the Y-axis.) The bars indicate average values, and the whiskers denote two
standard deviations. The percent values at the top of each pair of bars show the de-
crease in performance between the high-affinity and low-affinity scenarios. Figures 6
and 7 show the corresponding L2 cache miss rates. (Again, note the difference in
scale on the Y-axis). The percentage values show the difference in misses per instruc-
tion between the high-affinity and low-affinity scenarios.

We note three things about the data. First, on both systems performance noticeably
degrades when affinity is low. (Even though the gap benchmark on MMP appears to
run more quickly with low affinity, this result is not statistically significant as indi-
cated by the whiskers). The most significant degradation in performance is experi-
enced by memory bound benchmarks: art, mcf, parser and twolf. Those benchmarks
are more dependent on good L2 cache performance than the rest of the benchmarks.

Second, the performance impact of low affinity on the UMP system is greater than
on the MMP system for all benchmarks without exception. On the UMP system, per-
formance decreases due to low affinity by as much as 45% (for art) and by 16% on
average for all benchmarks. On the MMP system, corresponding performance degra-
dation is 27% (for art) and 11% on average for all benchmarks. This difference is
explained by more dramatic increases in the L2 cache miss rates on the UMP system.

 Performance Implications of Cache Affinity on Multicore Processors 159

Fig. 6. MPI on UMP Fig. 7. MPI on MMP

Art’s miss rate increases by a factor of 51, and gcc’s and twolf’s miss rates increase by
more than a factor of two. On the MMP system, all benchmarks’ miss rates increase
by less than a factor of two. A smaller impact of cache affinity on the MMP system
could be explained by the presence of contention for the L2 cache (in contrast with
the UMP system), and thus there is a lower retention of the L2 cache state across
process invocations and a smaller cache miss degradation when cache affinity is not
preserved. As a result, the benefits from exploiting cache affinity are lower.

Finally, we note that although performance effects of high L2 cache affinity are
smaller on the MMP system than on the UMP system, they are still significant to
merit inclusion of affinity awareness in multicore scheduling algorithms.

4 Related Work

Torrellas et al. studied performance effects of affinity aware scheduling on conven-
tional (unicore) multiprocessors [14]. Affinity aware scheduling reduced cache miss
rates by 7-36% and improved performance by as much as 10%, according to their
study. We pursued a similar goal, but targeted multicore processors. In addition, we
answered a slightly different question. Unlike the Torrellas’s study that measured
performance impact of a particular affinity-aware scheduling algorithm, we evaluated
the upper bound on performance gains achievable by exploiting cache affinity.

Constantinou et al. considered performance effects of migrating a process among
cores on a multicore processor [3]. They studied performance effects of warming up
L1 instruction and data caches on the new core before migrating the process to that
core (as opposed to leaving the caches cold). Warming up the caches creates affinity
between the core and the migrated process. Therefore, experiments in the Constanti-
nou’s study effectively measured the effects of exploiting L1 cache affinity, which is
similar to what we did. The key differences of our study are in the experimental con-
ditions. While Constantinou’s study varied cache affinity by warming up the caches
using special hardware, we varied it by means of interfering applications in a
multi-program workload. Therefore, while Constantinou’s study served the purpose of
evaluating migration-friendly hardware architectures, our results are applicable to

160 V. Kazempour, A. Fedorova, and P. Alagheband

scheduling. Constaninou’s study evaluated deep out-of-order pipelines only. These
pipelines are more tolerant to cache misses than in-order pipelines. We evaluated sys-
tems with both a shallow in-order pipeline and a super-scalar out-of-order pipeline.
Finally, we also compared performance gains from exploitation of cache affinity on
multicore multiprocessors to conventional multiprocessors. To the best of our knowl-
edge, this has not been done in the past.

5 Conclusions

We evaluated performance effects of exploiting cache affinity on multicore proces-
sors. We studied both multicore uniprocessors and multicore multiprocessors, and
evaluated both the effects of exploiting L1 cache affinity and the effects of exploiting
L2 cache affinity. We hypothesized that cache affinity does not affect performance on
multicore processors: on multicore uniprocessors — because reloading the L1 cache
state is cheap, and on multicore multiprocessors – because L2 cache affinity is gener-
ally low due to cache sharing. Our first hypothesis was confirmed. Exploiting cache
affinity on multicore uniprocessors has no measurable impact on performance even
when the L1 cache is relatively large, scheduling time quantum is small and L2 cache
retention is low. Our second hypothesis, on the other hand, was refuted. Even though
upper-bound performance improvements from exploiting cache affinity on multicore
multiprocessors are lower than on unicore multiprocessors, they are still significant:
11% on average and 27% maximum. This merits consideration of affinity awareness
on multicore multiprocessors.

We conclude that affinity awareness in multicore scheduling algorithms will make
no difference on multicore uniprocessor systems, but will improve performance on
multicore multiprocessors. We hope that our results will help multicore OS designers
build better systems.

References

[1] SPEC CPU, web site (2000), http://www.spec.org
[2] Becchi, M., Crowley, P.: Dynamic Thread Assignment on Heterogeneous Multiprocessor

Architectures. In: Proceedings of the Conference on Computing Frontiers (2006)
[3] Constantinou, T., Sazeides, Y., Michaud, P., Fetis, D., Seznec, A.: Performance Implica-

tions of Single Thread Migration on a Chip MultiCore. In: Proceedings of the Workshop
on Design, Architecture and Simulation of Chip Multi-Processors (2005)

[4] Coskun, A., Rosing, T.: Temperature aware task scheduling in MPSoCs. In: Proceedings
of the DATE (2007)

[5] Doucette, D., Fedorova, A.: Base Vectors: A Potential Technique for Microarchitectural
Classification of Applications. In: Proceedings of the Workshop on the Interaction be-
tween Operating Systems and Computer Architecture (WIOSCA), in conjunction with
ISCA-34 (2007)

[6] Fedorova, A., Vengerov, D., Doucette, D.: Operating System Scheduling On Heterogene-
ous Multicore Systems. In: Proceedings of the PACT 2007 Workshop on Operating Sys-
tem Support for Heterogeneous Multicore Architectures (2007)

 Performance Implications of Cache Affinity on Multicore Processors 161

[7] Kongetira, P.: A 32-way Multithreaded SPARC(R) Processor. In: Proceedings of the 16th
Symposium On High Performance Chips (HOTCHIPS) (2004)

[8] Kumar, R., Farkas, K., Jouppi, N., Parthasarathy, R., Tullsen, D.M.: Single-ISA Hetero-
geneous Multi-Core Architectures: The Potential for Processor Power Reduction. In: Pro-
ceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture
(2003)

[9] Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N., Farkas, K.: Single-ISA Heteroge-
neous Multicore Architectures for Multithreaded Workload Performance. In: Proceedings
of the 31st Annual International Symposium on Computer Architecture (2004)

[10] Marr, D.T., Binns, F., Hill, D.L., Hinton, G., Koufaty, D.A., Miller, J.A., Upton, M.: Hy-
per-threading Technology Architecture and Microarchitecture. Intel Technical Jour-
nal 6(1), 4–15 (2002)

[11] McDougall, R., Mauro, J.: SolarisTM Internals: Solaris 10 and OpenSolaris Kernel Archi-
tecture. Prentice Hall, Englewood Cliffs (2006)

[12] Powell, M.D., Gomaa, M., Vijaykumar, T.N.: Heat-and-Run: Leveraging SMT and CMP
to Manage Power Density Through the Operating System. In: Proceedings of the
ASPLOS (2004)

[13] Snavely, A., Tullsen, D.M.: Symbiotic Jobscheduling for a Simultaneous Multithreaded
Processor. In: Proceedings of the Ninth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS) (2000)

[14] Torrellas, J., Tucker, A., Gupta, A.: Evaluating the Performance of Cache-Affinity Sched-
uling in Shared-Memory Multiprocessors. Journal Of Parallel and Distributed Comput-
ing 24, 139–151 (1995)

	Performance Implications of Cache Affinity on Multicore Processors
	Introduction
	Multicore Uniprocessors
	Methodology
	Results

	Multicore Multiprocessors
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

