
Automatic Transactions Identification
in Use Cases�

Mirosław Ochodek and Jerzy Nawrocki

Poznań University of Technology, Institute of Computing Science,
ul. Piotrowo 3A, 60-965 Poznań, Poland

{Miroslaw.Ochodek,Jerzy.Nawrocki}@cs.put.poznan.pl

Abstract. Since the early 90’s of the previous century, use cases have
became informal industry standard for presenting functional require-
ments. The rapid popularity growth stimulated many different
approaches for their presentation and writing styles. Unfortunately, this
variability makes automatic processing of use cases very difficult. This
problem might be mitigated by the use of transaction concept, which
is defined as an atomic part of the use case scenario. In this paper we
present approach to the automatic transaction discovery in the textual
use cases, through the NLP analysis. The proposed solution was imple-
mented as a prototype tool UCTD and preliminarily verified in a case
study.

Keywords: Use cases, Use-cases transactions, Use Case Points, Require-
ments engineering, Effort estimation, Natural language processing.

1 Introduction

In the field of requirements specification there are two extremes. One is a for-
mal approach based on sound mathematical background. People interested in
this approach can use such notations as VDM, Z [17], Statecharts [16], Petri
Nets [24] and many others. The problem is that those notations lead to quite
long specifications (sometimes their size is comparable to code size) and prov-
ing correctness of commercial-like programs can be quite time consuming (an
interesting case study has been described by Wolfgang Reif [23,13]). But what
is more important, mathematically sound specifications usually are unreadable
for a typical end-user.

Another extreme is completely unformal approach based on the oral com-
munication. The best example of that approach are user stories, which are one
of the main practices of Extreme Programming [6]. Here the main weakness is
dependence on human memory. In case of difficult requirements with many com-
peting approaches, each one having indirect impact, relying on human memory
can be dangerous.
� This research has been financially supported by the Ministry of Science and Higher

Education grant N516 001 31/0269.

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 55–68, 2008.
c© IFIP International Federation for Information Processing 2008

56 M. Ochodek and J. Nawrocki

Somewhere in between there are use cases. They have been introduced by Ivar
Jacobson [19] and further developed by Cockburn [9] and others [1]. A typical
use case describes a user-valued transaction in a sequence of steps, and each step
is expressed in a natural language (if needed, one can extend a given step with
an alternative behaviour). That makes use cases readable for end-users.

Use cases can be used not only for the system’s behaviour specification, but
also for the effort estimation. Kerner proposed so-called Use Case Points method
(UCP) [20] resembling Function Points [2]. In the UCP size of each use case
depends on the number of transactions embedded in it. Unfortunately, the notion
of use-case transaction is vague. Due to this, development of sizing tools for use-
cases is almost impossible.

In the paper the term of use-case transaction is formalised and a method of
automatic identification of transactions in use cases is presented. Transaction
identification can be used as a bases for effort estimation and for automatic
use-case review.

The paper is organised as follows. In the next section, the rationale for trans-
action counting is presented as well as existing work concerning their automatic
discovery. In Section 4, a formal definition of the use case transaction is intro-
duced, together with an approach for their automatic extraction from the textual
use case. The case study for preliminary verification of the model and method
is presented in Section 5. Some remarks and lessons learned concerning use case
writing style for transaction identification, are presented in Section 6.

2 Use-Case Transactions Counting Problem

The lack of formal standards for the use cases presentation causes many problems
with the developing generic and format independent tools and methods. Thus, it
is very important to find a common denominator, which might be derived from
the use cases despite the differences in the presentation format.

The use case transaction is a decent example of such a concept. It is strictly
connected with the use case logic, while dependancy on its notation is limited.
It has been introduced by Ivar Jacobson [18]. According to the Jacobson each
step should be a transaction, with the four types of phrases included:

– the main actor sends request and data to the system,
– the system validates given data,
– the system performs internal state change operations,
– the system responds to the actor with the operation result.

Transactions are mainly used as a complexity measurementwithin the Use Case
Points (UCP) method [20]. The UCP is an accepted software size metric [4], which
might be also used for the effort estimation. Each use case is classified into one
complexity class depending on the number of transactions. Use case with three or
less transactions is considered as a simple, from four to seven as an average and
finally if it has more then seven transactions, it is classified as a complex one. The
next step of the UCP method, is a computation of the UUCW (Unadjusted Use

Automatic Transactions Identification in Use Cases 57

Case Weight), which is the sum of simple use cases set cardinality multiplied by 5,
cardinality of average set multiplied by 10 and cardinality of complex set by 15.

A transition between size and effort is done by multiplying the UCP method
output by the Productivity Factor (PF), which defines how many man hours
are required to cover one Use Case Point. The easiest way to obtain the PF
within the certain organisation is to compute it from the historical data or
use values presented in the literature (according to authors writing about the
UCP, PF varies from 20 to 36 h/UCP [20,27]). The Productivity Factor makes
UCP method easy to calibrate, as long as historical data comes from the similar
projects and rules used for the counting transactions number and assessing other
method components does not differ significantly between the considered projects
(experts should be consistent in their approach to the transactions counting).

According to some authors [5,8,25] use case transactions might be counted
as the number of steps in the use case scenarios (main and alternative). This
approach is acceptable as long as the use cases are written according to the
Jacobson’s one step - one transaction rule. In other case relying on counting
steps as transactions, might trigger overestimation problems.

Alistair Cockburn in [9] presented relevant example that the same scenario
might be easily written with the different number of steps. Each of the four
presented use cases consists of the one transaction but the number of steps
varies from the one to five (Cockburn’s example, is presented in the figure 1). If
we follow the UCP classification rules for the use cases complexity classification,
two presented examples would be classified as a simple and the other two as an
average.

Fig. 1. The example [9] of four versions of the one-transaction use case with scenario
varying from 1 to 5 steps. Relying on scenarios length (measured in steps) while count-
ing transactions number may lead to corrupted results.

58 M. Ochodek and J. Nawrocki

In the case study presented in the section 5, the UUCW counted for thirty use
cases based on the number of steps is 2 times higher then mean UUCW value
counted for all experts based on their transactions number assessment.

The important problem concerning transactions identification appears as a
difference in formats and styles of writing use cases, which involves other views
on the actors actions. The list of some use case structure problems, in the trans-
action discovery context, is presented in the section 6.

3 Definition of Use-Case Transaction

We have already stated that measuring use case complexity based on the transac-
tions number, seems to be better idea then counting steps in scenarios. However,
the notion of transaction should be formally defined in order to provide clear
rules for their automatic identification.

The approach to transaction identification for use cases written in Japanese
was described by Kusumoto et al. [22]. Authors proposed a system (U-EST),
which processed requirements stored in the XMI format and estimating effort
based on the UCP method. It is stated that morphological analysis for all state-
ment was conducted in order to find transactions. Each transaction was con-
cerned as a set of subject and predicate that relates to actor’s operation and
system response. Unfortunately, it is not clear for us, whether authors perceived
the pair of actor and system phrases as a transaction or each of them as separate
one. The U-EST system was evaluated using data provided by experienced en-
gineers from the Hitachi company. In the case study classification given by the
system was compared only with one specialist (authors did not provide exact
number of identified transactions, but the final use case classification with the
UCP method). The assumption was made that use case grammar is "absurdly
simple". Based on our experience, it seems that use cases language, especially
in the commerce requirements specifications, is not always as simple as it is
suggested in the literature.

Another redefinition of the use case transaction was presented by Sergey
Diev [11]. The transaction idea remains similar to the Jacobson’s, but it is
more general. Author defines transaction as the smallest unit of activity that
is meaningful from the actor’s point of view. What is more important, use case
transaction should be self-contained and leaves the business of the application
in a consistent state.

3.1 Proposed Transaction Model

We would like to propose a transaction model which is based on the Ivar Jacob-
son’s transaction definition [18].

We enumerates four types of actions, which are relevant from the use case
transaction point of view:

– actor’s request action (U),
– system data validation action (SV),

Automatic Transactions Identification in Use Cases 59

– system expletive actions (e.g. system internal state change action), which
are neither validation nor confirmation actions (SE),

– system response action (SR).

We perceive transaction as an atomic sequence of activities (actions) performed
by actor and system, which is performed entirely or not at all. Each action
belongs to one of the four sets U, SR, SV, SE.

Definition 1. The certain transaction is a shortest sequence of actor’s and
system actions, which starts from the actor’s request (U) and finishes with the
system response (SR). The system validation (SV) and system expletive (SE)
actions may optionally occur within the starting and ending action. The pattern
for the certain transaction written as a regular expression:

Tcertain = U+ [SV SE]∗ SR+

Where

– U - actor’s request action,
– SV - system data validation action,
– SE - system expletive action,
– SR - system response action.

Definition 2. We mark transaction as an uncertain (but still as transaction) if
it starts from the actor’s action (U), but it lacks corresponding system response
phrase (SR). In this case system expletive action (SE) might be treated as a
transaction closure. It is possible only if the next action is the actor’s action (U)
or the end of scenario. Thus, uncertain transaction might be defined as:

Tuncertain = (U+ SV∗ SE+) (?![SV SR])

Where

– U - actor’s request action,
– SV - system data validation action,
– SE - system expletive action,
– SR - system response action.

Alternative scenarios (extensions) are also included in the transaction discovery
process. The role of extensions scenario depends on the type of corresponding
action in the main scenario. Extensions which are regarding system actions, are
part of the transaction started in the main scenario. If the extension is trig-
gered by the U-type action, the user decision point is reached. This means that
main scenario is being forked into two or more alternative paths. To remark deci-
sion point, expression in assertion form might be added before action, in order to
express actor’s intention (e.g. User wants to add article). If the corresponding ex-
tension also starts with the assertion (e.g. User wants to add news), the alterna-
tive execution paths are clearly defined. If the actions in such alternative scenario
matches patterns presented in definitions 1 or 2, a new transaction is marked.

60 M. Ochodek and J. Nawrocki

Presented certain transaction definition should satisfy both conditions defined
by Sergey Diev [11]. The actor makes a request (U), which implies that action is
meaningful from his point of view. System responds to the actor’s request (SR),
which means that the business of the application is left in a consistent state.

Based on the transaction definition, we would like to propose a graphical
representation of transaction, which is the Transaction Tree. The root element
represents a transaction itself. The next two layers states for the types of actions,
which are named here as parts. Each part groups corresponding types of phrases.
The action is represented in the tree as:

– <Actor> is the actor’s name with distinction to actor(real) and system,
– <PredicateSyn> represents set of action’s predicate synonyms (for example

show, present etc. would be grouped together),
– <Object> is the object phrase.

The Transaction Tree might also include prolog (eg. Use case starts when actor
enters the page; System displays welcome page etc.) or epilog phrases (Use case
ends etc).

4 Transaction Identification with NLP Tools

We use NLP (Natural Language Processing) techniques to extract the Trans-
action Tree and mark transactions occurrence in the use case text. The most
important stage of this process is detection of actor’s and system actions.

Transactions Discovery Process. The transactions identification rules was
developed based on thirty one different use cases coming from the literature [1,9]

Fig. 2. The UCTD application processing pipeline. Textual use case is split into title,
main scenario and extensions documents. Actors names are extracted into the GATE
Gazetteer form. The main scenario and extensions part are processed in order to find
actions. Finally, the Transaction Tagger performs construction of the Transaction Tree.

Automatic Transactions Identification in Use Cases 61

Fig. 3. Example of the use case text with annotations. The most important annota-
tions, like actor subject, predicate, object phrase, validation verb and response verb are
marked. According to the defined rules, validations and response phrases are extracted
from the text. Finally, each phrase is classified into the part U , SV , SE or SR.

Fig. 4. The UCTD application screen (HTML report). On the left side use case is
presented (chosen transaction is highlighted). Transaction Tree is presented on the
right side.

and various Internet sources. The variability of styles helped us to develop solu-
tion, which is flexible enough to handle different approaches for writing use cases.

The proposed idea was implemented as a prototype tool UCTD. It is capable
of analysing use cases written in English. The application was developed based on
the GATE Framework [10]. The grammatical structure analysis was performed
with the use of Stanford Parser [21]. The use case processing chain is presented
in the figure 2 and consists of the following steps:

62 M. Ochodek and J. Nawrocki

1. Preprocessing phase, which involves use case structure verification (see 4),
actors extraction into the GATE Gazetteer form (lists of words which are
looked up in the text). Use case is split into title, main scenario and exten-
sions documents. Each part is further tokenized and sentences are annotated.

2. POS tagger is used to annotate parts of speech.
3. English Grammar parser is used to annotate parts of sentence (subjects,

predicates, objects etc.).
4. Important words and phrases are being looked up in the scenarios text (ac-

tors, validations, response phrases etc.).
5. Actor and system actions are marked with the use of JAPE grammars. Ad-

ditional postprocessing is done to increase accuracy. The example of use case
text with annotations is presented in the figure 3.

6. Transaction Tree is built based on the actor’s and system actions sequences.
Actions predicates are converted into the sets of predicates synonyms using
the WordNet dictionary [15] or with the use of explicitly defined lists of syn-
onyms. The example of the Transaction Tree, extracted from the annotated
text, is presented in the figure 4 (the UCTD application screen).

5 Transaction Identification – A Case Study

In order to verify proposed approach for transaction identification we conducted
case study, based on thirty use cases coming from the industry project, developed
for the e-government sector.

The specification was tagged individually by six experts and UCTD tool. We
wished to measure system accuracy as well as investigate how the experts deal
with the transaction detection problem in the specification coming from the
software industry (The case study was preceded by the warmup phase with the
assessment of four use cases taken from the literature examples). The detailed
results of the case study are presented in the table 1.

5.1 Comparison of System and Experts Results

Although, use cases structure were correct, we perceived few scenarios as am-
biguous from the transactions identification point of view. Thus, we assumed
that each expert presents his own approach to transaction counting and neither
of their assessments could be accepted as the "standard". In order to measure
discrepancy between system and experts opinions, error analysis was performed
(concerning differences in number of transactions counted by the participants for
each use case). The root mean square deviation (RMSD) matrix, dendrogram
(RMSD) and Spearman’s rank correlation coefficients matrix are presented in
the figure 5. According to the RMSD analysis, experts clearly differs in their deci-
sions. However, three clusters can be distinguished. The group with the greatest
cardinality, couples four experts (2, 4, 5, 6) and the UCTD system. The rest of
experts (3, 7) differs from themselves as much as from the rest of participants.
In this case discrepancy between the UCTD system was not greater then differ-
ence between the experts. The average time required for transaction counting

Automatic Transactions Identification in Use Cases 63

Table 1. Case study results summary. All use cases are presented with the number of
steps (in the main scenario and extensions) and transactions counted by the system
and experts.

Use Case ID No. Steps (All) UCTD(1) 2 3 4 5 6 7

WF1101 14 3 3 3 4 2 3 4
WF1102 14 2 5 4 3 2 3 4
WF1104 5 1 1 1 1 1 1 3
WF1105 7 2 2 2 2 2 1 3
WF1106 6 1 1 3 1 2 1 1
WF1107 4 1 1 1 1 1 1 2
WF1108 4 1 1 1 1 1 1 2
WF1109 6 1 1 2 1 1 1 2
WF1110 14 3 3 7 4 2 2 5
WF1201 9 1 1 3 1 1 1 3
WF1202 6 2 2 3 1 2 1 3
WF1203 3 1 1 2 1 1 1 1
WF1204 6 1 1 2 1 1 1 2
WF2501 9 2 2 3 1 2 2 4
WF2502 5 1 1 2 2 1 1 2
WF2503 17 3 2 3 2 2 2 3
WF2505 7 2 1 2 1 1 2 3
WF2506 11 2 2 3 3 2 1 5
WF3301 3 1 1 2 1 1 1 1
WF3302 5 1 1 3 1 1 1 3
WF3303 2 1 1 1 1 1 1 1
WF4201 4 1 1 1 1 1 1 2
WF4202 3 1 1 1 1 1 1 1
WF4203 9 2 3 5 2 2 1 1
WF4301 18 2 2 5 2 2 2 8
WF4311 7 2 1 1 1 1 1 4
WF4312 6 2 2 3 1 2 1 3
WF4402 5 1 1 3 1 2 1 3
WF4403 4 1 1 2 1 1 1 2
WF4404 3 1 1 2 1 1 1 2

Time - 41s 39min 35min 17min 28min 34min 46min�
Transactions - 46 47 76 45 43 39 83

UCP 320 150 155 170 160 150 150 190

per expert was 33 minutes, while the system processed whole corpus in 41 sec-
onds. The correlation analysis was conducted to identify whether differences in
experts opinions are of the systematic nature. Generally, correlation coefficient
is higher for experts pairs with the lower RMSD. Lower correlation is observed
for experts who differed more in their assessments (higher RMSD). Although,
correlation is significantly different from zero in most cases, we did not observed
variability caused by experts systematic over or underestimation.

64 M. Ochodek and J. Nawrocki

Fig. 5. Experts transaction counting errors comparison. a) root mean square deviation
(RMSD) matrix and corresponding dendrogram (nearest distance) are presented for
the system and experts. RMSD coupling reveals that experts differs from themselves
(and system) in transactions counting. However, the group of four coherent experts and
system, could be observed: the UCTD tool (1) and experts (2, 4, 5, 6). b) Spearman’s
rank correlation coefficients matrix.

If we consider case study set in the UCP method context, the range of use cases
complexity (UUCW), based on transactions marked by the experts was from 150
to 190, with the mean value of 158. Majority of use cases were rather simple (3
from 7 experts marked all use cases as simple, which gave UUCW value 150).
The variability could be even grater if analysed use cases were more complex
(if more use cases were closer to simple, average and complex sets membership
border values). For comparison the UUCW counted as a number of steps would
be 320.

6 Transaction-Driven Use-Case Writing Style

We have noticed that reason for decisions variance might come from the use cases
structural problems (e.g. responds steps omissions, sequences of actor’s requests
etc.). Furthermore, we observed that literature examples used for the warmup
phase caused less difficulties for the experts. We have analysed use cases, which
involved greatest experts differences to point the most important problems.

In the figure 6, two versions of the same use case are presented. The first one
is coming from the requirements specification assessed in the case study. What
is interesting transactions number estimated by experts, varied from 2 to 5 (as-
sessments were 2, 3, 4, 5 transactions). There are at least two main problems in
the structure of this use case. The first one is omitting system response phrases.
This practice was very often observed. This makes use case shorter but as a side
effect scenario becomes more ambiguous. The sequence of actor requests might
be grouped within the one transaction. This is acceptable when more general

Automatic Transactions Identification in Use Cases 65

Fig. 6. Use case from the case study corpus. a) original use case, with omitted actions
and condition statement, b) modified use case, conforming transaction driven writing
style.

action (e.g. User fills the login form) is split into many subactions (e.g. User
enters login. User enters password.). However, such sequence of actor’s requests
might also emerge as a result of omitting system response. We have noticed that,
in some cases, experts where treating single actor’s action as transaction, based
on their experience. Another important problem is conditional statement in the
main scenario. According to the guidelines concerning use cases, main scenario
should describe the most common sequence of actions. Introducing many alter-
native paths in the main scenario makes the use case difficult to read, because
the main goal is being blurred.

Second version of the use case, presented in the figure 6, has been rewritten
by authors to present more transactional approach to writing use case scenarios.
We leave assessment of the two presented versions to the reader.

Based on our experienced, it seems that use cases which cannot be easily split
into transactions are potentially ambiguous. Problems in transactions identifica-
tions are not an evidence that specification is incorrect, however they should be
perceived rather as a "bad smell" (an indicator of potential problem). Providing
use cases with a structural problems may lead to a similar variance in experts
opinions as in case of presented case study.

We have gathered few guidelines for writing use cases which are suitable for
the transactions identification:

– use case should be defined at system level, scenarios should contain actor’s
and system phrases (e.g. User does ..., System does ... etc.). The transaction
concept is hardly applicable to the business level use cases.

– actors names (real and system) should be defined explicitly,

66 M. Ochodek and J. Nawrocki

– use cases should be provided in a structured textual form (or in other format
which might be transformed into text). This means that use case contains
sequences of steps, which forms scenarios. Each step begins with a prefix.
In order to process extensions, their prefixes should correspond to the step
prefix.

– system responses should not be omitted. This helps in finding transaction
beginning and closure meaningful from the actor point of view,

– a main scenario should describe the most common sequence of actions. It
should not contain conditional statements. If many alternative paths are
possible, it seems to be better idea to use extensions triggered on the actor
action with assertion statement, which presents actor’s intention.

In order to decrease ambiguity of use cases scenarios another action could
be taken as incorporating guidelines regarding writing properly structured use
cases [1,8,9,26], conducting requirements specification inspections and
reviews [3,12]. Many other, potential problems concerning use case structure
might be found automatically through the NLP analysis [7,14].

7 Conclusions

In the paper we have presented an approach to automatic transaction counting
in use cases. We have proposed a formal model of transaction, which can be
used for processing requirements specification. Transaction Tree derived from a
textual use case, provides detailed information about its structure (which might
be further used not only for effort estimation). Even though the presented model
of transaction is formal, it is still easy to applicate. It can be automatically
extracted from use-case text in reasonably short time.

The proposed solution for automatic transaction discovery has been imple-
mented as a prototype tool UCTD. Its accuracy was preliminarily verified in
the described case study. According to the results, the system did not differ
more from the experts than the experts between themselves. Moreover, the tool
provided most uniform judgements when compared with the human experts. In
addition, conducted case study revealed, that transaction identification is diffi-
cult even for people. When experts vary in their opinions, it can significantly
impact on the decisions, which are made based on the number of transactions
(e.g. size and effort estimation).

The reason for variability in expert opinions might be caused by quality of
specification or use case writing style. We believe that knowing number of certain
and uncertain transactions might help in detecting structural defects in use cases.

In the near future we would like to elaborate a method and a tool, which
would be capable of handling Polish, which is mother tongue for the authors.

Acknowledgments. We would like to thank Alicja Ciemniewska, Piotr Godek,
Jakub Jurkiewicz, Wojciech Kopras, Marek Kubiak, Bartosz Michalik and
ï£¡ukasz Olek for valuable discussions and involvement in the proposed solu-
tion assessment.

Automatic Transactions Identification in Use Cases 67

This research has been financially supported by the Ministry of Science and
Higher Education under grant N516 001 31/0269.

References

1. Adolph, S., Bramble, P., Cockburn, A., Pols, A.: Patterns for Effective Use Cases.
Addison-Wesley, Reading (2002)

2. Albrecht, A.J., Gaffney Jr., J.E.: Software function, source lines of code and envel-
opment effort prediction: a software science validation. Mcgraw-Hill International
Series In Software Engineering, pp. 137–154 (1993)

3. Anda, B., Sjøberg, D.I.K.: Towards an inspection technique for use case models.
In: Proceedings of the 14th international conference on Software engineering and
knowledge engineering, pp. 127–134 (2002)

4. Arnold, M., Pedross, P.: Software Size Measurement and Productivity Rating in
a Large-Scale Software Development Department. In: Proc. of the 20th ICSE, pp.
490–493 (1998)

5. Banerjee, G., Production, A.: Use Case Estimation Framework.
6. Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley, Reading

(2000)
7. Ciemniewska, A., Jurkiewicz, J., Nawrocki, J., Olek, Ł.: Supporting use-case re-

views. In: Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 424–437. Springer,
Heidelberg (2007)

8. Clemmons, R.K.: Project Estimation With Use Case Points. CrossTalk–The Jour-
nal of Defense Software Engineering (February 2006)

9. Cockburn, A.: Writing effective use cases. Addison-Wesley, Boston (2001)
10. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A framework

and graphical development environment for robust NLP tools and applications. In:
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics (2002)

11. Diev, S.: Software estimation in the maintenance context. ACM SIGSOFT Software
Engineering Notes 31(2), 1–8 (2006)

12. Dutoit, A.H., Paech, B.: Rationale-Based Use Case Specification. Requirements
Engineering 7(1), 3–19 (2002)

13. Endres, A., Rombach, H.D.: A Handbook of Software and Systems Engineering:
Empirical Observations, Laws, and Theories. Addison-Wesley, Reading (2003)

14. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Applications of linguistic techniques
for use case analysis. Requirements Engineering 8(3), 161–170 (2003)

15. Fellbaum, C.: Wordnet: an electronic lexical database. Mit Pr (1998)
16. Harel, D.: Statecharts: A visual formalism for complex systems. Technical report,

Weizmann Institute of Science, Dept. of Computer Science (1986)
17. Harry, A.: Formal Methods Fact File: VDM and Z. Wiley, Chichester (1996)
18. Jacobson, I.: Object-oriented development in an industrial environment. ACM SIG-

PLAN Notices 22(12), 183–191 (1987)
19. Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: Object-oriented software

engineering: A use case driven approach (1992)
20. Karner, G.: Resource Estimation for Objectory Projects. Objective Systems SF

AB (copyright owned by Rational Software) (1993)
21. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the

41st Annual Meeting of the Association for Computational Linguistics, pp. 423–430
(2003)

68 M. Ochodek and J. Nawrocki

22. Kusumoto, S., Matukawa, F., Inoue, K., Hanabusa, S., Maegawa, Y.: Estimat-
ing effort by use case points: method, tool and case study. In: Proceedings. 10th
International Symposium on Software Metrics, pp. 292–299 (2004)

23. Reif, W.: Formale methoden fur sicherheitskritische software - der kiv-ansatz. In-
formatik - Forschung und Entwicklung 14, 193–202 (1999)

24. Reisig, W.: Petri nets, an introduction. In: Salomaa, A., Brauer, W., Rozenberg,
G. (eds.) EATCS, Monographs on Theoretical Computer Science, Berlin, Springer,
Heidelberg (1985)

25. Ribu, K.: Estimating object-oriented software projects with use cases. Master’s
thesis, University of Oslo, Department of Informatics (2001)

26. Rolland, C., Achour, C.B.: Guiding the construction of textual use case specifica-
tions. Data Know Eng. 25(1), 125–160 (1998)

27. Schneider, G., Winters, J.P.: Applying use cases: a practical guide. Addison-Wesley
Longman Publishing Co., Inc., Boston (1998)

	Automatic Transactions Identification in Use Cases
	Introduction
	Use-Case Transactions Counting Problem
	Definition of Use-Case Transaction
	Proposed Transaction Model

	Transaction Identification with NLP Tools
	Transaction Identification -- A Case Study
	Comparison of System and Experts Results

	Transaction-Driven Use-Case Writing Style
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

