
Manifoldness of Variability Modeling —
Considering the Potential for Further Integration

Mark-Oliver Reiser1,2, Ramin Tavakoli Kolagari2, and Matthias Weber3

1 DaimlerChrysler AG, Research & Technology, GR/ESM,
Alt-Moabit 96a, D-10559 Berlin
moreiser@cs.tu-berlin.de

2 Technische Universität Berlin, Fakultät IV, Lehrstuhl Softwaretechnik,
Franklinstraße 28/29, D-10587 Berlin, Germany

tavakoli@cs.tu-berlin.de
3 Carmeq GmbH, Carnotstrae 6, D-10587 Berlin, Germany

matthias.weber@carmeq.com

Abstract. Variability management has become an important concern
in software and systems engineering. Especially in industrial settings
a rigid management of variability has been identified as an important
prerequisite for further optimization of the development process, e.g. for
reuse of software sub-systems across vehicle models such as the Mercedes
Benz A-Class and C-Class. In response to this growing practical inter-
est, the scientific community has come up with numerous concepts and
techniques for modeling variability. However, despite initial attempts to
integrate or unify some of these manifold approaches, a clear understand-
ing of how they precisely relate to each other is still not yet achieved.

In the paper, various techniques for variability modeling are elabo-
rated and a basic classification scheme is proposed. From this we derive
their common capabilities, which arguably embody the essence of vari-
ability modeling in general. On this basis, a discussion is presented that
concerns the potential and feasibility of integrating all these diverse tech-
niques into a single, common technique for variability modeling.

Keywords: Software product lines, Variability management.

1 Introduction

Over the past decade product line engineering became a popular approach to soft-
ware development both in classical software engineering domains as well as for
industrial software-intensive systems. A software product line is a set of software
products that share a certain degree of commonality while still showing substan-
tial differences and that are developed from a common set of core assets in a pre-
scribed way [1]. In other words, whenever a company has several similar software
products on offer it makes sense to consider developing only a single, but variable
product instead of developing the products in parallel and independently from one
another, thus shifting the focus of development from the individual products to the
product line. Key to all product line engineering is variability management, i.e. the

B. Meyer, J.R. Nawrocki, and B. Walter (Eds.): CEE-SET 2007, LNCS 5082, pp. 291–303, 2008.
c© IFIP International Federation for Information Processing 2008

292 M.-O. Reiser, R.T. Kolagari, and M. Weber

documentation and management of the commonality and variability between the
products within the scope of the product line.

According to the paradigm of orthogonal variability modeling [2], the vari-
ability between the products in a product line is documented and managed as
a separate, orthogonal aspect of development, called variability dimension. This
dimension is thus clearly set apart from the artifact dimension, i.e. the definition
of the development artifacts, such as requirements, component diagrams, state
charts and test cases.

However, variability is often not only addressed in the variability dimension
alone. Instead, it is common to describe the variability’s precise impact on the
development artifacts within these artifacts themselves, i.e. it is explicitly defined
at what location in an artifact certain variability shows up and what alternative
forms the artifact can take at that location. The fact that in these cases some
aspects of variability are also defined in the artifact dimension need not nec-
essarily be seen as a violation of the orthogonal variability modeling paradigm
(even though it is sometimes seen as such), because the definition of variability
aspects in the artifact dimension only relates to where and how the artifact is
affected by variability. The primary focus of variability management—i.e. the
presentation of an overview of the entire product line’s variability, definition of
dependencies between variations and the global coordination of variability across
several artifacts—is still, mainly, the variability dimension.

Over the past decade, a multitude of different techniques have been proposed
for both the variability dimension (esp. feature modeling [3,4,5,6,7]; decision
tables [8,9]; decision diagrams/trees [10,11]) and for defining variability in the
artifact dimension (esp. approaches for explicitly defining variation points and
their variants in various types of artifacts). Most of these techniques come in a
variety of flavors; an attempt to unify some of them has already been undertaken
or is currently in progress, e.g. for feature modeling [12,13]. When considering
all these methods, a few basic groups of techniques and thus a few fundamental
approaches towards variability modeling can be identified, for example feature
modeling and decision tables. Unfortunately, how these main approaches relate
to each other is not examined in detail and is not well understood. Are they
merely different forms of presenting the same information or are there funda-
mental differences in how they address variability modeling? Since all these tech-
niques are aimed at variability modeling, this situation is unsatisfactory from a
theoretical and conceptual point of view: when proposing different ways to treat
variability, it should be clear how they differ and why the distinction is neces-
sary. Moreover, there is also a practical problem with this splitting up of basic
approaches: When two or more independent product lines need to be related to
each other or integrated into a single higher-level product line, different vari-
ability modeling approaches are usually applied in the individual product lines.
In this case, it must be clear how these approaches relate to each other. Such
product line integration is of particular importance in industrial settings; for ex-
ample, in the automotive industry car manufacturers usually need to integrate
the products, i.e. sub-systems, from numerous suppliers’ product lines.

Manifoldness of Variability Modeling 293

In the remainder of this article, we discuss what basic groups of variability
modeling techniques can be identified and how they relate to each other. This is
done for the variability dimension in Section 2 and for variability in the artifact
dimension in Section 3. Then, in Section 4, we discuss the potential and benefit
of a further integration of these techniques.

2 Variability Dimension

Roughly, three forms of variability modeling in the variability dimension can be
distinguished: decision tables, decision trees/graphs and feature models. Figure 1
shows an excerpt from a decision table, inspired by an example in [8]. A deci-
sion table usually refers to one or more variable development artifacts, in the
example a use case diagram for the scenario ’send message’ (not shown). Each
line in a decision table represents a decision to be taken in order to configure the
corresponding variable artifact(s) of the table. Each such decision has a name
as its unique identifier, a question that formulates the decision to be taken, a
list of possible resolutions, i.e. possible answers to the question, and one effect
or action per resolution that describes how the corresponding variable artifacts
have to be changed in order to configure them in line with the decision taken.
Constraints allow defining interdependencies between decisions in order to re-
strict the available resolutions depending on decisions taken earlier or to hide
decisions when they are no longer valid because of some other decision taken
earlier. For example, if the decision ’Does the phone have a camera?’ was an-
swered with ’no’, the decision ’What is the camera’s resolution ?’ is no longer
valid and can be hidden during configuration. The number and precise meaning
of each column in a decision table varies from one approach to another, but the
example given here illustrates the basic idea of decision tables.

Similarly, decision trees also define decisions to be taken in order to configure
one or more variable artifacts. However, the decisions are represented and ar-
ranged graphically. Figure 2 shows a small example of such a decision tree. The
advantage here is that some selected dependencies between the decisions can eas-
ily be defined in this way. For example, the fact that the decision ’What is the
camera’s resolution?’ is invalid if the camera is previously deselected altogether is

Fig. 1. Excerpt from a sample decision table (cf. [8])

294 M.-O. Reiser, R.T. Kolagari, and M. Weber

clearly visible in the tree. Also, the number of possible product configurations is
easily ascertainable, because each leaf in the decision tree corresponds to exactly
one product configuration. However, this also points at an important problem
with decision trees. They tend to become extremely large in complex cases. This
can be avoided by using directed acyclic graphs instead of trees. Decision tree
approaches (e.g. [14]) differ from one another in many details, but these are not
required for the following discussion.

Fig. 2. Example of a decision tree

Feature models are the third form of variability modeling in the variability di-
mension. A feature is a characteristic or trait that an individual product instance
of a product line may or may not have [15]. The purpose of a feature model is
to provide an overview of both the common and variable characteristics of the
product instances and the dependencies between them. Figure 3 shows an exam-
ple. Each node in the tree depicts a feature (e.g. CruiseControl, Wiper). During
configuration, features are selected or deselected. Child features may only be se-
lected if their parent is. Each child feature has a cardinality stating whether it
is mandatory, i.e. it needs to be selected if the parent is, optional, i.e. it may or
may not be selected if the parent is, or if it can be selected more than once (so
called cloned features ; e.g. Wiper). When a feature is selected more than once,
all its descendants can be configured separately each time the feature is selected.
For example, if two wipers are selected during configuration of the feature model
presented in Figure 3, then the RainSensor can be configured independently for
each of the two. In addition, several children of a single feature can be grouped
to express a certain dependency between them, e.g. the alternativity between
Simple and Adaptive in Figure 3. More general dependencies between features
of different subtrees can be expressed through feature links which usually are de-
picted as an arrow (e.g. between RainSensor and Radar). Furthermore, features
may be parameterized meaning that if the feature is selected during configura-
tion, a value of a certain type has to be provided, for example when Radar is
selected, the minimum distance to the next car has to be supplied as an integer
value (cf. Figure 3).

Manifoldness of Variability Modeling 295

Fig. 3. Example of a feature model with advanced concepts

Again, the details of feature modeling approaches (for an overview refer to
[12]) differ greatly; but for the discussion presented here, the basic idea of feature
modeling suffices.

Since all three forms of variability dimension modeling basically have the same
purpose—presenting an overview of the product line’s variability and providing
a basis for configuration—it makes sense to ask whether they are basically equiv-
alent and are merely different ways of presentation for the same information. In
order to tackle this question more systematically, we examine whether the dif-
ferent forms of variability modeling can be translated into one another without
loss of information.

Translating a decision table into a feature model is quite straightforward. For
yes/no decisions, a simple feature is created; for value decisions, a parameterized
feature is added; and for decisions with a finite set of enumerated resolutions,
a parent feature is created together with a child for each of the allowed reso-
lutions. Decisions’ constraints are turned into feature links. The problems with
this translation are:

(1) The natural-language description expressing the decision to be taken can-
not be expressed in the feature model. The features’ textual descriptions are
not normally formulated in such a way. However, the description of a feature
could still be used for this purpose, or an additional attribute could easily be
introduced, if desired.

(2) Decision constraints can refer to several other decisions in a complex way.
Since feature links are often defined as links from one single source feature to a
single destination feature, this technique is less expressive. Again, this is not a
fundamental problem for the translation because a more flexible feature linking
concept could be provided.

(3) In addition, the feature model created from a decision tree in this way will
be very flat. Since we only require that all the information from the decision table
can be expressed and is therefore present in the feature model, this is not really an
obstacle to such translation. However, it already points to an important problem
that we will encounter below when examining translation in the opposite direction.

296 M.-O. Reiser, R.T. Kolagari, and M. Weber

Despite these limitations, the translation from a decision table to a feature
model works relatively well. Unfortunately, this is not true for the opposite di-
rection. Basically, we can create a decision for each feature that is not mandatory
as follows: for simple features a yes/no decision is created, and for parameterized
features a value decision is provided; alternative features are merged into one de-
cision with one resolution per feature. Parent-child relations are mimicked with
decision constraints. While this mapping works well in principle, we identified
several critical mismatches and problems during our investigation:

(4) Feature links can easily be formulated as decision constraints. However,
in that case the dependency needs to be added to either the source or target
decision, while a feature link represents a dedicated entity between the two. Also,
one feature link can easily be kept apart from other feature links affecting the
same feature and from dependencies that are expressed as parent-child relations,
feature groups, etc. In decision constraints, all these dependencies get mingled
within a single constraint.

(5) The hierarchical structuring defined through the parent-child relationships
gets lost. Although the dependency expressed in a parent-child relation (i.e.
the child may only be selected if the parent is selected) can be preserved in
the corresponding decision constraint, it is not possible to document the fact
that this dependency came from a parent-child relation. In other words, when
looking at the decision table, it is no longer possible to distinguish between the
dependencies that are to be interpreted as parent-child relations or hierarchy and
those that are to be interpreted as feature links. This problem could be solved
by introducing hierarchy in decision tables. However, it would then no longer be
possible to edit them with standard office applications, which is one of the most
important advantages of decision tables.

(6) Typed edges, i.e. types of parent-child relations, cannot be expressed in a
decision table.

(7) Cloned features cannot be translated into standard decision tables. Of
course, a similar concept could be incorporated in decision tables—i.e. several
lines of the table would be replicated during configuration and then configured
separately for each copy—but such a mechanism is not available in any of the
common decision table approaches.

(8) Mandatory features cannot be translated into decision tables. This results
in the most important difference between the forms of variability dimension mod-
eling: in contrast to decision tables and decision trees/graphs, feature modeling
does not primarily focus on the decisions to be taken during configuration and
the resulting effects on the variable artifacts. Instead, feature modeling focuses
directly on the differences and similarities between the product line’s individual
products. More specifically, feature models list all important characteristics of
the individual products and state whether these characteristics are common to
all products or vary from one product to another.

To this extent, decision diagrams/trees are very similar to decision tables.
There is only one additional difference that arises when comparing them to the
other two forms of variability dimension modeling:

Manifoldness of Variability Modeling 297

(9) Decision diagrams/trees bring all configuration decisions into a certain
order. For example, if feature f1 and f2 exclude each other (defined by a feature
link), then neither has priority over the other. By contrast, in a decision tree
with decisions d1 and d2—corresponding to f1 and f2, respectively—either d1 is
asked before d2 (and consequently d2 won’t be asked at all if d1 is answered with
yes) or d2 before d1 (and d1 is therefore skipped in the case of a positive answer
to d2). In the first case, d1 has “priority” and in the second d2. Even though
this does not make a difference on a technical level, it is of great importance
from a methodical point of view.

In summary, we can say that there are fundamental differences between the
three forms of variability dimension modeling.

3 Artifact Dimension Variability

Successful management of variability also includes handling artifact variability,
i.e. variability of software development assets on different realization levels. Ar-
tifact dimension variability can be thought of as being described in different
ways:

– Internal: artifact variability is explicitly expressed within the artifact mean-
ing that the possible design decisions and alternatives are explicitly given in
the artifact descriptions.

– External: artifact variability is described outside the artifact meaning that
the possible design decisions are captured elsewhere than within the artifact
specification. Here, often the variability specification that forms the variabil-
ity dimension is used as the location where the artifact variability is specified,
i.e. the variability dimension is augmented by information on the variability
of the artifact dimension.

Also the configuration of artifacts (process of binding variability) can be man-
aged differently:

– Generative/constructive artifact configuration: artifact configuration is real-
ized by generating the final, configured artifact and/or by composing it out
of basic elements from an overall pool of (variable) artifact elements.

– Alterative artifact configuration: artifact configuration is realized by chang-
ing, i.e. enhancing or reducing, a default artifact model.

Bearing these possible differences in mind, one can derive basic artifact dimen-
sion variability approaches and essential concepts for the modeling of artifact
dimension variability as well as the configuration of variable artifacts. In this
section we provide an exemplary overview of artifact dimension variability by
introducing a category matrix of artifact dimension variability management ap-
proaches, shown in Table 1.

Table 1 gives an overview of basic groups of current approaches for artifact
dimension variability definition. The idea is not to have a complete overview of
existing approaches but to motivate the differences between these four essential
concepts represented as the four fields in the matrix.

298 M.-O. Reiser, R.T. Kolagari, and M. Weber

Table 1. Category matrix of artifact dimension variability management approaches

Internal External
Generative / — e.g. decision models,
constructive feature models
Alterative e.g. explicit variation e.g. aspect-oriented

points and variants model transformation

External and Generative Variability Management Approaches
The field at the top right of the matrix represents approaches that model vari-
ability externally to the artifact and that obtain an artifact configuration by
way of generation or through a composition of individual artifact elements or
fractions of artifacts (e.g. [16] and [17]). As described above, artifact dimension
variability is in this case incorporated into the variability dimension specification,
where decision models for a set of assets as gained from domain engineering—as
presented in PuLSE-CDA [8]—are an example of such an approach (see also
the previous Section 2). Variability and dependency relations are only described
in the decision model—not in the artifact elements. The anchor in the artifact
elements for the decisions is described as part of the decision rule, e.g. by using
a unique identifier for artifact elements. Decisions only refer to the variability
or dependency relations at different levels of detail: thus one can either select
or deselect a specific element or one may set specific values for parameters (see
Figure 1). Invariable elements are thus selected automatically from the element
pool, and transitive or technical relations are also applied automatically. An
external variability modeling approach for a pool of artifact elements is easily
applicable and does not need to be tool-supported in the first place. Complex
variability and dependency relations can be modeled and the expressiveness of
decision models is high because the complete arrangement of the artifact ele-
ments can be described. Besides decision models as an external variability mod-
eling approach for an elementary artifact pool also feature models can be thought
of to be an applicable approach. The problem here is that feature models used for
the configuration of artifact elements need explicit links to the artifact elements.
Furthermore, it must be described at the artifact elements which constellation
of features leads to which configuration of the artifact elements.

Internal and Alterative Variability Management Approaches
The field at the bottom left of Table 1 contains such approaches that model
variability explicitly within the artifact elements of any kind of “default” model,
which is changed in the course of the instantiation process, i.e. either the de-
fault model is enhancing because new elements are added, or it is reducing be-
cause variable elements are dropped from the model. An example of an approach
describing variability internally for an enhancing default model is the explicit
description of variation points, variants and dependency relationships between
them. The default model then comprises all the characteristics (artifact assets)
of the whole product family. The asset abundance is constantly reduced through
variability binding. Describing variability within a variable default model calls

Manifoldness of Variability Modeling 299

for explicit scoping efforts in an early domain engineering phase because all
products with their differences and commonalities are derived from the default
model. Furthermore, it is not easy to obtain an overview of the artifact variabil-
ity from a conceptual point of view because often a single conceptual variability
(e.g. the wiper has a rain sensor) affects an artifact at many different locations
and this variability’s definition is therefore split across many variation points
and, similarly, at a single location many different conceptual variabilities can
have an impact and are thus mingled into a single variation point. Thus if the
differences and commonalities are clearly defined and the artifact variability is
complex in the sense that it is local or only technically based, then an artifact-
internal variability description is reasonable. In order to obtain an overview of
the variability and to facilitate the instantiation process the internal variability
description will in this case often be complemented by an external variability
modeling approach in the variability dimension, e.g. feature models.

External and Alterative Variability Management Approaches
The bottom right field in the matrix corresponds to external variability mod-
eling approaches that change a default model. Once again—as described in the
previous paragraph—the default model can be reduced or enhanced during the
variability instantiation process. An example of such an approach is aspect-
oriented model transformation. Differences between products are captured in
aspects that are described in the form of a transformation rule. The rule consists
of a point-cut and an advice, the point-cut specifying the place in the original
model (join-point) that has to be amended with the model fragment described
in the advice of the rule. This kind of variability modeling approach can handle
complex variability and cope with many shortcomings of the internal approach
as described in the previous paragraph (esp. splitting of a single conceptual vari-
ability across many variation points). However, a difficulty with this approach is
that things become extremely complex when several transformations affect the
same location in an artifact. Basically, external variability modeling changing
a default model can be used for all kinds of artifact variability, but its actual
power lies in its great expressiveness: in contrast to the internal variability mod-
eling approach, which is bound to the principal design of the default model, an
external variability modeling approach can change entire parts of the design and
rearrange or exchange completely independent design fragments. Thus especially
in cases where variability results in a rearrangement of the design, an external
approach would be worth considering.

Internal and Generative Variability Management Approaches
Remarkably, so far no approaches have been published in the literature describing
variability in the artifacts with a generative/constructive artifact configuration
(field in the top left of the matrix). This may be due to the fact that a variability
description in artifact elements is usually limited to capturing simple variabil-
ity and dependency relations in order to remain straightforward and manage-
able. As mentioned above, complex variability and dependency modeling calls
for an orthogonal view of the variable artifact elements because coherences with

300 M.-O. Reiser, R.T. Kolagari, and M. Weber

respect to variability and dependency of variable artifact elements cannot merely
be described at one element but are rather crosscutting. Here, a possible artifact
dimension variability approach would assume a domain with simple and local
variabilities and only technical dependencies (e.g. communication relationships).
In this case, the variability and dependency relationships can be described lo-
cally at the artifact elements, and a configuration can be derived only via the
element-based variability and dependency description. Although not an artifact
dimension variability management approach, a Java development library can be
thought of as the simplest approach to locally describe dependency relations and
where the configuration is constructive, though not tool-supported.

Discussion
The remainder of this section discusses the results of table 1:

(1) Currently no internal and generative variability management approaches
exist. Potential use could be in a case of simple, local occurrence of variability. Such
a technique would have to be simple and may influence other variability manage-
ment approaches to become easier applicable in various practical situations.

(2) External variability management approaches augment the variability di-
mension with additional, artifact related information and therefore—at least
implicitly—establish a link between the artifact and variability dimensions. Use
of feature models as well as decision tables proved successful, especially in the
case of complex and highly interrelated variability. Use of feature models and
an explicit description of the artifact configuration based on a feature selection
ends up in a mixture of internal and external description of artifact variability.
Thus, it can be said that there is a continuum rather than a two-valued scale
from internal to external variability modeling approaches.

(3) The most flexible technique to manage artifact variability is an internal
and alterative approach. A default model containing variation points is changed
in the course of the variation point instantiation. This technique is broadly used
in programming (e.g. abstract parameters, types) and therefore often the first
choice to manage variability of artifacts. In complex cases however, the spreading
of variability information throughout the system models my prove infeasible. In
this case a mixture between both an internal and external, generative approach
would be needed.

(4) A more complex but powerful way to change a default model is the use
of model transformation rules. With the help of these rules complete parts of
the model can be rearranged and changes in different artifacts at various places
can be defined together in a single rule. But because of its complexity model
transformation should only be used in cases where this flexibility is needed. In
all other cases an internal way to change the default model should be chosen.

It can be observed that most of the approaches applied in practice are mixtures
between internal and external, generative and alterative variability management
techniques; this is beneficial because the decoupled approaches complement one
another.

Manifoldness of Variability Modeling 301

4 Potential for Further Integration

Based on this survey of fundamental approaches to variability modeling and their
interrelations presented in the previous two sections, we can now come back to
our initial question whether this diversity of variability modeling techniques is
actually required, or whether it would make sense to aim for replacing them with
a single, comprehensive variability modeling technique.

First of all, a single technique for variability modeling both in the variabil-
ity and in the artifact dimension is not realistic. These two cases of variability
modeling are of very different nature actually: In the variability dimension, an
overview of variations across many artifacts is to be provided on an abstract,
conceptual level while in the artifact dimension, the variations of an individual
artifact, i.e. the impact of variability, need to be defined precisely. Thus, the
technique for the artifact dimension introduces variability in an existing arti-
fact while the technique for the variability dimension constitutes an additional
artifact of its own.

Consequently, the highest degree of integration that is conceivable would be
to have a single technique for managing variability in the artifact dimension
and another for the variability dimension. In the artifact dimension, however,
the fundamental approaches towards variability modeling illustrated in Table 1
differ greatly and are aligned with very diverse methodological requirements (as
described in Section 3). Therefore an integration would not make sense at this
point. The next lower level of integration would be to provide a single, integrated
technique for each of the four cells of Table 1. But also this is not feasible in
practice, because of the great diversity of the development artifacts that need to
be covered by these techniques. For example a requirements specification may
call for very different means to express variability than a test case description;
similarly, the concept of aspect-orientation proved feasible for weaving variabil-
ity into program code but its application to design models is still a challenging
research issue. This diversity can be seen as being orthogonal to the two di-
mensions of Table 1. In order to ensure usability it is necessary to tailor the
variability technique to the specific characteristics and needs of the artifact in
question. Hence, the artifact dimension does not have great potential for a fur-
ther integration of techniques.

For the variability dimension, on the other hand, this is much different. The
variability dimension represents an artifact of its own and has a global perspective
spanning all other development artifacts. It therefore needs to be independent of
the artifacts’ specificities anyhow. In addition, we identified that the different ba-
sic approaches towards variability modeling in the variability dimension all share
the same major objective: establishing a global perspective on variations within
the product line and defining dependencies between them. Practical considera-
tions also suggest an integration of approaches: While the definition of the precise
impact of variability inside an artifact (i.e. the purpose of variability modeling
in the artifact dimension) usually is the responsibility of a single team working on
the corresponding artifact, the global variability dimension is frequently subject to

302 M.-O. Reiser, R.T. Kolagari, and M. Weber

coordination between teams, departments and companies. Therefore, an integra-
tion in this area would be of high practical value.

However,we also identified substantial disparities between the basic approaches
for variability dimension modeling, esp. the lack of commonality and hierarchy in
decision tables. An integration will therefore be a challenging task and requires
significant further research.

5 Summary and Conclusion

We surveyed current techniques for managing variability and, by categorizing
them, identified several main approaches to variability modeling and examined
how these are related. Based on this, we discussed the potential of integrating
them into a single, common technique for variability modeling. We argued that
such an integration effort should be targeted at the variability dimension only,
both for practical and conceptual reasons.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Reading (2002)

2. Bachmann, F., Goedicke, M., do Prado Leite, J.C.S., Nord, R.L., Pohl, K., Ramesh,
B., Vilbig, A.: A meta-model for representing variability in product family devel-
opment. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 66–80.
Springer, Heidelberg (2004)

3. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) – feasibility study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute (SEI), Carnegie Mellon University (1990)

4. Asikainen, T., Männistö, T., Soininen, T.: A unified conceptual foundadtion for
feature modelling. In: 10th International Software Product Line Conference (SPLC
2006), pp. 31–40 (2006)

5. Batory, D.: Feature models, grammars, and propositional formulas. Technical Re-
port TR-05-14, University of Texas at Austin (2005)

6. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based fea-
ture models and their specialization. Software Process: Improvement and Prac-
tices 10(1), 7–29 (2005)

7. Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints:
A progress report. In: Proceedings of the OOPSLA 2005 Workshop on Software
Factories (oct 2005)

8. Muthig, D., John, I., Anastasopoulos, M., Forster, T., Dörr, J., Schmid, K.:
Gophone – a software product line in the mobile phone domain. IESE-Report
025.04/E, Fraunhofer IESE (2004)

9. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T.,
DeBaud, J.M.: Pulse: a methodology to develop software product lines. In: SSR
1999: Proceedings of the 1999 symposium on Software reusability, pp. 122–131.
ACM Press, New York (1999)

10. TreeAge Software: TreeAge Software Inc. DATA Interactive White Paper (1999),
http://www.treeage.com/DIDocs/start/whitePaper.php3

http://www.treeage.com/DIDocs/start/whitePaper.php3

Manifoldness of Variability Modeling 303

11. Apprentice Systems Inc.: Apprentice Decision Modeler (2005),
http://www.apprenticesystems.com

12. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Feature diagrams: A
survey and a formal semantics. In: Proceedings of the 14th IEEE International
Requirements Engineering Conference (RE 2006), pp. 136–145. IEEE Computer
Society, Los Alamitos (2006)

13. Reiser, M.O., Tavakoli Kolagari, R., Weber, M.: Unified feature modeling as a ba-
sis for managing complex system families. In: Proceedings of the 1st International
Workshop on Variability Modeling of Software-Intensive Systems (VAMOS), Uni-
versity of Limerick, Ireland (2007)

14. Tessier, P., Gérard, S., Terrier, F., Geib, J.-M.: Using variation propagation for
model-driven management of a system family. In: Obbink, H., Pohl, K. (eds.) SPLC
2005. LNCS, vol. 3714, pp. 222–233. Springer, Heidelberg (2005)

15. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer, Heidelberg (2005)

16. Czarnecki, K.: Overview of generative software development. In: Banâtre, J.-P.,
Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 313–
328. Springer, Heidelberg (2005)

17. Czarnecki, K., Eisenecker, U.: Generative Programming. Addison-Wesley, Reading
(2000)

http://www.apprenticesystems.com

	Manifoldness of Variability Modeling — Considering the Potential for Further Integration
	Introduction
	Variability Dimension
	Artifact Dimension Variability
	Potential for Further Integration
	Summary and Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

